
Homework #9 Solutions Due: November 22, 2019

Do the following exercises from the text:
Section 8.1: 2

2. Let p(n) denote the number of distinct positive divisors of n. Let q(n) = ap(n) where
a is fixed and show that q(n) is multiplicative, but not completely multiplicative.

I Solution. Suppose that (m, n) = 1. Then m =
∏r

i=1 p
ki
i and n =

∏r+s
i=r+1 p

ki
i where

ki ≥ 1 and p1, p2, . . ., pr+s are distinct primes. Then mn =
∏r+s

i=1 p
ki
i . Therefore

q(mn) = ap(mn) = ar+s = aras = ap(m)ap(n) = q(m)q(n)

and hence q is multiplicative. However, q(6) = a2, q(4) = a and q(6·4) = a2 6= q(6)q(4).
Thus, q is not completely multiplicative. J

Section 8.2: 3

3. Show that ∑
d|n

1

d
=
σ(n)

n

for every positive integer n.

I Solution. Since n/d runs through the divisors of n (backwards) as d runs through
the divisors (forward), it follows that∑

d|n

1

d
=

∑
d|n

1

n/d
=

∑
d|d

d

n
=

1

n

∑
d|n

d =
σ(n)

n
.

J

Section 8.3: 3

3. Show that σ2(n) = σ(n) ·
r∏

i=1

pni+1
i + 1

pi + 1
, where n =

∏r
i=1 p

ni
i is the canonical represen-

tation of n.

I Solution. By Theorem 8.6,

σ2(n) =
r∏

i=1

p
2(ni+1)−1
i

p2i − 1

=
r∏

i=1

(pn1+1
i − 1)(pni+1

i + 1)

(pi − 1)(pi + 1)

=
r∏

i=1

pni+1
i − 1

pi − 1
·

r∏
i=1

pni+1
i + 1

pi + 1
= σ(n)

r∏
i=1

pni+1
i + 1

pi + 1
.

J
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Homework #9 Solutions Due: November 22, 2019

Additional Exercises on the Möbius function (Section 8.4).

1. Find the following values of the Möbius function.

(a) µ(12) (b) µ(15) (c) µ(30) (d) µ(50)

(e) µ(1001) (f) µ(2 · 3 · 5 · 7 · 11 · 13) (g) µ(10!)

I Solution. (a) µ(12) = 0, (b) µ(15) = 1, (C) µ(30) = −1, (d) µ(50 = 0, (e)
µ(1001) = µ(7 · 11 · 13) = −1, (f)µ(2 · 3 · 5 · 7 · 11 · 13) = (−1)6 = 1, (g) µ(10!) = 0 since
4 | 10!. J

2. Show that if n is a positive integer, then µ(n)µ(n+ 1)µ(n+ 2)µ(n+ 3) = 0.

I Solution. One of the 4 consecutive numbers n, n+1, n+2, n+3 is divisible by 4 and
µ(m) = 0 whenever 4 | m. Hence the product µ(n)µ(n+ 1)µ(n+ 2)µ(n+ 3) = 0. J

3. Suppose that f is a multiplicative function with f(1) = 1. Show that∑
d|n

µ(d)f(d) = (1− f(p1))(1− f(p2)) · · · (1− f(pt)),

where pk11 p
k2
2 · · · pktt is the prime power factorization of n.

I Solution. Since f is multiplicative and µ is multiplicative, the product fµ is mul-
tiplicative and thus, the divisor sum function g(n) =

∑
d|n
µ(d)f(d) is also multiplicative,

and thus it can be evaluated by computing the value for powers of a prime. Then, if
n = pk,

g(pk) =
∑
d|pk

µ(d)f(d) =
k∑

j=0

µ(pj)f(pj) = µ(1)f(1) + µ(p)f(p) = 1− f(p)

since µ(pj) = 0 for j ≥ 2. The formula now follows from the fact that g(n) is multi-
plicative. J

Math 4181 2


