Do the following exercises from the text:
Section 8.1: 2
2. Let $p(n)$ denote the number of distinct positive divisors of $n$. Let $q(n)=a^{p(n)}$ where $a$ is fixed and show that $q(n)$ is multiplicative, but not completely multiplicative.

- Solution. Suppose that $(m, n)=1$. Then $m=\prod_{i=1}^{r} p_{i}^{k_{i}}$ and $n=\prod_{i=r+1}^{r+s} p_{i}^{k_{i}}$ where $k_{i} \geq 1$ and $p_{1}, p_{2}, \ldots, p_{r+s}$ are distinct primes. Then $m n=\prod_{i=1}^{r+s} p_{i}^{k_{i}}$. Therefore

$$
q(m n)=a^{p(m n)}=a^{r+s}=a^{r} a^{s}=a^{p(m)} a^{p(n)}=q(m) q(n)
$$

and hence $q$ is multiplicative. However, $q(6)=a^{2}, q(4)=a$ and $q(6 \cdot 4)=a^{2} \neq q(6) q(4)$. Thus, $q$ is not completely multiplicative.

Section 8.2: 3
3. Show that

$$
\sum_{d \mid n} \frac{1}{d}=\frac{\sigma(n)}{n}
$$

for every positive integer $n$.

- Solution. Since $n / d$ runs through the divisors of $n$ (backwards) as $d$ runs through the divisors (forward), it follows that

$$
\sum_{d \mid n} \frac{1}{d}=\sum_{d \mid n} \frac{1}{n / d}=\sum_{d \mid d} \frac{d}{n}=\frac{1}{n} \sum_{d \mid n} d=\frac{\sigma(n)}{n}
$$

## Section 8.3: 3

3. Show that $\sigma_{2}(n)=\sigma(n) \cdot \prod_{i=1}^{r} \frac{p_{i}^{n_{i}+1}+1}{p_{i}+1}$, where $n=\prod_{i=1}^{r} p_{i}^{n_{i}}$ is the canonical representation of $n$.

- Solution. By Theorem 8.6,

$$
\begin{aligned}
\sigma_{2}(n) & =\prod_{i=1}^{r} \frac{p_{i}^{2\left(n_{i}+1\right)-1}}{p_{i}^{2}-1} \\
& =\prod_{i=1}^{r} \frac{\left(p_{i}^{n_{1}+1}-1\right)\left(p_{i}^{n_{i}+1}+1\right)}{\left(p_{i}-1\right)\left(p_{i}+1\right)} \\
& =\prod_{i=1}^{r} \frac{p_{i}^{n_{i}+1}-1}{p_{i}-1} \cdot \prod_{i=1}^{r} \frac{p_{i}^{n_{i}+1}+1}{p_{i}+1}=\sigma(n) \prod_{i=1}^{r} \frac{p_{i}^{n_{i}+1}+1}{p_{i}+1} .
\end{aligned}
$$

Additional Exercises on the Möbius function (Section 8.4).

1. Find the following values of the Möbius function.
(a) $\mu(12)$
(b) $\mu(15)$
(c) $\mu(30)$
(d) $\mu(50)$
(e) $\mu(1001)$
(f) $\mu(2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13)$
(g) $\mu(10!)$

- Solution. (a) $\mu(12)=0$, (b) $\mu(15)=1$, (C) $\mu(30)=-1$, (d) $\mu(50=0$, (e) $\mu(1001)=\mu(7 \cdot 11 \cdot 13)=-1$, (f) $\mu(2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13)=(-1)^{6}=1$, (g) $\mu(10!)=0$ since 4 | 10!.

2. Show that if $n$ is a positive integer, then $\mu(n) \mu(n+1) \mu(n+2) \mu(n+3)=0$.

- Solution. One of the 4 consecutive numbers $n, n+1, n+2, n+3$ is divisible by 4 and $\mu(m)=0$ whenever $4 \mid m$. Hence the product $\mu(n) \mu(n+1) \mu(n+2) \mu(n+3)=0$.

3. Suppose that $f$ is a multiplicative function with $f(1)=1$. Show that

$$
\sum_{d \mid n} \mu(d) f(d)=\left(1-f\left(p_{1}\right)\right)\left(1-f\left(p_{2}\right)\right) \cdots\left(1-f\left(p_{t}\right)\right)
$$

where $p_{1}^{k_{1}} p_{2}^{k_{2}} \cdots p_{t}^{k_{t}}$ is the prime power factorization of $n$.

- Solution. Since $f$ is multiplicative and $\mu$ is multiplicative, the product $f \mu$ is multiplicative and thus, the divisor sum function $g(n)=\sum_{d \mid n} \mu(d) f(d)$ is also multiplicative, and thus it can be evaluated by computing the value for powers of a prime. Then, if $n=p^{k}$,

$$
g\left(p^{k}\right)=\sum_{d \mid p^{k}} \mu(d) f(d)=\sum_{j=0}^{k} \mu\left(p^{j}\right) f\left(p^{j}\right)=\mu(1) f(1)+\mu(p) f(p)=1-f(p)
$$

since $\mu\left(p^{j}\right)=0$ for $j \geq 2$. The formula now follows from the fact that $g(n)$ is multiplicative.

