
1
Preliminary Considerations

Number theory is one of the most appealing and esthetically pleasing of all branches
of mathematics. Carl Friedrick Gauss (1777 -1855), one of the greatest mathemati-
cians, physicists, and astronomers of all time, once remarked that "mathematics is
the queen of the sciences, but number theory is the queen of mathematics." Again
referring to number theory, Gauss extolled "the enchanting charms of this sublime
science. . . ." As the reader is almost surely aware, mathematics has a substance
and beauty all its own, and it is this quality that has continually attracted the attention
of people such as Gauss. The matter is well summed up by W. F. White, who wrote:
"The beautiful has its place in mathematics for here are triumphs of the creative
imagination, beautiful theorems, proofs and processes whose perfection of form has
made them classic. He must be a 'practical' man who can see no poetry in mathe-
matics."

Beauty, of course, is a matter of taste and it is not for anyone to determine the
taste of another. Yet surprising results, economically stated and subtly proved, have
been a source of pleasure and satisfaction to the human mind throughout the ages.
Our hope is that readers will derive similar enjoyment from the following pages.

Not all of the succeeding theorems can appropriately be classed as beautiful, nor
are all the proofs neat and elegant, but the theory of numbers has more than its fair
share of such results. It is a fascinating study and our hope is that as readers of this
book penetrate more deeply into it, they too will be pleasantly surprised and pleased
at the statement of a theorem or the turn of a proof. Even more, we hope that they
may know the special pleasure of discovering and proving results for themselves.

But there are other reasons for studying number theory quite apart from intel-
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lectual satisfaction. In our modern computer-oriented society it is widely recognized
that discrete mathematics, of which number theory is an integral part, is increasingly
the applicable mathematics of the day. Important notions in computer science
which depend in significant ways on number-theoretic results include large integer
arithmetic; binary, octal, and hexadecimal representations of integers; factoring in-
tegers; generation of pseudo-random numbers; recursion; computational complex-
ity; cryptography, including public-key encryption systems, and much more. In-
deed, the references to number-theoretic ideas in Donald Knuth's definitive
three-volume work, The Art of Computer Programming, are legion, and it is safe to
say that no one ignorant of number theory can be a serious student of computer
science.

Finally, we note that the art of solving problems is of paramount importance to
students of both mathematics and computer science. How does one reasonably
proceed to analyze an unusual situation never encountered before, to pose it as a
well-defined problem, and then to solve it? The answer to this question is difficult
indeed, since there are many approaches and diverse heuristics, and it is rarely clear
which will be effective at any given time. Perhaps the best way to become a capable
problem solver is to solve many nonroutine problems, and a course in number theory
provides ample opportunity to practice this skill. Solving problems and proving
theorems can certainly be frustrating, but as one's skill improves and insight and
ingenuity increase, the activity can also be the source of great satisfaction. Thus, a
final hope for our readers is that they will come increasingly to enjoy this special
pleasure as they grapple with the interesting problems with which the theory of
numbers is replete.

1.1 SUMMATION AND MULTIPLICATION NOTATION

From time to time as our development proceeds we shall have occasion to use special
notation to simplify the writing of sums and products. The notation is standard but it
may not be amiss to begin our study by reviewing its essential features.

Summation Notation

For r < s, we use 2/-r a, to represent the sum

ar + a,+ i+ • • • +as;

s and r are called the upper and the lower limits of summation, and / is called the index
of summation. For example,

4

^ #, = «0 + fll + «2 + 03 + <*4
i-O
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and analogously,

/-i
The idea is to replace the index of summation in the expression being summed by
consecutive integers, starting with the lower limit of summation and stopping with
the upper limit, and then to add the resulting expressions.

With this in mind, it is not difficult to derive a number of interesting results of a
general nature. In each of the following cases, we shall use 1 and n for the lower and
upper limits, but it is clear that any integers r and 5 could be used just as well. First we
consider

+anbn. (1.1)
i- 1

If we set bi = fcfor i = 1, 2, . . . ,n in (1.1), we obtain

2*a, = *-j>,. (1.2)
i-l i-1

This simply notes that a constant factor (independent of the index of summation) can
be factored out of the entire summation. Moreover, if a, = 1 as well as bt = k for each
/ = 1, 2, . . . , n in (1.1), we obtain

^k = nk. (1.3)
/-I

Thus, the summation of a constant (i.e., a quantity independent of the index of
summation) is equal to the value of the constant times the number of values the index
assumes. For example,

17 5

2 3 = 3 - 1 3 = 39 and ^lb = 42b.
1-5 ;-o

It is sometimes necessary to use multiple summation. If k = bj in (1.2), we have

and if we now sum both sides as j runs from 1 to m, we obtain

Since with regard to the summation on^, the entire sum ?."- 1 a, is constant, it follows
from (1.2) that
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Combining this with (1.5), we obtain the very important result
m n n m

2 2 <M>,- 2 «<•_£*>• o-7)j—i /-I /=i j—i
Another important and useful summation formula is

= (ai+ • • • +an) + (bt+ • • • +bn) (1.8)

1-1 1-1

Multiplication Notation

For r :£ s, we use

n*.
i— r

to represent the product of the numbers ar, ar+l, . . . ,as. For example,
5

]TJ ai =
|M|

and

i-l

As in the case of sums, it is possible to derive a number of useful formulas for
special types of products. As before, we use n and 1 for upper and lower limits in the
following products, but other limits can be used just as well. The derivations in each
case are analogous to the ones for the corresponding sums. In the first place,

n

-(fl,fl2 • • • a.XM2 ' • ' bn) (1.9)

i= 1 i= 1

If we set bj = / c fo r /= 1, 2, . . . , n in (1.9), we obtain

flka^k"- n<z,. (1.10)
i=l i-l
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Moreover, if we set a, = 1 for / = 1, 2, . . . , n in (1.10), we obtain

which says that the product of a constant is equal to the constant raised to a power
equal to the number of values that the index of multiplication assumes.

As examples of the preceding results, we note that

i-l i-l i-l

= «!(«+ 1)!,

that

i-l

and that

i-l

One final result concerning products is suggested by ( 1 .9). If a, , = b, •„ then ( 1 .9)
becomes

n \

i-l i-l i-l M-l

This suggests that, in general,

i-l ,_1

The easy proof of this is left to the reader as Exercise 10 of Section 1.4.
Finally, we observe that it is often useful to make a change of indices in either

summations or products much as one changes variables in algebra or in integration
problems in calculus. For example, if we set 7 + 1 = /, we have that

i-i ;-o
in both cases we are referring to the sum

!2 + 22 + 32 + • • • +r2. (1.14)

Note that to transform the first sum in ( 1 . 1 3) into the second we replace the / in i2 by
j + 1 to obtain (j + 1 )2 and adjust the limits by noting that when i = 1,7 = 0 and
when i = rj = r — 1 . As an additional example, suppose that we set i = r — k. Then
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when / = l,k = r— 1 and when / = r, k = 0. Thus, substituting r — k for / on the left
side of (1.13), we obtain

2/2 = 2 (r-k)2 = ̂ (r-k)2 (1.15)
1=1 k—r-l k-0

since a sum is the same if we sum either forward or backward. In this case the
substitution seems to make the sum more involved, but the idea is important and the
device of substitution of indices is often useful in manipulating with sums and
products.

EXERCISES 1.1

1. Write out the following sums.

(a) 2 (2i- 1) (b) 2 sin ix (c)
/- 1 i-O (-0

n I0 3

j-l J\J ^ jt=5 1=3 '

2. Use the change of indices i=j+ I to rewrite the summations in Exercise

3. Write the following in summation notation.
(a) 2 + 4 + 6 + 8+10
(b) 1 + 8 + 27 + 64 + 125
(c) 28 + 31 + 34 + 37 + 40 + 43
(d) n + (H + 2) + (« + 4) + • • • + (n + 2m)

4. Evaluate 2?=i (a, — a,_i) given that a0 = 0.
5. Use the result of Exercise 4 to prove that 2"_i / = n(n + l)/2.

Hint: Let <*, = /(/+ l)/2.
6. Use the result of Exercise 4 to prove that

1=1

7. With only slight modifications, the equations in Exercises 5 and 6 could have
been written in the form

where

i(i)-cr) - le
k\(n -
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is the usual binomial coefficient notation. What more general result do these
suggest?

8. Use simple algebraic manipulation to show that

(*)+( "w u+ i /
for all integers n and k with Q< k^n.

9. Prove that

k-l\ + k
k ) \k+

where n and k are integers with n ̂  1 and k^O. Note that it is customary to set

integers a and b if 0 =£ a < b.I I = 0 for i

" ( i\. Evaluate 5) I , 1 wnere n and k are nonnegative integers.

Hint: Note that I I = 0 for 0 ̂  i < k and use the substitution / =

j + k — 1, where j is the new index of summation.
11. Use the results of Exercises 5 and 6 to derive a formula for

12. Write out the following products:

(a) ri (27-D wnyf i
7-1 7-0 J^
p+n 2(c> n ' (*«) n gi
i**p 1—2

13. Use the change of indices / —j — 1 to rewrite all the products in Exercise 12.
14. Write the following in product notation.

(a) 2 • 4 • 6 • 8 • 10 • 12
(b) (-!)"•«!

15. Evaluate n?-, a' and IT?-,
" a-

16. Evaluate J| — — given that a0 = 1.
,_i QI-I

17. Use the result of Exercise 16 to prove the following:
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Computer Exercise

18. (a) Write a computer program to compute and print

Sn = i) i3 for 1 < « < 20.
1=1

(b) On the basis of the printout, endeavor to guess a general formula for Sn.
(c) Use Exercise 5 to prove that your guess in part (b) is correct.

1.2 INDUCTIVE REASONING AND THE FIBONACCI SEQUENCE

It should not surprise any reader to assert that the learning of mathematics involves
acquiring an array of manipulative skills, learning a substantial battery of theorems,
and learning how to prove theorems. Appropriately, these matters are stressed in
mathematics classes from kindergarten through college.

On the other hand, it is not the case that axiomatics and proof are the sum total
of mathematics or even its most important part. Contrary to popular belief, mathe-
matics is not a body of material discovered by the Greeks some 2000 years ago and
long since embalmed in textbooks. It is a vital, vibrant, living subject, currently being
created at a rate unprecedented in all of history. Unless students of mathematics
understand something of this process of creation, it can be rather effectively argued
that they really understand very little of what mathematics is all about. It is well and
good to know a particular theorem, say the Pythagorean theorem; one ought to know
something about the proof of the theorem and ought also to be able to use it to solve a
variety of theoretical and practical problems. But where did the Pythagorean
theorem come from, and how does one go about devising other theorems that might
be useful in solving other theoretical and practical problems of importance? It is
precisely at this point that guessing or inductive reasoning enters into mathematics.
No one told Pythagoras that the Pythagorean theorem was true, and he did not simply
look in a crystal ball and say, "Aha! I see a theorem!"; and again, "Aha! I see the
proof!" No, Pythagoras or one of his contemporaries had to guess that the Pythago-
rean theorem was true, and then had to guess how to arrive at a proof. Without the
guess there would have been no theorem, and without more guessing there would
have been no proof. This has always been the case and this will always be the case.
Without guessing there would be no theorems; without guessing there would be no
mathematics! Thus, as indicated in the introduction, an important aim of this book
will be to develop mastery of the art of intelligent guessing and of problem solving.
For intelligent guessing and problem solving are the spirit of inquiry, and inquiry is
the spirit of mathematics.

Of course, the latter aim should be pursued in other courses as well. But it is
particularly suitable for a course in number theory. The great Euler (1707-1783)
once wrote:
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As I shall show here with very good reasons, the properties of the numbers
known today have been mostly discovered by observation, and discovered long
before their truth has been confirmed by rigid demonstrations. There are even
many properties of the numbers with which we are well acquainted but which
we are not yet able to prove; only observations have led us to their knowledge.
Hence we see that in the theory of numbers, which is still very imperfect, we can
place our highest hopes in observations; they will lead us continually to new
properties which we shall endeavor to prove afterwards.

Now how does one go about making an intelligent guess in a given situation?
How does one go about solving a difficult problem in an unusual setting, and how
does one go about guessing the key to a proof even if a result has been guessed or
stated? No doubt many things can be said by way of answer,* but perhaps one of the
best things that can be done is to consider a series of specific examples. Because they
have so many elegant properties that can easily be discovered by the simple expedient
of scrutinizing examples, we begin by considering the famous Fibonacci sequence,
named after Leonardo of Pisa (c. 1170 -1250), who was also called Fibonacci, and the
closely related sequence of Lucas named after the French mathematician E. Lucas
(1842-1891). The two sequences are defined, respectively, by the equations

(1.16)
F, = F2=1, Fn+2 = Fn+l+Fn,

Li — 1, L2 = 3, Ln+2 = Ln+t + Ln

for all n *z 1 and their first few terms (called Fibonacci and Lucas numbers, respec-
tively) are given in the accompanying table.

THE FIRST 25 FIBONACCI AND LUCAS NUMBERS

n

1
2
3
4
5
6
7
8
9
10
11
12
13

Fa

1
1
2
3
5
8
13
21
34
55
89
144
233

L,

1
3
4
7
11
18
29
47
76
123
199
322
521

n

14
15
16
17
18
19
20
21
22
23
24
25

f.

377
610
987

1,597
2,584
4,181
6,765
10,946
17,711
28,657
46,368
75,025

La

843
1,364
2,207
3,571
5,778
9,349
15,127
24,476
39,603
64,079
103,682
167,761

t The reader should see in particular the excellent book Mathematics and Plausible Reasoning.
Vol. 1, by G. Polya (Princeton, N.J.: Princeton University Press, 1954), or the more recent two-volume
work, Mathematical Discovery, by the same author (New York: John Wiley & Sons, Inc., 1981).
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With the data at hand, suffice it to say that one considers examples, tries to
identify regular and consistent patterns, and finally formulates general statements
which one then endeavors to prove. For example, if we consider the table for a
moment, we may note that

1 + 2 = 3,

1+3 = 4,

2 + 5 = 7,

3 + 8= 11,

5 + 13= 18,

and be led to guess that

Fn + Fn+2 = Ln+l (1.17)

for all n s= 1. This is not hard to prove, but in this section we devote our attention to
guessing, and the proofs will be postponed until Section 1.3 and even later for the
more difficult results. As another example, we note that

1 + 1=2,

1 + 4 = 5,

4 + 9= 13,

9 + 25 = 34,

25 + 64 = 89,

and a moment's reflection suggests that

F2n + F2a+1=F2n+l, n^l. (1.18)

In the exercises that follow, the reader will find many examples of this sort. Some-
times the guess is easy to make; sometimes it is relatively difficult. In any case, all are
interesting and somewhat surprising, and the more difficult ones will provide the
greater opportunity for readers to strengthen their mathematical muscles and better
prepare themselves for the rigors yet to come in this and other courses.

EXERCISES 1.2

1. Guess a formula suggested by each of the following sets of equations,
(a) 1+4 = 5 (b) 1 + 1=2

3 + 7= 10 1 + 3 = 4
4+ 11 = 15 2 + 4 = 6
7 + 18 = 25 3 + 7=10

11+29 = 40 5+11 = 16
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(c) 1-1=0 (d) 1 - 1 = 1
4-1 = 3 1 • 3 = 3
9 - 4 = 5 2 - 4 = 8

25-9=16 3 - 7 = 21
64 - 25 = 39 5 • 11 = 55

2. Exercise l(c) suggests that it might be useful to define F0 = 0.
(a) Is this consistent with the pattern established by the defining equations

(1.16)?
(b) Define F_,, F_2, F-3, F_4, and F_5 in a way that is also consistent with

(1.16).
(c) Can you guess a relation between Fn and F_n?

3. Exercise l(c) also suggests that it is sometimes interesting to look at the differ-
ences of squares. What formulas are suggested by the following sets of equa-
tions? Note that more than one correct answer may be possible.
(a) 4 - 1 = 3 (b) 9-1 = 8

9-1 = 8 25 - 1 = 24
25-4 = 21 64-4 = 60
64-9 = 55 169-9=160

(c) 25 - 1 = 24 (d) 9 - 1 = 8
64 - 1 = 63 16-9 = 7

169-4=165 49-16 = 33
441-9 = 432 121-49 = 72

1156-25=1131 324-121=203
(e) 16-1 = 15

49 - 9 = 40
121 - 16= 105
324 - 49 = 275

4. Exercise 3(d) suggests that it might be useful to define L0 = 2.
(a) Is this consistent with equations (1.16)?
(b) How would you define L_ t , L_2, and L_3?
(c) Can you guess a relationship between £_„ and Ln1

5. What formulas are suggested by the following arrays? Use summation notation
in expressing your answer.
(a) 1 = 1 (b) 1 = 1

1 + 1 = 2 1 +2 = 3
1 + 1 + 2 = 4 1 + 2 + 5 = 8

1 + 1+2 + 3 = 7 1+2 + 5 + 13 = 21
(c) 1 = 1 (d) 1 = 1

1 + 3 = 4 l -2=- l
1+3 + 8=12 1-2 + 5 = 4

1+3 + 8 + 21 = 33 l-2 + 5-13 = -9
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6. Guess formulas like those in Exercise 5 for the following summations.

(a) i)(-l)'-'F2, (b)2Z,,
/-i 1-1

(c) £ FU-I W I FV
i-i /-i

(e) 2 (- 1)'-'F2(._, (f) £ (- 1)'-'L2,
i- 1 1=1

i-l i-l
7. Guess formulas for the following summations.

(a) £ F3i_2 (b) J F3I_,
i-l i-l

(C)2F3 I (d) 2(-l)'-'F3,_2

i-l i-l

(e) i (- ly-'Fj,., (f) 2 (- 1)'-'F3J
/-i /-i

8. Guess formulas for the following summations.

(a) J) F? (b) 2
I-l 1=1

(c) J) F,F/+2 (d) 2
/-i 1=1

R

(e) J F./^+rf, where ^ is any
/—i
nonnegative integer

9. Let/, = a,./2 = b, andfn =fn-\n-i for n > 3. Find^,yi, and^ and guess a
general formula for/i.

10. Consider the following arrays and guess the formula they suggest.
82-5-13 = -l 132-8-21 = l
8 2 - 3 - 2 1 = 1 13 2 -5-34 = -l
8 2 - 2 - 3 4 = -4 132-3-55 = 4
82- 1 - 5 5 = 9 13 2 -2-89 = -9
82-1-89 = -25 132- 1-144 = 25

11. Let «, k, and r be positive integers with k < n. See if you can guess how to
complete the following equation:

12. One of the most important phrases in a mathematician's vocabulary is "what
if." For example, what if one replaces all the Fibonacci numbers in the formulas
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in Exercises 6,7, and 8 by Lucas numbers? Will valid formulas result, or at least
similar formulas? Try some.

13. Note that Exercise 8(e) is a generalization of 8(a)-(d) and that Exercise 11 is a
generalization of Exercise 10. Could you find generalizations of other results in
this section?

14. What Fibonacci numbers are evenly divisible by (a) 3, (b) 4, (c) 5, and (d) 6?
Can you make a general guess?

Computer Exercises

15. Write a computer program to generate the first 100 Fibonacci numbers; the first
100 Lucas numbers.

16. Write a computer program to find all positive integer solutions (jc, y) to
x2 — 5y2 = 4. Can you make a general guess?

17. Write a computer program to find all positive integer solutions to x2 — 5y2 =
— 4. Can you make a general guess?

1.3 THE POSTULATES OF MATHEMATICAL
INDUCTION AND WELL-ORDERING

Like the rest of mathematics, the set of positive integers is a postulational system. For
example, one might take the integers themselves and the operations of addition and
multiplication as undefined terms and statements such as the closure law for addi-
tion, which states that the sum of any two positive integers is a positive integer, as
postulates. In general, these postulates are well understood and we will not consider
them here. However, we do consider one postulate that is often found confusing.
The postulate in question is the principle of mathematical induction or its equivalent,
the well-ordering principle. We list three alternative statements and then suggest
some further variations on the general theme.

I,. First form of the principle of mathematical induction. Any set of positive
integers that contains the integer 1, and that contains k + 1 whenever it con-
tains the positive integer k, contains all positive integers.

12. Second form of the principle of mathematical induction. Any set of positive
integers that contains the integer 1, and that contains k + 1 whenever it con-
tains the positive integers 1 to k inclusive, contains all positive integers.

13. The well-ordering principle. Every nonempty set of positive integers contains a
least element.

The reader should bear in mind that one or another of these principles must be
taken as a postulate for the system of positive integers, and we shall show that the
other two can then be proved as theorems. Thus, all three hold for the set of positive
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integers. What do they tell us about the system of positive integers, and how can we
make use of this information?

In effect, the first form of the principle of mathematical induction, I,, simply
says that the set of all positive integers can be generated by starting with 1, and adding
1 successively ad infinitum; that is, that the infinite sequence 1,1 + 1 = 2,2 + 1 = 3,
3 + 1=4, . . . contains all positive integers. The reader should note that this is
said in I, by giving two conditions which guarantee that a set of positive integers is the
set of all positive integers. The first condition specifies that the integer 1 be in the set,
while the second condition states that if any particular integer is in the set, then so is
its successor. But if 1 is in the set and the successor of 1 is in the set, then 2 is in the set.
And if 2 is in the set, then so is 3, and so on. Thus we have an infinite sequence that
contains all the positive integers.

The second form of the principle of mathematical induction, I2, says the same
thing about the system of positive integers as does I,, but in a slightly different way.
Again, there are two conditions which guarantee that a set of positive integers is the
set of all positive integers. This time, however, the second condition states that if all
positive integers from 1 up to and including any given integer are in the set, then the
successor to that integer is also in the set. The first condition, as before, specifies that
1 be in the set. Taken together, these conditions imply that 2 is in the set. But then 1
and 2 are in the set and so 3 is in the set, and so on, as before.

Finally, the well-ordering principle, I3, guarantees that if one has a set actually
containing positive integers and only positive integers, then the set contains a small-
est member. At first thought, it might seem that this would be true of any nonempty
set of numbers, but this is not the case. For example, the set of positive real numbers
fails to have a least element and so does the set of negative integers.

As noted earlier, it is not difficult to show that in the presence of the other
postulates for the positive integers, these three principles are equivalent. First it may
be worthwhile to see how they can be used in the formulation of proofs.

1.4 MATHEMATICAL INDUCTION

We illustrate the use of I, by assuming it as a postulate and using it to prove the
following theorem.

THEOREM 1.1. For every positive integer n, 2?=i / = n(n + l)/2.

Proof. Let Cbe the set of all positive integral values of n for which the formula
of the theorem is true. Clearly, 1 is in C since for « = 1, the assertion is simply that
1 =(1 + l)/2. Now suppose that k is in C, where k is a fixed but unspecified positive
integer; that is, suppose that 1 + 2 + • • • + k = k(k + l)/2. Then
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1 + 2 + • • • + fc + ( f c+ l ) = /C(fe*I) + (A:+l)

_ k(k+ 1) 2(k+ 1)

Thus, if the formula is true for n = /c, it is also true for n = /c+ l;so/c + lisinCiffcis
in C. Finally, since C satisfies both conditions of Ii , it must contain all positive
integers. Hence, the given formula is true for all positive integers «, as claimed.

In practice, one does not usually frame a proof based on I, (such proofs are
called proofs by mathematical induction, as are those based on I2) in terms of a set C,
as in the preceding argument. It was done here only to make its dependence on I,
completely clear. The essential features of the proof are that one must show that (step
1) the result in question holds for n = 1 and that (step 2) it holds for n — k + 1
whenever it holds for n = k, and this is all that is usually written down. Thus, for
example, the preceding proof would more often be written in the following more
abbreviated form.

Proof. For«= 1, the assertion of the theorem is clearly true. Now, assume that
2*_, i = k(k + l)/2, where k is any fixed but unspecified positive integer. Then

Thus, since the assertion is true for n = k + 1 if it is true for n = k, it is true for every
positive integer « by the principle of mathematical induction.

The reader should note that both steps in a proof based on I, must be carried out
before the desired conclusion can be drawn. For example, step 1 can be completed
for the false formula

(„-,),
i- 1 -

whereas step 2 cannot, and step 2 can be completed for the false formula

whereas step 1 cannot.
One must also be sure that the argument made in step 2 of the proof does not

depend on any particular value for k. The argument must hold for any fixed but
unspecified positive integer k or else the "and so on" of the preceding paragraph will
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break down. For example, let us "prove" that all positive integers are equal. The
statement "any « positive integers are equal" is certainly true in case n = 1. Let us
now assume it to be true for n = k and prove that it must, therefore, be true for
n = k+ 1. Let

a{,a2,a3, . . . ,ak,ak+l

be any k + 1 positive integers. By assumption, the first k must be equal and also the
last k must be equal, as indicated above by the braces. But then, because of the
overlap, it is apparent that all the numbers must be equal. Thus, the assertion is true
for n = k + 1 if it is true for n = k and the "proof" is complete. The difficulty, of
course, is that there is no overlap between the first k numbers and the last k numbers
in the foregoing diagram in case k = 1. Thus, step 2 of the argument is valid only for
k ^ 2 and cannot be used to conclude that the result claimed is true for n = 2 if it is
true for n = 1. However, it might be noted that if a separate argument could be given
to prove the validity of the assertion for n = 2, then step 2 could be used to extend the
result upward from 2.

The preceding remark suggests that the method of proof based on I, can be
modified to prove that a result is true for all integers greater than or equal to any fixed
integer, so that the induction does not have to begin with n — 1. For example, if one
wanted to prove that a result were true for all integers greater than or equal to 29, it
would suffice to prove it for n = 29 and for n = k + 1 on the basis of the assumption
of its truth for n = k, where k is any fixed but unspecified integer greater than or equal
to 29.

A proof based on I2 is exactly like one based on I,, with one exception. In step 2
of the proof, one assumes the truth of the assertion for all values of n from 1 to k
inclusive and, on the basis of this assumption, must then prove its truth for n =
k + 1. The point is that the truth of the (k + 1 )st case often does not follow directly
from the truth of the kth case, but does follow from the truth of the assertion for some
or all of the positive integers preceding k + 1. Even in such cases, it is possible (by a
devious trick) to use I[, but a proof based on I2 would be much more natural.

Before giving an example of such a situation, we note that the same general
remarks apply to proofs based on I2 as to those based on I,. By this we mean that both
steps of the proof must be carried out before the conclusion can be drawn, and that
the argument in the second step of the proof must not depend on any particular value
ofk. Also, as indicated in the discussion of I,, the induction can begin with 2, or 29,
or any other integer in place of 1. For example, if 2 were used in place of 1, this would
amount to saying that I2 could be modified to read as follows: Any set of integers not
less than 2 which contains 2 and contains k + 1 whenever it contains the integers 2 to
k inclusive contains all integers not less than 2. We mention this case in particular
since one of the simplest examples of a result that lends itself in a natural way to proof
based on I2 is a theorem true for all integers not less than 2. Before discussing this
theorem, it will be necessary to introduce some terminology.
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DEFINITION 1.1. If a and b are integers with a =h 0 and there exists an
integer c such that b = ac, then we say that a divides b and write a\b. We also call a a
divisorof band b a multiple of a. If 1 ̂  a < b and a\b, then a is called a proper divisor
ofb. If a does not divide b, we write a f b.

DEFINITION 1.2. If p is an integer greater than 1 whose only positive
divisors are 1 and p itself, then p is called a prime. Ifp exceeds 1 and is not a prime,
then it is called composite.

As examples of these definitions, we note that 1,2,3, and 6 are all divisors of 6,
and all but 6 are proper divisors. Also, 2 and 3 are primes and 6 is composite. The
integer 1 is neither prime nor composite.

We now illustrate the method of proof based on I2. Note that we assume I2, as
modified above, as a postulate and prove the theorem in the simplified form without
introducing a set C as in the first proof of Theorem 1.1

THEOREM 1.2. Every integer « ̂  2 is either a prime or can be represented
as a product of primes.

Proof. The assertion is trivially true for n = 2 since 2 is a prime. Assume that it
is true for all integers n with 2 ̂  n ̂  k, where k is any fixed but unspecified integer
not less than 2. We must show that, on the basis of this assumption, the assertion of
the theorem is also true for n = k + 1. Ifk + 1 is a prime, there is nothing to show. If
k + I is composite, there exist integers r and s with 2 ̂  r ̂  k and 2 < s ̂  k such that
k + I — rs. Since r and s both lie between 2 and k, we have, by assumption, that both
are either primes or products of primes. Therefore, in this case, k + I must be a
product of at least two primes. In any case, k + lisa prime or a product of primes
and the assertion of the theorem is true for « = k + I if it is true for all integers « with
2 s n =£ k. Thus, by I2 as modified, it is true for all n =£ 2.

The reader should observe that the second part of the preceding proof depended
on knowing that the assertion of the theorem held for both r and s. Since we knew
only that r and 5 lay somewhere between 2 and k it was necessary to assume that the
assertion of the theorem held for all integers in this range. Using Ij in a natural way
and making the induction assumption only for n = k would not have sufficed.

It turns out that a wide variety of other variations on the theme of mathematical
induction are possible. If we consider the definition of the Fibonacci numbers in
Section 1.2, for example, F3 can be computed since we know its two predecessors F,
and F2. Then F4 can be computed from F2 and F3, and so on. This suggests that the
logic of mathematical induction is essentially the same as the logic of constructing a
DO LOOP in computing. It also suggests an alternative principle of mathematical
induction.
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I4. Third form of the principle of mathematical induction. Any set of positive
integers that contains 1 and 2, and that contains k + 2 whenever it contains the
positive integers k and k + 1, contains all positive integers.

In making a proof based on I4 one would begin by proving the desired result true
for n = 1 and n = 2. One would then assume that the result is true for n — k and
n = k + 1, where k is any fixed but unspecified positive integer and, on the basis of
this assumption, prove that the result must also hold for n = k + 2. Of course, as
usual, both parts of the proof are necessary and the second part of the argument must
not depend on k having some particular value.

Finally, how does one decide whether to use I,, I2,14, or some other variation of
mathematical induction? Actually, perhaps on scratch paper, one has to do the
second part of the proof to see what is required to get "the next case." Let P(n) be a
proposition about the integer n. If the truth of P(k + 1) follows from the truth of
P(k\, will do nicely. If the truth of P(k + 1) depends on the truth of P(i) for
1 < i < k, one must use I2. If the truth of P(k + 2) follows from the truth of P(k) and
P(k + 1), then clearly I4 is needed. But suppose that the truth of P(k + 2) depends on
the truth of P(k); what then? A moment's reflection makes it clear that it will suffice
to begin by proving that both P(l) and P(2) are true. This would be yet another
variation of mathematical induction.

EXERCISES 1.4

1. Show that none of the following sets contains a least element:
(a) The set of positive real numbers.
(b) The set of all integers.
(c) The set of all real numbers greater than 2.

2. Find the least element in the set

F=(\, 1/2, 1/22, . . . ,1/2", . . . }.

3. The following equalities are false for most positive integers n. Try to prove each
by the method of mathematical induction and show why the method fails. Also,
in each case, give a positive integral value for n for which the equality is false.

(a) 2 (21 + 1) = n2 + 2 (b) J) (i + 3) = n2 + n + 2
i-i /-i
" n(n 4- n *

(c) % 2'-' = "1Y (d) £(3/-2) = H2 + « + l
i-i z 1-1
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4. Prove that

n+

for every positive integer n.
5. Prove that

for every positive integer n.
6. Use I, to prove that 22n — 1 is divisible by 3 for every positive integer n.

Hint: For the second part of the proof make your assumption by assuming that
there exists an integer q such that 22* — 1 = 3<?. Then consider

2«*+» - l = 4 • 2* - 1 = 3 • 2* + 2* - 1 = 3 • 2* + 3q.

1. Prove that 22n~' + 1 is divisible by 3 for every positive integer n.
8. Prove that/(«) = 3«5 + 5«3 + 7rcis divisible by 15 for every integer «.

Hint: Note that/(-«) = -/(«).
9. Prove that 32n+1 + 2n+2 is divisible by 7 for every nonnegative integer n.

10. Prove that II"_, aj = (!!?_, a,)r for every positive integer n [see (1.12)].
11. For any positive integer n, prove in two different ways that

2 /(/!) = (/i+1)!-1.
i-i

/fiwf: For one way, note that the first i of the expression being summed can be
written as (i + 1) — 1 and then see Exercise 4 of Section 1.1.

12. Let Fn denote the nth Fibonacci number and prove that the following are true for
every positive integer n.

(a) 2 F, = Fn+2 - 1 (b) 2 FJ = FnFn+,
i-1 i-1

(c) 2 F2,_, = F2n (d) 2 F2. = ̂ 2,-M - 1
i-i <-i

(e) 2(-l)'"1^i-(-0""1^-i + l
/-i

13. Let a = (1 + V5)/2 and £ = (1 - V5)/2 so that a and y? are the roots of x2 =
x + 1; that is, a2 = a + 1 and ft2 = ft + 1. Prove that Fn = (a" - /?")/V5 for all
n>0.
T/i'/if: You may use either I2 or I4; in either case start by proving the result for
n = 1 and n = 2. Why? This formula is due to J. P. M. Binet in 1843.
Note: F0 = 0.
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14. Prove that Ln = a" + $n for all integers n > 0.
Note: L0 = 2.

15. Use I4 to prove that a"~2 =£ Fn =£ o"~' for every positive integer n. Note that it is
again necessary to make the first part of the proof for n = 1 and n = 2.

16. Prove that a" = /*"„_, + aFn for n ̂  1, provided that we define F0 = 0.
17. Prove that Fn+m+l = FnFm + Fn+lFm+, for m ̂  0, n > 0.

////if: Hold m constant and use induction on n.
18. Deduce from Exercise 17 that Fn divides F2n for every n =± 1.
19. Prove that /%, divides /%„„ for n > 1, w > 1.

///«<: Fix « and use induction on m.
20. Let P(n) be a statement about n such that for every positive integer k, the truth of

P(k) implies the truth of P(k + 3). What must be done to prove that P(ri) is true
for every positive integer ril

21. Let P(ri) be an assertion about the positive integer n such that for every positive
integer k, the truth of P(k) implies the truth of P(k + 1) for all k £= 5. What must
be done to show that P(n) is true for every positive integer «?

22. Let P(ri) be a statement about n such that P(l) is true, that the truth of P(k)
implies the truth ofP(k + 1) and P(k + 2) if k is odd. What can you conclude
about P(n)l

23. Prove that

Y F-F- = fF"F»+2 for " even>

/-i l^n+i for n odd,

where n is positive.
Hint: Use Exercise 22.

24. Prove that
for n even,

[Fn+iFn+d for n odd,

where n is positive and d is a fixed positive integer.

" = t
£ ~\r Exercise

25. What would the following program compute?

J = 1

DO 1 I = 2, 51

J = ( I - 1)*J

1 PRINT, J

STOP

END
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1.5 THE WELL-ORDERING PRINCIPLE

We now illustrate the method of proof based on the well-ordering principle, I3, by
proving the following little result concerning the number 1.

THEOREM 1.3. If a is a positive integer, then a s 1; that is, 1 is the least
positive integer.

Proof. Suppose, on the contrary, that there exists an integer a such that
0 < a < 1. Then, if C is the set of such integers, it is not empty. Therefore, by I3, C
must have a least element. Let b be the least element of C. Then 0 < b < 1 and, on
multiplication by b, 0 < b2 < b. But then b2 is an element of C which is smaller than
b and this contradicts the fact that b was the least element of C. Because of this
contradiction, our original assumption must be false, so that a a 1 for every positive
integer a.

As in this case, many proofs based on the well-ordering principle involve the
method of proof by contradiction. To prove a theorem by contradiction, one pro-
ceeds, in general, as follows. One begins by assuming that the theorem is false, and
then deduces from this assumption a result that is known to be false, or that contra-
dicts the primary assumption. We shall have many occasions in the discussions that
follow to use this method of proof.

The proof of Theorem 1.3 also provides an easy illustration of the method of
proof due to P. Fermat (1601-1665) and known as Fermat's method of infinite
descent. In general, such a proof has the following form. One assumes that there is a
positive integer r possessing some property P. One then deduces that there is some
positive integer s< r which also has property P. But since this argument could be
repeated ad infinitum, it contradicts the fact that there must be a smallest positive
integer with property P. Hence, there must be no positive integer possessing prop-
erty/1.

Also, it should be observed that the well-ordering principle can be generalized
along the same lines as It and I2. For example, it could be shown from the well-or-
dering principle as stated that any nonempty set of integers, none of which is less than
some fixed integer b, has a least element. Also, one could prove that any nonempty
set of integers, none of which is greater than some fixed integer c, has a greatest
element.

A second example of proof based on the well-ordering principle is the follow-
ing interesting demonstration that >/2 is irrational, due originally to Hugo Steinhaus.

THEOREM 1.4. The number V2 is irrational.

Proof. Since 1 < 2 < 4, it follows that 1 < V2 < 2. Now suppose that V2 is
rational. Then by the well-ordering principle, there exists a least positive integer b
and an integer a such that 72 = a/b. This implies that 1 < a/b < 2 and hence that
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b < a < 2b and that 0 < a — b < b. Thus, a — b is a positive integer less than b. But
since VI = a/b, it follows that

b2'

2b2 -ab = a2- ab,

b(2b -a) = a(a - b),

,- a 2b — a
V2 = T = - r-b a- b

But this gives V2 as a ratio of two integers with positive integer denominator less than
b. Since this is a contradiction, the theorem is true.

EXERCISES 1.5

1. Use the well-ordering principle to prove that VI is irrational.
2. The Archimedean axiom states that if a and b are positive integers, there exists an

integer n such that an a b. Use the well-ordering principle to prove that this is so.
Hint: Suppose that the assertion is false and consider the set C of all positive
integers of the form b — ma.

3. Use the well-ordering principle to prove that any nonempty set C of integers none
of which is less then a specified integer a has a least element.
Hint: Consider the set D of all integers of the form c — a + 1, where c is an
element of C.

4. Use the well-ordering principle (as modified in Exercise 3 with a = 2) to prove that
every integer n^2 is either a prime or a product of primes.

5. Use Fermat's method of descent to prove that 2"-i / = n(n + l)/2. Note that the
critical arithmetic of the argument is essentially the same as in the proof of this
result by I, in Section 1.4.

6. Use Fermat's method of descent to prove that

1-1

Computer Exercise

7. Write a program to determine the least positive integer that can be written
(nontrivially) as the sum of two cubes of positive integers in two different ways.
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1.6 EQUIVALENCE OF THE PRINCIPLES OF INDUCTION
AND WELL-ORDERING

In this section we show that in the presence of the other postulates for the positive
integers, I,, I2, and I3 are equivalent. First, to avoid circular proofs of Theorems 1.6
and 1.7, we give an alternative proof of Theorem 1.3 based on either I, or I2 and then
deduce a needed corollary.

Proof of Theorem 1,3 Using I, or I2. It is clear that 1 s 1. For the proof
based on I,, assume that k > 1, where k is any fixed but unspecified positive integer.
(For the proof based on I2, assume that i s 1 for all positive integers / from 1 to k
inclusive, where k is any fixed but unspecified positive integer.) Then /c + 1 > A; > 1
and it follows by I, (I2) that n a 1 for every positive integer n. Thus, both I, and I2

imply that 1 is the least positive integer, as claimed.

COROLLARY 1.5. If k is any positive integer, then there exists no positive
integer n such that k < n < k 4- 1.

Proof. This is an immediate consequence of Theorem 1.3 and hence of any one
of Ii, I2, and I3. To see this, observe that if there exists a positive integer « such that
k < n < k + 1, then 0 < n — k < 1, so that n — k is a positive integer less than 1, in
contradiction to Theorem 1.3. Thus, no such n can exist.

We now proceed to the equivalence of I,, I2, and I3.

THEOREM 1.6. ' I, implies I2.

Proof. We take I, as a postulate and must prove I2 as a theorem. Let Cbe any
set of positive integers satisfying the conditions of I2. The problem is to show that C
contains all positive integers.

Let An denote the statement "the integers 1 to n inclusive are in C." A, is true
by hypothesis. Now, assume that A.k is true where k is any fixed but unspecified
positive integer. Then 1 to A: inclusive are in C. Hence, again by hypothesis, k + 1 is
in C and At+1 is true. Therefore, by I,, An is true for every positive integer «, so C
contains all positive integers.

THEOREM 1.7. I2 implies I3.

Proof. We now take I2 as a postulate and prove I3 as a theorem. Let C be a
nonempty set of positive integers. We must show that C has a least element.

Assume that C has no least element and let An denote the statement "n is not an
element of C." Then A, is true, for otherwise 1 would be the least element of C by
Theorem 1.3, which we just proved using I2. Assume that An is true for all n from 1 to
k inclusive. Then, by Corollary 1.5, A*+, must also be true, for otherwise k + 1
would be the least element in C. Thus, by I2, An is true for every positive integer n.
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But this implies that C is empty, contrary to hypothesis. Therefore, the assumption
that C has no least element is false and the theorem is proved.

THEOREM 1.8. I3 implies I,.

Proof. Let C be a set of positive integers satisfying the conditions of I,. Assum-
ing I3 as a postulate, we must prove that C contains all positive integers.

Suppose that C does not contain all positive integers. Then the set C* of all
positive integers not in Cis nonempty. Therefore, by I3, C* has a least element. It
follows from Theorem 1.3, which we proved by using I3, that no elements of C* are
less than 1 and, hence, that the least element of C* is not less than 1. Moreover, the
least element of C* cannot be 1 since, by hypothesis, 1 is in C. Thus, again by
Corollary 1.5, the least element in C* can be written in the form k + 1, where A; is a
positive integer. But this says that k is in C whereas k + 1 is not, in direct contradic-
tion to the hypothesis. Thus, the assumption that C does not contain all positive
integers is false and the theorem is proved.

Theorems 1.6 to 1.8 show that I, implies I2, that I2 implies I3, and that I3 implies
I,. Thus, if any of these propositions is assumed as a postulate for the positive
integers, the others are immediately available as theorems. We shall have a number
of occasions to use each of these principles in what follows.

1 .7 THE DIVISION ALGORITHM

To simplify notation here and throughout the remainder of the book, we shall always
use lowercase Latin letters to denote integers unless explicitly stated to the contrary.

THEOREM 1.9. (The Division Algorithm). For any b > 0 and a, there
exist unique integers q and r with 0 < r< b such that a = bq + r.

Proof. The proof depends on the modification of the well-ordering principle
discussed in Section 1.5.

Let C be the set of all nonnegative integers of the form a — sb. If a & 0, then
a — Ob is an element of C. If a < 0, then a — ab = a( 1 — b) ̂  0 is an element of C
since b s 1 . Thus, in either case, C is not empty. Hence, by the well-ordering
principle, C has a least element. Let q denote that value of s which yields the least
element of Cand set a — bq = r. Thus, since r is the least nonnegative element of this
form, it follows that 0 =£ r and

since r — b is of the form a — sb and yet is less than the least nonnegative integer of
this form. Thus, 0 =£ r < b, as claimed.

The first part of the proof has shown that q and r with the desired properties
must exist. To show that q and r are unique, we must show that they are the only
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integers with the desired properties. Suppose that a = bq' + r', where 0 ̂  r' < b. It
suffices to show that r — r' and q = q'. Ifq' < q, then q' + I =£ q since q and q' are
both integers. Therefore,

r = a - bq ̂  a - b(q' + 1) = a - bq' - b = r' - b < 0,

and this is a contradiction. Similarly, we obtain a contradiction if q' > q. Thus, it
must be the case that q = q'. But then bq + r = a = bq + r', so r = r' as well.

Stated somewhat differently, this theorem simply says that if one divides a by
the positive integer b, one obtains a quotient q and a remainder r where r is nonnega-
tive and less than b. However, the restriction that b be positive is not strictly neces-
sary, and the theorem could also be written in the form: Given integers a and b with
b ¥= 0, there exist unique integers q and r with 0 =£ r < \b\h that a = bq + r.

The division algorithm is surprisingly useful, as we shall see subsequently. As a
first example, note that with b = 2, the theorem implies that every integer a is either
of the form 2k or of the form 2k + 1 (i.e., even or odd). Thus, a2 is either of the form
4k2 = 4r or 4fc2 + 4k+ I =4s+ I . Hence, the square of an integer must leave a
remainder of 0 or 1 when divided by 4; it cannot leave a remainder of 2 or 3.
Similarly, any integer a must be of the form 3fc, or 3 k + 1, or 3k + 2. Thus, a2 must
be of the form 9k2 = 3u, or 9k2 + 6k + l -3» + 1, or 9k2 + \2k + 4 = 3w+ 1.
Hence, the square of an integer must leave a remainder of 0 or 1 when divided by 3; it
cannot leave a remainder of 2. Admittedly, these are only small results, but they are
not without interest and they indicate an important way in which the division
algorithm can be used.

EXERCISES 1.7

1. Prove that no number in the sequence 11, 111, 1111, 11111, . . . , is a perfect
square.

2. Ifp is a prime other than 2 or 5, prove that;? must be one of the forms 10k + 1,
10A:+3, 10fc+7, or Wk + 9.

3. Prove that the product of any two odd numbers must be odd.
4. Prove that one of any two consecutive integers must be even.
5. Prove that one of any three consecutive integers must be divisible by 3.
6. If a is an integer, prove that one of the numbers a, a + 2, and a + 4 is divisible

by 3.
7. If n is an integer not divisible by 2 or 3, show that n 2 + 23 must be divisible by 24.

Hint: Any integer must be of the form 6k, 6k + I, . . . ,or6k + 5.
8. If a, b, and care integers with a2 + b2 = c2, show that a and b cannot both be odd.
9. If a and b are integers with b < 0, prove that there exist unique integers q and r

with 0 < r < \b\h that a = bq + r.



26 Preliminary Considerations Chap. 1

10. If a and b are integers with b =£ 0, prove that there exist unqiue integers q and r
with — |A|/2 < r =£ |*|/2 such that a = bq + r.

Computer Exercise

11. (a) Write a program to compute and print «, /(n), /(/(«)),/(/(/(«))), . . •
for 1 < n < 100, where /(n) = n/2 if H is even and/(«) = 3/1 + 1 if « is odd.

(b) Make a conjecture based on part (a).

1.8 POSITIONAL NOTATION

For many theoretical purposes in the theory of numbers it is immaterial what system
one uses for the representation of numbers. The Greeks, for example, with a very
cumbersome notation, were able to discover and prove many basic properties of the
integers. For practical purposes, however, and for theoretical matters requiring
detailed computation, it is important to have a notation that facilitates calculation.
The Hindu-Arabic system of notation, in worldwide use today, certainly meets this
requirement, and although it is well known from constant usage, it may not be amiss
to discuss it here in some detail.

In the first place, the Hindu-Arabic system is a positional system of notation.
For example, we write 2922 as shorthand for the much more cumbersome expression
2 • 103 + 9 • 102 + 2 • 10 + 2 and let the position of each digit determine its contri-
bution to the total value of the number being represented. Thus, the three 2's above
contribute, respectively, two thousand, twenty, and two, and the nine contributes
nine hundred to the total value of two thousand nine hundred twenty-two.

In the second place, the Hindu-Arabic system is said to have the base 10, since
all numbers are expressed as sums of multiples of powers of 10, as in the preceding
example. Incidentally, it is not difficult to imagine how this all came about.
Members of the human race normally come equipped with built-in calculators with
10 keys and, quite naturally, count large numbers by repeatedly counting the 10
fingers. Indeed, the numbers we use as multipliers of the powers of 10 in our present
system are called digits, as are the fingers and toes.

The great power of this system of notation is that any integer, however large, can
be represented conveniently by repeated use of only 10 symbols and that simple
algorithms, or orderly methods of computation, can be devised for carrying out
arithmetical computations. Other systems, such as the Roman, for example, require
the creation of more and more symbols for the representation of ever-larger numbers,
and even such simple operations as addition and multiplication are quite tedious, to
say nothing about division: for example,

XXVIII + XXXIV = XXVIII + XXXIIII
= XXXXXVHIIIII
= LVVII
= LXII
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and
(XIX) • (II) = (XVIIII) • (II)

= XVIIII + XVIIII
= XXVVIIIIIIII
= XXXVIII.

One need only compare these calculations with the corresponding ones using ordi-
nary base 1 0 arithmetic to appreciate the advantage positional notation affords. The
usual simple rules for borrowing and carrying in subtraction and addition, as well as
the methods for multiplication, and division, depend entirely on this notion.

The following theorem shows that it is always possible to represent an integer in
decimal form and also suggests some interesting alternatives.

THEOREM 1.10. Let b be greater than 1. Then every a>0 can be
uniquely represented in the form

a = cnbn + cn-lb"-l + • • • +Cib + c0

with ca ¥= 0, n a 0, and 0 < ci < b for / = 0, 1, 2, . . . , n.

Proof. We first show that every a > 0 has a representation of the desired form
and then show that the representations are unique.

(i) For a = 1 , it suffices to take n = 0, c0 = 1 .
(ii) Assume that every integer from 1 to k inclusive can be represented in the

desired way. On the basis of this assumption, it must be shown that k + 1 can also be
represented in this way. By Theorem 1 .9, there exist integers c0 and q with 0 ̂  c0 < b
such that k + 1 = bq + c0. If q = 0, then c0 =£ 0 and k + 1 = c0, so that k + 1 is
represented in the desired form. If q > 0, then q = (k + 1 — c0)/b s (k + I)/ 2 s k,
since b a 2 and k ̂  1 . Thus, by the induction assumption, q can be represented in
the desired way; that is, there exist constants which we may denote by c{, c2,
. . . ,cm with cm ¥= 0 and 0 =£ ct < b for / = 1, 2, . . . , m such that

Hence,
k+ 1 =bq + c0 = cmbm+ • • • + ctb + c0

and so can be represented in the desired way. Thus, by mathematical induction,
every positive integer a can be represented in this way.

(iii) We must still show that the representation of each integer a is unique.
Suppose that some a can be represented in two essentially different ways, say

a = c0 + Cib+ • • • + cnb"
= d0 + dlb+ • • • +dmbm

with cn ¥* 0, dm ¥= 0, 0 s ct < b for each /, 0 ̂  dj < b for each j, and with m s n.
Then by subtraction,

• • +embm



28 Preliminary Considerations Chap. 1

wheree, = d, — c,for/ = 0, . . . , n, and et = rf.for / = n + 1, . . . ,mtfm>n.
In view of the inequalities on the c's and d\t follows that —(b — 1) ̂  e(; =£ (b — 1)
for each i. Also, e, ̂  0 for some / since we assumed that the two representations for a
were essentially different. Let ek be the nonzero e with the largest subscript. Then

and

^(b- 1) + (b-\)b+ — • + (b - 1)6*-' = bk - 1.

Since this is a clear contradiction, it must be the case that m = n and c, = dt for all i.
Thus, the representation is unique.

Theorem 1.10 shows that positional representation of numbers is possible with
any integer b > 1 as base. For example, if b = 8, Theorem 1.10 guarantees that any
positive integer can be written uniquely as a sum of multiples of powers of 8 where the
multipliers come from among the integers 0 through 7. Thus, one hundred thirty-
one can be written as 2 • 82 + 0 • 8 + 3 and just as the representations of integers as
sums of multiples of powers of 10 are abbreviated to decimal notation, this might be
abbreviated in octal notation to 203. Indeed, this is almost certainly the way the
number would have been written if human beings had been equipped with four digits
instead of five on each hand. To avoid confusion, we shall frequently use a subscript,
written in base 10 notation, to indicate the base. For the example above, we have that
131,0 = 2038. Incidentally, 203g should be read "two zero three, base eight" and not
"two hundred three" since our language for numbers is already oriented to base 10.

Since our rules for numerical computation, by hand or by machine, depend on
the positional character of decimal notation and not on the base, calculations with
numbers written in octal notation would be carried out as usual except that we would
have to use different addition and multiplication tables, as shown below.

ADDITION TABLE FOR BASE 8

+

1
2
3
4
5
6
7

1

2
3
4
5
6
7
10

2

3
4
5
6
7
10
11

3

4
5
6
7
10
11
12

4

5
6
7
10
11
12
13

5

6
7
10
11
12
13
14

6

7
10
11
12
13
14
15

7

10
11
12
13
14
15
16
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MULTIPLICATION TABLE FOR BASE 8

X

1
2
3
4
5
6
7

1

1
2
3
4
5
6
7

2

2
4
6
10
12
14
16

3

3
6
11
14
17
22
25

4

4
10
14
20
24
30
34

5

5
12
17
24
31
36
43

6

6
14
22
30
36
44
52

7

7
16
25
34
43
52
61

For example, the product of twenty-five and twenty would be found, in base 8,
as follows, where the notation is octal:

31
24

144
62
764

Thus,7648 = 7 - 8 2 + 6 - 8 + 4 = 50010. Similarly, the sum of thirty-five and thirty
would appear in octal notation as

i
43
36

101

and 1018 = 1 • 82 + 0 • 8 + 1 = 65,0, as it should. The reader should work through
these calculations with the help of the tables above to see what is involved at each step.

As almost everyone knows, modern computers do arithmetic in binary (base 2)
notation. Octal (base 8) and hexadecimal (base 16) notation are also used in com-
puting. Base 2 is the natural notation for the internal workings of a machine since
only the digits 0 and 1 are required, and these can easily be expressed in the machine
by a switch being either on or off, a spot on a magnetic tape being magnitized or not
magnetized, a spot on the face of an electrostatic tube being either charged or not
charged, and so on. Of course, arithmetic to base 2 is greatly simplified since one
need only learn the addition and multiplication tables through the ones. For exam-
ple, multiplying eleven by seven in base 2, one would have

1011
111

1011
1011

1011
1001101
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Sixty is divided by 10 as follows:

110
1010)111100

1010
1010
1010

The reader should check to see that all these calculations are correct.
Now, it happens that there is a very simple method for obtaining the positional

representation of any positive integer a to any base b > 1. By Theorem 1.9, we are
assured that there exist integers q{ and r, such that a = bql + r, and 0 =£ rt < b. Also,
there exist q2 and r2 such that qt = bq2 + r2 with 0 ̂  r2 < b. Again, there exists q3

and r3 such that q2 — bq3 + r3 with 0 =£ r3 < b, and so on. Now, it is clear that
a > q\ q2 > q3 > • • •. Thus, we must finally reach the place where some q is
smaller than b, though still positive; that is, for some k, 0 < qk < b. If we divide once
more by b, we obtain qk = 0 • b + rk+l with 0 < /*.+, < b and this ends the process.
Now

a = bqi + r,
= b(bq2 + r2) + r, = b2q2 + br2 + r,
= b2(bq3 + r3) + br2 + r, = b3q3 + b2r3 + br2 + rt

which is a representation of a in the form described in Theorem 1.10. But since a is
uniquely expressible in the form, this must be the desired representation.

For example, if we want to write 35610 in positional notation to base 7, we
perform the successive division as follows:

71356

7150 = ?!, r, = 6

717 = 42, '2=1

Thus, 356,0= 10167.
Octal (base 8) and hexadecimal (base 16) notation are used in computing since

binary representations tend to be quite lengthy and can be greatly shortened by using
octal or hexadecimal notation. Also, it is very easy to change from binary notation to
either octal or hexadecimal, and conversely. To illustrate this we note that 17110 is
written in base 2 as 101010112. Now
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10,101,0112= 1 • 27 + 0 - 2 6 + 1 • 25 + 0 - 2 4 + 1 -2 3 + 0 - 2 2 + l - 2 + 1
= (1 - 2 + 0)26 + (l -2 2 + 0 - 2 ' + 1)23 + (0- 22 + 1 • 2+ 1)
= 2 - 8 2 + 5 - 8 + 3
= 2538.

Thus, to go from base 8 to base 2 we replace each digit in base 8 by the triple of digits
that give its representation in base 2 and conversely. Of course,

2=102, 5=1012> and 3=112 = 0112

since initial O's may or may not be needed to fill out a triple. The hexadecimal digits
for 10, 11, 12, 13, 14, and 15 are normally represented by A, B, C, D, E, and F and

sentations are

0 = 00002

1 =00012

2 = 00102

3 = 00112

4 = 01002

5 = 01012

6 = 01102

7 = 01112

r m. vf »

given

8 =

9 =

A =

B =

C =

D =

E =

F =

by

10002

10012

10102

10112

11002

11012

11102

11112.
Since 16 = 24, we may go from hexadecimal to binary notation by replacing each
digit by its four-digit binary representation, and conversely. Thus 17110 is repre-
sented in binary by 101010112

and in hexadecimal by AB16.

EXERCISES 1.8

1. Express 24710 to (a) base 7, (b) base 2, (c) base 8, and (d) base 16.
2. What number to base lOis represented by(a)324g,(b)32416,(c) 107,(d) 105,(e)

1008,and(f)D9B16?
3. What number to base 10 is represented by 21.7g ? (This has not been discussed,

but the extension should be clear.)
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4. Carry out the following computations using octal notation throughout. Check
your work by converting to decimal notation.
(a)2578 + 361g (b)2578X3618

(c) 3618-2578 (d) 13568-318

5. Construct addition and multiplication tables for base 5 and in that base carry out
the following calculations.
(a) 4235 + 2425 (b) 4235 X 2425

(c) 3315-235

6. Convert the following to octal notation and hexadecimal notation.
(a) 1111001012 (b) 11001012

7. Convert the following to binary notation. ,
(a) 2578 (b) 301 ,
(c) AF3I6 (d) 10C16

8. Let b be greater than 1. Show that every integer a (positive, negative, or zero) can
be represented uniquely in base —b, that is, in the form

with CB =£ 0 if a =£ 0 and 0 < c, <£ for 0 = £ / = = « . If a < 0, show that n is odd. If
a > 0, show that n is even.

9. Show that the method for changing from base 10 notation to base b is also valid
for changing to base — b. For example, to write 392 10 in base — 10, we have that

392 = (-10)(-39) + 2

-39 = (-10)(4)+ 1

4 = (-10) - 0 + 4,

so that 39210 = 412_,0. In short form as above, this could have been written
-101392

-10t^9 = <7,, r,-2

-10(4 = ft, r 2 = l

0 = <73, '3 = 4.
10. Write (a) 8210 and (b) -761 ,„ in base - 10 notation.
11. Write the numbers from one through 20 in base — 10 notation.
1 2. Show that, in adding or multiplying numbers to base — 1 0, one must subtract the

"carries." For example, 87_,0 and 206_10 are added in the following way:
i
87

273
Write these numbers in base 10 notation and check that the addition is correct.
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13. In subtracting to base — 10, show that when one borrows, one must increase
rather than decrease the digit borrowed from. For example, in subtracting 29- ,„
from 57_,0, one proceeds as follows:

29
4 8

Write these numbers in base 10 notation and check that the subtraction is
correct.

14. Carry out the following calculations using base — 10 notation throughout.

(a) 347_10 + 58_10 (b) 347_,0 - 58_10

(c) 78_,0 + 86_10 (d) 28_10 X 57_10

(e) 534_10-2476_10 (f) 193600_10 - 35_10

15. Write the following in base 10 notation.
(a) 276_,o (b) 27.6_10 (c) 27.690_10

(d) 27.509_10 (e) 0.90_10 (f) 19.09_10

Note that 27.690 indicates the infinite repeating decimal 27.6909090 . . .
where the 90 repeats ad infinitum.

Computer Exercises

16. Write a program to print any number n in base b notation, where b is an integer
and 2 =£ b ̂  9. Your program should print out the base b representation of n. In
particular, write 18456203 in base 2.

17. (a) Let s(n) denote the sum of the squares of the digits of n. Write a program to
investigate the behavior of n, s(n), s(s(n)), s(s(s(ri))), . . . for 1 =s /i =£ 100.
Be careful not to get caught in an infinite loop.

(b) Make a conjecture on the basis of part (a).

1.9 COMPUTATIONAL COMPLEXITY

In Section 1.8 we discussed positional notation for integers in any base and pointed
out that base 2, base 8, and base 16 are particularly important and useful in computer
science. The usual algorithms for integer computation are, of course, essentially the
same in any base, and it is easy enough to write out careful proofs that they produce
correct results. Of course, no claim is made for uniqueness of method and there are a
number of alternatives for each of the basic operations of integer arithmetic. In the
case of multiplication, for example, one reasonably well-known, but rather surprising
algorithm is the method known variously as Russian peasant multiplication or Egyp-
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tian multiplication. To multiply 27 times 38, for example, one divides 27 and its
successive quotients by 2 (ignoring any remainders that might result) until a quotient
of 1 is obtained, and simultaneously doubles 38 and its successive doubles, as illus-
trated:

27 38

13 76

-6- +52-

3 304

1 608
1026

One then deletes the even numbers in the "halving" column and the corresponding
numbers in the "doubling" column and adds the remaining numbers in the "dou-
bling" column to obtain the desired result. Thus, 27 • 38 = 1026. The question is
not correctness but quickness or efficiency.

In general, in computing, it is important that jobs be done as efficiently as
possible. Because of the cost of computing, this is particularly true of large jobs that
must be run repeatedly. But it is equally true of very large and/or complicated jobs if
they are to be completed at all. As fast as they are, as we will see later, there exist
computational problems of sufficient size and complexity that they cannot yet be
calculated in "finite time" on even the largest, fastest, and most sophisticated of
today's computers. To obtain a bit deeper understanding of the problem, we investi-
gate briefly the complexity of the usual algorithms of integer arithmetic. The needed
definitions follow.

DEFINITION 1.3. If/and g are positive-valued functions with domain D,
we say that/is O(g) and write/= O(g) if there is a positive constant C such that
f(x) < Cg(x) for all x in D. O(g) is usually read "big-O of g" and we say that/is
big-O of g or that/is of the order of g.

THEOREM 1.11. If/= O(g) on the domain D and c is a positive constant,
then cf= O(g) on D; that is, cO(g) = O(g).

Proof. If/= O(g), there is a positive C such that/(jc) < Cg(x) for all x in D.
Therefore, cf(x) < cCg(x) for all x in D, so cf= O(g).

THEOREM 1.12. If/= O(cg) on the domain D and c > 0, then/= O(g) on
£>; that is, O(cg) = O(g).

Proof. f= O(cg) implies that there exists a positive constant Csuch that/(;c) <
Ccg(x) for all x in D. But then/= O(g), as claimed.
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THEOREM 1.13. If /, = O(gl) and /2 = O(g2) on the domain D, then
/i +/2 = 0(gt + g2) a'nd/,/2 = 0(glg2) on D.

Proof. Since/, = O(g{) and/2 = O(g2), there exist positive constants C, and C2

such that/, (x) < C,£, (x) and/2(x) < C2g2(x) for all x in D. But then

/, (x) +/2(x) < C,£,(x) + C2£2(x) < C[g,(x) + ft(x)],

where C is the larger of C, and C2 . Also,

for all x in D. These two inequalities imply that/, +/2 = 0(£, + g2) and/,/2 =
ft).

COROLLARY 1.14. If/, and/2 are O(g) on the domain A then/, +/2 =

Setting g = gl = g2 in Theorem 1.13, we have that f i + f 2 = O(2g) =
O(g) and f if2 = O(g\s claimed.

THEOREM 1.15. If g(x) s h(x) for all jc in a domain D, then
0(g) + 0(h) = 0(h) and 0(£)0(A) = O(gh).

Proof. If/, = 0(g) andf2 = O(h) on D, then there exist positive constants C,
and C2 such that/, (x) < C, g(x) £ C, /z(x) and/2 (x) < C2 /z(x) for all x in D. There-
fore, /(x) +/2(x) < (C, + C2)h(x) and/,(x)/2(x) < C,C2g(x)h(x) for all x in D.
But this implies that/, +.£ = O(A) and/,^ = O(gh), as claimed.

We mentioned that it is natural that computers should represent integers and
do calculations in binary notation — they represent numbers using bits, or binary
digits. Thus, we can discuss the computational complexity of an algorithm in terms of
bit operations, by which we mean the addition, subtraction, or multiplication of two
binary digits, the division of a two-bit integer by a one-bit integer, or the shifting by
one place of an integer written in binary notation.

Consider the operation of addition, for example. In adding two «-bit integers
by the usual algorithm, we add the digits two at a time, and even allowing for a
"carry" each time, the number of bit operations is clearly at most 3«. Hence,
addition and also subtraction of two «-bit integers takes O(ri) operations. On the
other hand, the usual multiplication algorithm clearly requires n2 bit multiplications
and O(n) additions, carries, and shifts. Thus, since « s «2, it follows from Theorem
1.15 that O(«2)-bit operations are required.

Somewhat surprisingly, however, faster algorithms for multiplication are avail-
able. Suppose, for example, that P(n) denotes the number of bit operations required
to multiply two «-bit integers and that we want to multiply two 2«-bit integers

2n-l 2n-l

a= £ o,2' and b= £ 6,2'.
i-O i-O
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Note that
a = Al-2" + A0 and b = Bl-2" + B0,

where A0 = 27-c1 a,2', X» = ̂  a,2'-", B0 = 2?-d M', and B, = 2f-' 6,2"".
The straightforward multiplication of a and b gives

ab = AlBl •22n + AlB0- 2" + A0Bl • 2n + A0B0,

which is the sum of the four products of two n-bit integers with appropriate shifts and
carries. This gives P(2ri) = 4P(ri) + en, where c is a positive constant, so P(2ri) =
4 • O(«2) = O(n2) by Theorem 1.11. A little ingenuity, however, improves the re-
sult. One has only to do the algebra to see that

ab = (22" + 2")AlBl + 2"(Al- A0)(B0-Bl) + (2" + \)AQB0. (1.19)

This clearly requires the computation of three products of «-bit integers, AtB},
(A , — A0)(B0 — BI), and A0 B0 , in addition to a number of shifts and additions. Thus,

P(2n) ^ 3P (ri) + en, (1.20)

where c is a positive constant since the additions and shifts clearly require only O(n)
operations.

Now it follows from (1.20) that

P(2n)^q(ln-2n), (1.21)

where q is the larger of P(2) and c. For n = 1 , this is clearly true since P( 1 ) = 0 and, by
(1.20), P(2) < 3P(1) + c = c(3l - 2'). Assume that

where k s 1 is fixed. Then, again by (1.20),

3?(3*-2*)-f c - 2*
93*-n_9. 3 . 2k +

and the result is true for all « ̂  1 by mathematical induction.
Before showing that the algorithm of (1.19) is more efficient than the usual

algorithm, we note that for any real a, by [a] we mean the integer satisfying [a] s
a < [a] + 1; that is, [a] is the largest integer not exceeding a.

THEOREM 1.16. P(n) = O(«10»3).

Proof. Since n = 210te" < 2i|0*"Il+1, it follows from (1.19) that

P(n) ;= />(2t»°«
< g(3Dog2n]+

< 3q • 3loto"
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since Iog2 n • Iog2 3 = Iog2 3 • Iog2 n implies that

which in turn implies that 3log2" = «10fc3. But then P(n) = 0(Hlofo3), as claimed.

Note that Iog2 3= 1.5849 . . . , so that the algorithm of (1.1 9) is considerably
better than, the usual algorithm, which requires O(n2) operations, as we have already
seen. But even better algorithms exist. The best algorithm to date can multiply two
«-bit integers in O(n • log n • log log n) operations, and n • log n • log log n is much
smaller than «'°fc3 for large values of n.

Note, by the way, that O(log,0 n) = 0(logA n), where b is any real number
greater than 1 . To see this, we have only to note that logio « = loglo b • \ogb n.

Finally, although we choose not to prove it here, the following theorem shows
that the number of bit operations for division and multiplication are related.

THEOREM 1.17. If a is a 2 n-bit integer and b has no more than n bits, there
is an algorithm for computing the quotient and remainder of the division of a by b in
P(n) steps, the same number of steps as required for multiplying two «-bit integers.

For our purposes, it will suffice to take P(n) = O(n2) rather than one of the
sharper estimates given above.

EXERCISES 1.9

1. (a) Find the base 10 analog to identity (1.19).
(b) Using part (a), multiply 63 by 57 using only addition, subtraction, shifts, and

just three multiplications of one-digit integers.
(c) Use part (a) twice to multiply 743 1 by 7283 using only additions, subtractions,

shifts, and just nine multiplications of one-digit integers.
2. If n = 2/-o ntb' with 0 s «, , < b and nr ¥= 0 is the base b representation of n, show

that r = [logfc n] + 1.
3. Use Exercise 2 to determine the number of digits in the base 10 representation of

264

4. If/; = O(g) on some domain D for / = 1, 2, . . . , n, prove that Sf-i^ = O(g)
and n"-ifi = O(g") on D for every positive integer n.

5. If a > 1, b > 1, and/(n) = O(a") for all positive integers n, under what circum-
stances does it follow that/(n) = O(b")l

6. If Fn denotes the nth Fibonacci number, prove that Fn = O(a"~l), where a =
(1 + \/5)/2 and the domain is the set of all positive integers.
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7. If Ln denotes the nth Lucas number, show that Ln = O(a"), where the domain is
the set of all positive integers.

Computer Exercises

8. Write a computer program to add two arbitrarily large positive integers.
9. Write a computer program to multiply two arbitrarily large positive integers.



2
Divisibility Properties of Integers

Among the most important ideas in the theory of numbers is that of the divisibility of
integers; we introduced this concept in Definitions 1.1 and 1.2 in Section 1.4.
Questions concerning primes and divisors were among the earliest to be considered
when human beings first began to reflect on the properties of numbers, and the search
for answers continues to this day. How many primes are there? How many divisors
does an integer have? Are there any other integers like 6 = 1 + 2 + 3, where the sum
of the proper divisors of the number is equal to the original number? Can one find a
formula for the «th prime? Does the formula F(n) = 22" + 1 yield prime values for
every positive integer «? For what values of n does 2" — 1 give prime values? We
shall consider these and other questions concerning divisibility as we develop the
theory.

2.1 BASIC PROPERTIES

The first consequences of Definition 1.1, which should be reviewed at this time, are
contained in the following theorems. Recall that we are using lowercase Latin letters
to designate integers unless expressly stated to the contrary.

THEOREM 2.1
(i) If a ¥= 0, then a\0 and a\a.

(ii) I \bforanyb.
(iii) If a\b, then a\bc for any c.
(iv) If a\ and b\c, then a\c.
(v) If a\ and a\c, then a\(bx + cy) for any x and y.

39
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Proof. Parts (i) and (ii) are trivial since a • 0 = 0, a • 1 = a, and 1 • b = b.
(iii) If a\b, there exists q such that aq = b. Therefore, a(qc) = be, so a\bc for

anyc.
(iv) If a\b and b\c, there exist integers r and s such that ar=b and fo = c. But

then c = a(rs), so a|c, as claimed.
(v) If a\b and a\c, there exist « and v such that aw = b and ay = c. Then

bx + cy = atix + avy = a(tix + vy), so that a|(fcc + cy) for any x and y.

Property (v) in Theorem 2.1 is especially useful in solving many divisibility
problems. In particular, we may note that if a\ and a\c, then a\(b + c) and a\(b — c).
Also, property (v) extends to sums of more than two terms. Thus, if a\bj for / =
1, ... , n, then a\(btXi + • • • + bnxn) for any integers jc,, x2, . . . ,xa.

THEOREM 2.2. If a\ and b * 0, then \a\£ \b\.

Proof. If a\ and A ¥= 0, there exists c ¥= 0 such that ac = 6. But then \b\
|a| • \c\ \a\e |c| > 1.

COROLLARY 2.3. If a and 6 are positive and a\ and &|a, then a = b.

Proof. By Theorem 2.2, \a\£ |£|and|6| =£ |a|. But since a and b are positive, the
absolute value bars are superfluous. Thus, a ̂  b ̂  a, so a — b.

In what follows, we shall have a number of occasions to use this corollary as a
simple but effective tool in proving equality of numbers.

EXERCISES 2.1

1. If a\b and a + b = c, prove that a\c.
2. If a\ and a + b = c, prove that a\b.
3. If w|(35n + 26), m|(7« + 3), and /w > 1, prove that m=ll.
4. If m\(%n + 7) and m\(6n + 5), prove that m = ± 1.

5. If a > 0, £> > 0, and —I- — is an integer, prove that a = b. Also, show that a = 1
i a bor 2.

6. If a = bq + r with 0 ̂  r < b and Z»|a, prove that r = 0.
7. Let S be the set of all positive integers of the form ax + by. Suppose that S is not

empty and let d = ax0 + by0 be the least element in 5. Show that every element
of 5 is divisible by d.
Hint: Let n be an element of S. Then there exist integers q and r, with 0 s r < d,
such that n = qd + r. Using the special nature of n and d, argue that r — 0.
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8. Let S be the set of Exercise 7; show that S contains all positive integral multiples

9. Let Nn be the integer whose decimal expansion consists of n consecutive ones.
For example, N2 = 1 1 and N7 = 1,111,111. Show that Nn\Nm if and only if n\

Computer Exercise
10. Write a program to determine if one positive integer divides another.

2.2 THE GREATEST COMMON DIVISOR

If d\ and d\b, then d is said to be a common divisor of a and b. If a and b are both
equal to zero, it follows from property (i) of Theorem 2. 1 that they have infinitely
many common divisors. However, if at least one of a and b is different from zero, it
follows from Theorem 2.2 that the number of common divisors is finite and hence
that there must be a largest common divisor.

DEFINITION 2.1 . If d is the largest common divisor of a and b, it is called
the greatest common divisor of a and b and is denoted by (a, b).

In view of the preceding discussion, it is clear that (a, b) is defined only in case a
and b are not both zero. Thus, when we subsequently have occasion to write (a, b),
we shall always imply that a and b are not both zero. Also, it is clear that (a, b) is a
positive integer.

If either a or b is small, the problem of finding (a, b) is not difficult since there
are only a few alternatives. For example, it is easy to see that ± 1 , ± 2, ± 3, and ± 6 are
the only common divisors of 12 and 18 and that 6 = (12, 18). However, trial-and-
error methods are not very efficient when it comes to large values of a and b. There is
an efficient and systematic way for computing (a, b), but before discussing it, it will be
convenient to present two interesting and very useful alternative characterizations of
the greatest common divisor.

THEOREM 2.4. If a and b are not both zero and if d = (a, b), then d is the
least element in the set of all positive integers of the form ax + by.

Proof. Consider the set C of all positive integers of the form ax + by. By
hypothesis, at least one of a and b is different from zero. For definiteness, suppose
that a ¥= 0. If a > 0, then a itself is a member of C, and if a < 0, — a is a member of C.
Therefore, C is not empty, and so, by the well-ordering principle, must have a least
element. Let

e = ax0 + by0

be the least element of C. It suffices to show that d = e.
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By Theorem 1.9, there exist integers <? and r with 0 ̂  r< ̂ suchthata = eq + r.
Thus,

r = a — eq
= a — (ax0 + by0)q
= a(\

which is of the form ax + by. If r were not zero, it would be a member of C, and this
would contradict our assumption that e is the smallest member of C. Thus, r = 0 and
e\a. Similarly, one can show that e\b. Thus, e is a common divisor of a and b, so that,
by Definition 2.1, e =s d. On the other hand, since e = ax0 + by0 and d\ and d\b, it
follows from property (v) of Theorem 2.1 that d\e. Hence, d^eby Theorem 2.2, so
d=e.

THEOREM 2.5. d = (a, b) if and only if d > 0, d\a, d\b, andf\d for every
common divisor /of a and b.

Proof. As noted earlier, since we are discussing (a, b), we are tacitly assuming
that a and b are not both zero.

(i) Suppose, first, that d = (a, b). Then d\a, d\b, and by Theorem 2.4, d =
ax + by > 0 for some integers x and y. But then, if/|a andf\b,f\dby property (v) of
Theorem 2.1.

(ii) Conversely, suppose that d > 0, d\a, d\b, andf\d for every common divisor
/of a and b. Then dis a common divisor of a and b and, by Theorem 2.2, \f\ d.
Thus, d = (a, b) by Definition 2.1.

2.3 THE EUCLIDEAN ALGORITHM

We are now in a position to discuss an orderly and systematic process for finding the
greatest common divisor of two nonzero integers. Such a method is given in Book VI
of Euclid's Elements and is now known as Euclid's algorithm.

For a > b > 0, we proceed as follows. Divide a by b getting, according to
Theorem 1.9, a quotient <?, and remainder r, such that a = bq{ + r, with 0^ rt < b.
If r, = 0, then b\ and (a, b) = £. If r, ¥= 0, we divide b by r,, getting a quotient <?2 and
remainder r2 such that b = q2rl + r2 with 0 s r2 < r,. If r2 = 0, the process stops. If
r2 ̂  0, we continue and get r, = q3r2 + r3 with Q < r3< r2, and so on. Eventually,
the process must terminate with a zero remainder since the decreasing sequence of
nonnegative numbers b > r{ > r2 > r3 > • • • can extend for at most b terms before
reaching zero. Suppose that rk+l is the first zero remainder, so that we have the
equations
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a = bqi + r,,

rk-3 ~ rk-2<Ik-l

rk-\ rkQk+l-

It is easy to show that rk, the last nonzero remainder, is the desired greatest common
divisor of a and b. We have that rk\rk_l and rk\rk so, using the next-to-last of the
preceding equations and property (v) of Theorem 2.1, rk\rk_2. But then rt|rt_, and
rk\k-2> so> using the third equation from the last and property (v) of Theorem 2.1,
rk\k- 3 • This process may be continued to show that rk\ and rk\. On the other hand,
if/|a and/|&, it follows from the first of the preceding equations and property (v) of
Theorem 2. 1 that/I r, . But then/I 6 and/|r, and it follows from the second equation
and property (v) of Theorem 2.1 that/|r2. Continuing this argument step by step,
one finally has that/|rfc. Thus, rk satisfies the conditions of Theorem 2.5, so rk —
(a, b), as claimed.

To make the method clear, we find the greatest common divisor of 288 and 5 1 .
Performing the appropriate divisions, we obtain

288 = 51 - 5 + 33,

51 = 33 • 1 + 18,

33= 18 • 1 + 15,

18= 15 • 1 + 3,,

15 = 3 - 5 . K

Thus, according to the preceding discussion, 3 = (288, 51). Moreover, one can use
the preceding equations to find x and y such that 3 = 288.x + Sly, which we know
exist by Theorem 2.4. Starting with the next-to-last equation and eliminating succes-
sive remainders, we obtain

3= 18- 15
= 18 -(33- 18)
= 2 • 18-33
= 2(51 -33) -33
= 2 - 5 1 - 3 - 3 3
= 2 • 51-3(288-5 • 51)
= 288(-3) + 51 • 17.
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Thus, 3 = 288.x + 51 y, where x = — 3 and j> = 17. In passing, it may be noted that
the x and y are not unique. For example,

3 = 288(-3) + 51 • 17
= 288(-3) + 2 8 8 - 5 1 - 2 8 8 - 5 1 + 51 • 17
= 288 -48 + 51(-271),

so that x = 48, y = — 271 would do just as well. In fact, it is easy to see that there are
infinitely many pairs of values that x and y may assume.

Note that while the preceding calculation of x and y is easily accomplished by
hand if the number of steps is not large, it is not the most efficient for machine
computation. To do it this way by machine, one has to create a file to store the
successive quotients and remainders and then compute backward, as above. This
can be avoided if at each successive division, we immediately update by writing the
new remainder as a combination of a and b. For 288 and 51, we would proceed as
follows.

288 = 5 1 - 5 + 33 33 = 288-5-51

51 = 33 • 1 + 18 18 = 51-33
= 51-(288-5 • 51)
= -288 + 6 - 51

33= 18 • 1 + 15 15 = 33-18
= (288-5 • 51)-(-288+ 6 • 51)
= 2 - 2 8 8 - 1 1 - 5 1

18= 1 5 - 1 + 3 3= 18- 15
= (-288 + 6 • 51)-(2 -288- 11 • 51)
= -3 -288+ 17 • 51

15 = 3 - 5

Thus, 3 = (288, 51) = 288.x + 51>> with jc = -3 andy= 17, as above.
The point of Theorem 2.4 is not so much the fact that d = (a, b) is the least

positive integer of the form ax + by, but that d can be written in this form at all. This
fact was needed in the proof of Theorem 2.5, which formed the basis for the discus-
sion of Euclid's algorithm, and it will prove useful at other points as we continue to
develop the theory. Note, by the way, that if a and b are both positive, then d <
a + b, so one of x and y in d = ax + by must be positive and the other negative.

Incidentally, an expression of the form ax + by is said to be a linear combina-
tion of a and b since each term is of first degree'm a and b. Thus, Theorem 2.4 implies
that (a, b) can be represented as a linear combination of a and b. It is important to
note, however, that the converse of this statement is not true. That is, if d = ax + by,
it does not follow that d = (a, b). For if d = ax + by, then kd = a(kx) + b(ky) is a
linear combination of a and b for every k, and not all these values can equal (a, b).
From d = ax + by one can conclude that (a, b)\d, but without further information,
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this is all that can be said. On the other hand, if 1 = ax + by, then (a, b)\ , and since
(a, b) is a positive integer, it follows that (a, b) = 1. Thus, we have proved the
following little theorem.

THEOREM 2.6. (a, b) = 1 if and only if there exist integers x and y such
that 1 = ax + by.

COROLLARY 2.7. If d = (a, b) and A and B are defined by the equations
a = Ad,b = Bd, then (A, B)=\.

Proof. Since d = (a, b), there exist integers x and y such that d = ax + by.
Therefore,

a b
1 = — x + -y = Ax + By

d d

and (A, B) = 1, by Theorem 2.6.

DEFINITION 2.2. If (a, b) = 1 , then a and b are said to be relatively prime.
More generally, if (ah a,) = 1 for i=£j, l ^ / < r , l < y = s r , the integers a,,
a2, . . . , ar are said to be pairwise relatively prime.

A great deal more can be said about the special case when two numbers are
relatively prime than is contained in Theorem 2.6 and Corollary 2.7. Further results
appear in the following sequence of theorems, and we shall have occasion to return to
the idea again and again.

THEOREM 2.8. If a\bc and (a, b)=l, then a\c.

Proof. Since (a, b)— I, there exist integers x and y such that 1 = ax + by.
Therefore, c = acx + bey. But a\bc, by hypothesis, so a\(acx + bey) by property (v)
of Theorem 2. 1 . Therefore, a\ and the proof is complete.

COROLLARY 2.9. If/? is a prime and p\bc, then p\b, or p\c.

Proof. lfp\b, there is nothing to show. If p X b, then (p, b) = 1 since the only
positive divisors of p are 1 and p itself. But then p\c, by Theorem 2.8.

COROLLARY 2.10. Kpisaprimeandp\aia2 • • • an, then p| a, for some/,

This corollary can easily be proved by mathematical induction and the proof is
left for the reader.

COROLLARY 2.11. lfp,Pi,p2, • • • , Pn are primes and p\pip2 • • • pn,
then p = Pi for some i, 1 < / < «.
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Proof. By Corollary 2.10, p\pf for some i, 1 < / < «. But p ¥= 1 and the only
positive divisors of pt are 1 and pt. Therefore, p = pf and the proof is complete.

THEOREM 2.12. If (a, b,) = 1 for / = 1, 2, . . . ,n, then
(0,6,62 . . . 6,)=!.

Proof. Suppose that (a, 6,62 • • • bn) = d>l. Then, by Theorem 1.2, there
exists a prime;? such thatp\d. Since d\a and d\btb2 ' ' ' bn, it follows from property
(iv) of Theorem 2.1 that p\ and p\blb2 • • • bn. Therefore, by Corollary 2.10, p\-
for some /, ! < / < « . But then p\ and p\bt, and this contradicts (a, 6/) = 1 for all
/ = 1, 2, . . . , n. Therefore, it must be the case that d = 1.

THEOREM 2.13. If a\c, b\c, and (a, b)=l, then ab\c.

Proof. Since a\c and b\c, there exist integers r and s such that ar = c = bs.
From this it follows that b\ar. But (a, b) = 1 and so, by Theorem 2.8, b\r. Thus,
bt = r for some t and c = ar — abt. Therefore, ab\c and the proof is complete.

COROLLARY 2.14. Ifml,m2, . . . ,mn are pairwise relatively prime and
w,|afor/= 1,2, ... ,n, then m\a where m = w,w2 • • • mn.

Proof. The result is certainly true for n = 1. Suppose that it is also true for
n = k and consider the integers mt, m2, . . . , Wk+i w'm (mh mj) = 1 f°r * ^ J>
1 < / < k + 1,1 <7 < k + 1. By Theorem 2.12, (m', mk+l) = 1 where m' =
mlm2 • • • mk, and by the induction assumption, m'\a. But then, by Theorem
2.13, m'mk+l\a and m'mk+i = mlm2 • • • mk+l. Thus, the result is true for all
n*z 1, by mathematical induction.

We close this section by proving a theorem due to Gabriel Lame in 1844 which
gives an upper bound on the number of steps needed to complete the Euclidean
algorithm for computing (a, b). First we need to prove a small result about Fibonacci
numbers.

LEMMA 2.15. Let a: = (1 +V5)/2. Then Fn > a"-2 for n > 3.

Proof. Note that F3 = 2 > 1.618 . . . = (l+>/5)/2 and that F4 = 3 >
2.618 . . . = {(l + V5)/2}2. Thus, the result is true for n = 3 and « = 4. Assume
that Fk > ak~2 and Fk+t > ak~l for some fixed k > 3. Then

Fk+2 = Fk+l +Fk> ak~l + a*-2 = ak~2(a +l) = ak

since a + 1 = a2. Thus, the result is true for all « s 3 by mathematical induction.

THEOREM 2.16. Leta>6>0. The number of divisions needed to find
(a, b) by the Euclidean algorithm is at most 5 times the number of decimal digits in b.

Proof. Referring to the set of equations describing the Euclidean algorithm at
the beginning of Section 2.3, we note that we have used k + 1 divisions. Moreover,
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Qi > 1 for 1 < j ̂  fc and qk+l ^ 2 since rk < rfc_, . As usual, let Fn denote the «th
Fibonacci number. Then, by the equations at the top of page 43,

rk ̂  F 3 + F2

Thus, if there are fc + 1 divisions, it follows that ft ̂  Fk+2 > a* for A: a 1 by Lemma
2.15. Hence,

k
log,0 b > k log,0 a > -

since Iogi0 a = 0.208. . . . Let r be the number of decimal digits in b. Thenft<10 r

and Iog10 b < r. Thus, from above,

A:<51og1 06<5r

and

k+ 1 <5r

since r and k are integers. This completes the proof.

COROLLARY 2.17. The number of bit operations needed to find (a, b) with
a > b > 0 is 0((log2 a)3).

Proof. Since b < a, it follows from Lame's theorem that the number of divi-
sions required to compute (a, b) is O(log,0 b) = 0(log2 b) = 0(log2 a). Also, by
Theorem 1.16, the number of bit operations required to perform each of these
divisions is O((log2 a)2). Thus, (a, b) can be found in O((log2 a)2)O(log2 a) =
0((log2 a)3) bit operations, as claimed.

EXERCISES 2.3

1. (a) Compute (357, 629) and determine x and y such that

(357, 629) = 357* + 629y.

(b) Compute (—357, 629) and find x and y such that

(- 357, 629) = - 357* + 629y.
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2. (a) Compute (7700, 2233) and determine x and y such that

(7700, 2233) = 7700* + 2233y.

(b) Compute (7700, —2233) and determine jc and y such that

(7700, -2233) = 7700* - 2233y.

3. If a is an integer, prove that (\4a + 3, 21 a + 4) = 1.
4. If b * 0, prove that (0, b) = \b\.
5. Prove that b\ if and only if (a, b) = \b\.
6. lfb\c, prove that (a, b) = (a + c, b).

Hint: Let d = (a, b), e = (a + c, b) and show that d\ and e\d.
7. If (a, c) = 1 and b\c, prove that (a, b) = 1.
8. If (a, c)=l, prove that (a, be) = (a, b).
9. lfc> 0, prove that (ac, be) = c(a, b).

10. If (a, b)=l, prove that (a + b, a - b) = 1 or 2.
Hint: Suppose that d = (a + b, a — b). Show that d\2b, d\2a, and use the result
of Exercise 9.

11. If (a, b) = 1, prove that (2a + b,a + 2b)=lor 3.
12. Iff/| mn and (m, ri) = 1, prove that d = dl d2, where dl \ d2 \ and (dl ,d2) = 1.

Hint: Let dt = (d, m).
13. If (a, b) = (c,d)=l,b>0,d>0, and a/b + c/dis an integer, prove that b = d.
14. Prove that the product of any three consecutive integers is divisible by 6.

Suggestion: Use Theorem 2.13 and Exercises 4 and 5 of Section 1.7.
15. If (a, b) = r, (a, c) = s, and (b, c) = 1, prove that (a, be) = rs. Give an example

to show that this need not be true if (b, c) > 1.
16. For the Fibonacci sequence (see Section 1.2), prove that (Fn, Fn+l) = 1 for

every positive integer n.
17. For the Fibonacci sequence, prove that (Fn, Fn+3) = 1 or.2 for n ̂  1.

Hint: Let d\(Fn, Fn+3) and show that d\2.
*18. In Exercise 17, (Fn, Fn+3) = 2 if and only if 2\Fn. Show that 2\Fn if and only if

n = 3q for some positive integer q.
Hint: For the "if" part, note that 2 = F3 and use Exercise 19 of Section 1.4.
For the "only if" part, deduce from Exercise 17 of Section 1.4 that Fn =
F3,_iFr + F3tFr+l for « = 3# + r and argue by contradiction using the results
of Exercises 16 and 7.

*19. Exercise 18 can be generalized. For m > 2, show that Fm\Fn if and only if m\n.
Hint: For the "only if" part of the proof, deduce from Exercise 17 of Section 1.4
that Fn = FM,- , Fr + F^F^,, where n = mq + r and again argue by contradic-
tion using Exercises 16 and 7.
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*20. Let / ̂  2 and suppose that m is the least positive integer such that t\Fm. Prove
that t\Fn if and only if m\n.
Note: That such an m always exists is guaranteed by Exercise 28 of Section 4.1.

*21. Let Nn be the integer whose decimal expansion consists of n consecutive ones as
in Exercise 9 of Section 2.1. Show that (Nn, Nm) = N^m).

*22. If (a, b) = 1, and a > b > 0, prove that

(a"1 - b", a" - b") = a(m-n) - ttm'n)

for any positive integers m and «.

Computer Exercises

23. Write a computer program to compute d = (a, b) and to determine x and y such
that d = ax + by for any positive integers d and b.

24. Use your program to compute (Fm, Fn) for 1 :£ n < m =s 35, where Fn denotes
the «th Fibonacci number. Make a conjecture on the basis of this computation
and prove that your conjecture is correct.

2.4 THE LEAST COMMON MULTIPLE

If a\ and b\m, then m is called a common multiple of a and b. Since division by zero
is meaningless, it is clear that this definition has meaning only if a and b are both
different from zero. In this case it is clear that ab and — ab are both common
multiples of a and b and that one of them is positive. Therefore, by the well-ordering
principle, there must exist a least positive common multiple.

DEFINITION 2.3. If mis the smallest positive common multiple of a and b,
it is called the least common multiple of a and b and is denoted by [a, b].

In view of the preceding discussion, when we write [a, b] we shall always
understand that a and b are different from zero. The following two theorems provide
alternative characterizations of the least common multiple as well as a method for
computing it.

THEOREM 2.18. m = [a, b] if and only if m > 0, a\m, b\m and m\ for
every common multiple n o f a and b.

Proof. Since we are discussing [a, b], we tacitly assume that a and b are different
from zero.

(i) Suppose, first, that m = [a, b] and that n is any common multiple of a and
b. By definition, m > 0, a\m, and b\m, so we have only to show that m\n. There is no
loss in generality in assuming that n is positive, for if n were negative, we would
consider—n. Since, by definition, m is the least positive common multiple of a and b,
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it follows that m-&n. By Theorem 1 .9, there exist q and r with 0 s r < m such that
n = qm + r. Then r=n — qm and it follows from property (v) of Theorem 2. 1 that r
is a common multiple of a and b since both m and n are common multiples of a and
b. If r =£ 0, this violates the given condition that m is the least common multiple.
Therefore, r = 0 and m\n, as claimed.

(ii) Suppose that m > 0, a\m, b\m, and that m|« for every common multiple n
of a and b. Clearly, m is a positive common multiple of a and b, so we have only to
show that it is the least positive common multiple. Since m\n, where n is any
common multiple, it follows from Theorem 2.2 that m £ \n\. Thus, m is the least
positive common multiple of a and b and the proof is complete.

THEOREM 2.19. If ab * 0, then [a, b] = \ab/(a, b)\.

Proof. Leid = (a, b), a = Ad,b = Bd, and m = \ab/d\. Then m = \Ab\ \aB\,
so that m > 0, a\m, and b\m. If a\n and b\n, then there exist r and 5 such that
ar=n = bs. Therefore, Adr = Bds and Ar = Zfr. This implies that |̂55. But
(y4, 5) = 1 by Corollary 2.7, so, by Theorem 2.8, A\ and there exists t such that
At = s. But then n = bs = Abt = ± mt, so m\n. Thus, m satisfies the conditions of
Theorem 2. 18 and m = [a, b], as we were to prove.

In view of Theorem 2.19, the computation of the least common multiple of two
nonzero integers can be made to depend on the computation of their greatest com-
mon divisor, which, in turn, can be computed by Euclid's algorithm. For example,
since we found earlier that (288, 5 1) = 3, we now have that

[288, 51] = - = 4896.

Of course, the ideas of greatest common divisor (g.c.d.) and least common
multiple can be extended in a natural way to more than two numbers. Thus, i f a t ,
a2, . . . ,ar are not all zero, they have a largest positive common divisor which we
denote by (a,, a2, . . . , ar). It can be shown that*/ is the g.c.d. ofat,a2, . . . ,arif
andonlyift/> 0, d\at, for /= 1,2, . . . ,r,andf\d for every common divisor/of a,,
a2, . . . , ar. Also, it can be shown that d is the least positive integer of the form
OiXi + a2x2 + • • • + a,xr. The integers a,, a2, . • . , a, are said to be relatively
prime in case (a,, a2, . . . ,ar)=l. As before,

(at,a2, . . . ,a,)= 1

if and only if there exist integers xt, x2, . . . , xr such that

+ • • • +a,xr= 1.
Similarly, if none of a,, a2, . . . , ar are zero, they have a least positive

common multiple which we denote by [a,, a2, . . . , ar]. It can be shown that
m = [cti,a2, . . . , ar] if and only if w > 0, a,|wforeach/ = 1,2, . . . ,r,andm\n
for every common multiple n of the a's.
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The calculation of the greatest common divisor and least common multiple of
more than two integers can be accomplished in successive steps in accordance with
the following theorems.

THEOREM 2.20. If none of a,, a2, . . . , a, is zero, then

(ai,a2, . . . , ar) = ((a,, . . . , a,.,), ar\ Letd — (al,a2, • • • , ar)ande = ((0,, . . . , ar_i), ar); then d and e

. , • _
are both positive. By Corollary 2.3, it suffices to show that d\e and e\d. Since
d = ( d i , . . . , ar), d\affor i= 1,2, . . . , r. Therefore, d\, . . . ,«,_,) and
d\ar. But then d\ by Theorem 2. 5. On the other hand, e|arand^|(a,, . . . , ar_t).
Therefore, e\at for 1 < i s r, so e\d. This completes the proof.

THEOREM 2.21. If none of a,, a2, . . . , ar is zero, then

[a,,a2, . . . ,a,] = [[ai, . . . , a^,], ar].

The proof of this theorem, which is exactly analogous to that of Theorem 2.20,
is left to the reader.

Theorems 2.20 and 2.2 1 provide a systematic method for computing the great-
est common divisor and least common multiple of more than two integers. For
example, to find (108, 84, 78) we first use the Euclidean algorithm to find that (108,
84) = 12 and that (12, 78) = 6. Hence, by Theorem 2.20, (108, 84, 78) = 6. Also,
from the equations of the Euclidean algorithm used to compute (108, 84) = 12 and
(12, 78) = 6, it is easy to findx, , x2, x3 such that 6 = 108x, + 84x2 + 78x3. These
equations give 12 = 4 • 84 — 3 • 108 and 6 = 78 — 6 • 12, which can be combined
to give

6 = 78 - 6(4 • 84 - 3 • 108)
= 18 - 108-24 • 84 + 78.

Thus, we can take xt = 1 8, x2 — — 24, and x3 = 1 . As before, it is easy to see that x, ,
x2 , and x3 are not unique.

By Theorem 2. 19,

Using the Euclidean algorithm, we find that (756, 78) = 6. Again, by Theorem 2.19,

[756,781 =
o

Therefore, by Theorem 2.21,

[108, 84, 78] = [756, 78] = 9828.
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EXERCISES 2.4

1. Find the following.
(a) [357, 629] (b) [-357, 629] (c) [299, 377]

2. Find (357, 629, 221) and determine x, y, and z such that

(357, 629, 221) = 357.x + 629>> + 221 z.

3. Find [357, 629, 221].
4. Find (299, 377, 403) and x, y, and z such that

(299, 377, 403) = 299x + 377>> + 403z.

5. Find [299, 377, 403].
6. If c > 0, prove that [ac, be] = c[a, b].
1. Prove that a\ if and only if [a, b] = \b\.
8. For any integer «, prove that [9« + 8, 6« + 5] = 54«2 + 93« + 40.
9. Find (12«2 + 16n + 6, 6« + 5) and [12«2 + \6n + 6,6n + 5], where « is an

integer.
10. Letfl i ,a2 , • • • , £r be nonzero integers. Let d= a\x\ a2x2 + • • • + a,xr

be the smallest positive linear combination of a,, a2, • • • > ar- Prove that

d=(al,a2, . . . ,ar).

11. Prove that (a i,a2, . . . ,ar)= I if and only if there exist integers xt,x2, . . . ,
x, such that 1 = a,x, + a2x2 + • • • + arxr.

12. Give an example to show that the equation

(a,,a2 , . . . ,ar)[at,a2, . . . ,ar] = a,a2 • • • a,

is not necessarily true.
13. Give an example to show that the equation of Exercise 12 is sometimes true. Can

you discover under what conditions the equation is generally true?

Computer Exercise

14. Write a computer program to determine the positive integer solutions to the
equation y2 — xy — x2 = 1 and y2 — xy — x2 = — 1. Make a conjecture on the
basis of the printout of your program. Try to prove at least part of your conjec-
ture.

2.5 THE FUNDAMENTAL THEOREM OF ARITHMETIC

As shown in Theorem 1.2, every positive integer greater than 1 either is a prime or can
be successively factored into a product of primes. For example, 36 = 4 • 9 =
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2 • 2 • 3 • 3 where 2 and 3 are primes. Again, 36 = 6 - 6 = 2 - 3 - 2 - 3 and we see
that the same prime factors occur in each case. Indeed, it is common experience that
apart from the order in which the factors occur, factorization of an integer into a
product of primes can be carried out in one and only one way. Common experience,
however, is a poor substitute for proof. To illustrate this point, it is our present
purpose to exhibit systems of numbers possessing many of the same properties as the
set of positive integers, but where factorization into primes is not unique.

We begin by letting I denote the set of all positive integers, and considering the
set Tof all positive integers of the form 3k+ 1, where k is a nonnegative integer. That
is, T= {1,4,7, 10, 13, 16, 19,22,25,28, . . .} consists of just those positive integers
which leave a remainder of 1 when divided by 3. Since

it follows that the product of any two elements of T is again an element of T or, in
more technical terms, that Tis closed with respect to multiplication. Also, since Tis a
subset of /, certain properties of / necessarily hold in T. Thus, we need no further
argument to be sure that the commutative and associative laws for multiplication
hold in T and that 1 is the multiplicative identity for T, just as it is for /.

In addition to the similarities already mentioned, it is clear that Talso contains
prime and composite numbers, just as / does. That is, some elements in T can be
factored into products of other elements in T and some cannot. For example,
16 = 4 - 4 and 28 = 4 • 7, so 1 6 and 28 are composite in T. On the other hand, none
of 4, 7, 10, 1 3, 19, 22, or 25 can be further factored in Tand so are called primes in T.
But the similarity between / and T ceases at this point since it is easy to see that
factorization into primes in Tis not unique. For example, 100 = 4 • 25 = 10 • 10,
yet 4, 10, and 25 are all prime in T. Of course, none of 4, 10, and 25 are prime in the
ordinary sense, but they are prime in T and so we have a legitimate example of a
multiplicative system where prime factorization is not unique.

Since T and /possess precisely the same multiplicative properties, it is apparent
that some other property must be basic to unique factorization. Of course, one
suspects that some additive property, or at least some property involving both addi-
tion and multiplication, may be the crux of the matter, and it is certainly true that /
and T differ considerably in this respect. In fact, since

(3r+ l) + (3s+ l) = 3(r + s) + 2,

it is clear that 7 does not contain the sum of any two of its elements and so is not even
closed with respect to addition.

If we consider additive properties as well as multiplicative properties, then, in
addition to the laws already mentioned, it is well known that /is closed with respect to
addition, that the commutative and associative laws for addition hold, and that the
distributive law involving both addition and multiplication is valid in /. However,
not even all of these properties are sufficient to guarantee unique factorization, as the
following example shows.

We consider the set C of all complex numbers of the form a + b V5/, where a
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and b are integers. Typical elements of C include such numbers as 2 +
1 — -iSi, 2 Viz = 0 + 2\/5/, and 4 = 4 + OV5/. In particular, we note that a =
a + 0 >/5 1, so that all integers are themselves members of C.

It is easy to see that the closure, commutative, and associative laws for both
addition and multiplication hold in C, that the distributive law holds, and that one is
the multiplicative identity. For example,

(a + bJSi) + (c + dJ5i) = (a + c) + (b + d)J5i

and

(a + b V5/)(c + dJ5i) = (ac-5bd)

so that C is closed with respect to both addition and multiplication. The reader
should check to see that the other properties hold as well.

Since we have closure under multiplication, it is obvious that C contains com-
posite elements. Although not as easy to see, it is also true that some numbers are
prime in C. Since 21 = 3 • 7 = (1 + 2V500 — 2>/5/), it will follow that prime
factorization in Cis not unique, provided we show that 3, 7, 1 + 2 V5/', and 1 — 2 V5/
are all prime in C.

To show that 3 is prime in C, we must show that it is impossible to find elements
a and ft in C, both different from ± 1 , such that 3 = aft. This is most easily accom-
plished in the following way. If a = a + b V5 / is any element of C, define N(a), called
the norm of a, by the equation N(a) = a1 + 5 b2. The reader can easily show by direct
calculation that for any two numbers a and ft in C, N(aft) = N(a) • N(0). Now,
suppose that a = a + bJSi, ft = c + rfV5l with a, b, c, and d integers, and that
3 = aft. Then 9 = N(3) = N(a) • N(0) = (a2 + 562)(c2 + 5d2). Since this is an
equation in integers and 1 • 9 = 9 • 1 = 3 • 3 are the only possibilities for factoring 9
in positive integers, it follows that N(a) = 1 , or N(0) = 1 , orN(a) = N(fi) = 3. In the
first case, it is clear that a = ±l, b = 0, so that a = ± 1 and we have the trivial
factorizations 3 = 1 • 3 or 3 = (— 1)(— 3). Similarly, N(0) = 1 implies the trivial
factorization 3 = 3 - 1 or 3 = (— 3X~ 1). Finally, N(a) = 3 is impossible since if
|*| > 0, then N(a) > 5; if b = 0 and a = ± 1, then N(a) = 1; and if b = 0 and \a\ 2,
then N(a) s 4. Thus, it is impossible to find a nontrivial factorization of 3 in Cand 3
is prime in C, as claimed.

Similar calculations which the reader can easily perform suffice to show that 7,
1 +2^i, and 1 — 2 \/5 / are also prime in C. Thus, we may finally say that unique
factorization does not hold in C, even though C apparently satisfies most of the same
arithmetical laws as does /, where prime factorization is unique.

The preceding examples clearly demonstrate the need for giving a careful and
rigorous proof of the fact that prime factorization in /is unique, even though we are
quite certain, by "common experience," that this is true. There have been cases where
claims supported by equally firm convictions have been proved false.
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THEOREM 2.22. (The Fundamental Theorem of Arithmetic). Every in-
teger n s 2 is either a prime or a product of primes, and the product is unique apart
from the order in which the factors appear.

Proof. Since the first part of the theorem is simply a restatement of Theorem
1 .2, we have only to show that the representation of any integer greater than 1 as a
product of primes is unique. Suppose that for some integer a ̂  2,

where the p's and </'s are primes, m ̂  1 , and n s= 1 . It is no restriction to assume tha"
m =s n and that

Pi s Pi £ ' ' ' s Pm and qi ^ q2 s • • • < qa.

Since the equality above implies that />,!<?, q2 • • • qn, it follows from Corollary 2. 11
that PI = qt for some / with 1 s / < n. This implies that p\ qt^ q\ Similarly, it
can be shown that q l s p , , so, in fact, qt=pt. Dividing these equal factors out of the
initial equality, we obtain

PlPl • • • Pm=<Z2<?3 • • • <?„•

But the argument can now be repeated to show that/?2 = q2 and, similarly, that/?, = qt

for i = 3, 4, . . . , m. At this stage, if m were less than n, one would have 1 =
Qm+i<lm+2 ' ' ' Qn, which is clearly false since qt > I for each /. Therefore, m = n,
Pi = qt for each /, and the representation is unique, as claimed.

Since the primes into which an integer can be factored need not be distinct, it
follows from the Fundamental Theorem of Arithmetic that each integer a > 2 can be
represented as a product a = n/_i/?f of prime powers. This representation is called
the canonical representation of a. Thus22 • 3, 24 • 34, and22 - 5 - 1 1 are the canoni-
cal representations of 1 2, 1 296, and 220 in that order. If, in a given problem, only one
number is represented in this way, we usually require a, to be positive for each /.
However, for notational convenience when two or more numbers are involved, we
sometimes allow some of the exponents to be zero. If a, = 0, for example, the prime
pt simply does not occur in the canonical representation of a. This device makes it
possible to write the canonical representation of any two positive integers so that they
appear to involve the same prime factors even though they may, in fact, fail to have
any nontrivial common factors. For example, we could write 12 = 22 • 3 • 5° and
20 = 22 • 3° • 5; and one could even write 1 = 2° • 3° • 5°. The usefulness of this
device is apparent in the following important theorem.

THEOREM 2.23. Let a = n/"_, pf with a, > 0 for each / be the canonical
representation for a and let b > 0. Then b\ if and only if b = nj_,/?f' with 0 ̂
bt s at for each /.
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Proof. lfb = Wi-ip1?' with 0 ̂  bi , ss a,, then

1-1

= n prw

«-1 ;-1

= c-b,

where c = n,_, p?~b' and c a 1 since a, — b,,2= 0 for each /. Therefore, 6|a, as we
wished to prove.

To prove the converse, suppose that b\a. Then, since there exists c such that
be = a, the canonical representation of a can be formed by taking the product of the
canonical representations of b and c. (A canonical representation for a can be formed
in this way, and since the canonical representation must be unique by Theorem 2.22,
this must be the canonical representation.) Thus, the primes that appear in the
canonical representations of b and c must be the same as those in the canonical
representation of a; that is, b — II /-1 pf( and c = FI /-1 rf' with 6, ̂  0 and c, a 0. Since
be = a, it follows that at = bt + c,, so a, a b/. This completes the proof.

Theorem 2.23 makes it extremely easy to write down all the positive divisors of
a positive integer once its canonical representation has been obtained. For example,
since 72 = 23 • 32, the divisors of 72 are

1 - 1 1 - 3 1 • 32

2 • 1

2 2 - 1

23- 1

2 • 3

2 2 - 3

2 3 - 3

2 - 32

2 2 - 3 2

23 • 32.

It may be noticed that there are 4 - 3 = 1 2 such divisors and that they are the terms in
the expansion of the product (1 + 2 + 22 + 23)(1 + 3 + 32). In fact, this product
gives the sum of the positive divisors of 72. In general, if a — n/-ipf', it is clear that
H '- 1 (a, + 1 ) is the number of positive divisors of a and that the sum of these divisors
is given by the product

l-l l-l i

It is customary to denote the number of positive divisors of a by r(a) and their sum by
a(d). Thus, we have obtained the following theorem.
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THEOREM 2.24. If a = n ?- , pf with a, > 0 for each i is the canonical rep-
resentation of a, then

r na,+ l _ |

'r(a) - II (fl,+ 1) and .
i-l i-l Pi

AlSO, T(l) = (7(1) =1.

Canonical representations also make it very easy to find greatest common
divisors and least common multiples.

THEOREM 2.25. If a = H'-ip? and b = Flf-iP*' and at ̂  0 and bt ̂  0 for
each i are the canonical representations of a and b, then

(a,b)-l[p? and [a,b]-l[pf,
i-i /-i

where u, is the smaller of a, and ft, and t>, is the larger of a, and 6, for each /.

Proof. Let rf = FI /- 1 pf . Since w, is the smaller of a, and b-t , M, ̂  a, and w, ̂  bt for
each /'. Therefore, by Theorem 2.23, d\ and d\b. Suppose that/|a and/|6. Then
|/| = IIj.,/^ with/ ̂  a, and/ =£ ̂  for each /'. But since M, is the smaller of a, and bt,
this implies that/ =£ M, for each i. Therefore, again by Theorem 2.23, |/| \d, so/|<jf.
Since d > 0, it follows from Theorem 2.5 that nf-ipj1' = d = (a, b), as claimed.

To complete the proof, note that by definition of M, and vt, at + A, — w, = v,.
Thus, by Theorem 2.19,

= n pf +6/~i*
i-l

as claimed.

For example, since 1296 = 24 • 34 and 9720 = 23 • 35 • 5, we immediately
have that

(1296, 9720) = 23 • 34 = 648

and

[1296, 9720] = 24 • 3s • 5 = 19,440.
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EXERCISES 2.5

1. Find the canonical representation of each of the following numbers.
(a) 4725 (b) 3718 (c) 3234

2. Find (4725, 3234) and [4725, 3234].
3. Find (3718, 3234) and [3718, 3234].
4. Find t(4725) and cr(4725).
5. FindT(3718)andcr(3718).
6. Find the sum of the squares of the positive divisors of 4725.
7. If a = II ?= i pf ' with a, > 0 for each i is the canonical representation of a, deduce a

formula for the sum of the squares of the positive divisors of a.
8. Leta = n?-i/??'witha,-> 0 for each /be the canonical representation of a. Prove

that a is the square of an integer if and only if a, is even for each /.
9. Show that the number of positive divisors of a positive integer a is odd if and only

if a is the square of the integer.
10. Let a = n/-i/??- and b = fl'-i/??- with a, > 0, bt ̂  0 for each / be the canonical

representations of a and b. Prove that (a, b) = 1 if and only if atbj = 0 for each /,
that is, if and only if a, or bt is zero for each /'.

11. If a = Uri-ipf, b = Uri-ipb, c = nri-ipci', with a, .a 0, &,s=0, c (sO are the
canonical representation of a, b, and c, prove that (a, b, c) = ll'-ip"1 and
[a, b, c] = n t-ipl1 , where u, is the smallest of a,, b(, cf and v, is the largest of a, bt,
Cj for each i. This result could be extended in the same way to more than
three integers.

12. State the most general conditions which assure that for r ̂  3,

(a,,a2, . . . ,ar)[al,a2, . . . ,ar] = a&2 • • • ar.

13. Let a, b, c be positive integers.
(a) Prove that abc = (a, b, c)[(a, b), (a, c), (b, c)][a, b, c].
(b) Prove that abc = (a, b, c)[ab, be, ac\.
(c) Prove that abc = (ab, ac, bc)[a, b, c].

14. Find a result like any one of those in Exercise 13 for integers a, b, c, and d.
15. Let Cbe the set of all complex numbers of the form a + b V5/, where a and b are

integers. Prove that 7, 1 + 2\/5/, and 1 — 2-JSi are all prime in C.

Computer Exercise

16. For each « write a computer program to determine the minimum number of
squares needed to write « as a sum of nonzero perfect squares. Execute the
program for 1 ̂  « < 200 and print out the representations of each n as the sum of
the minimum number of squares. Make a conjecture on the basis of the print-
out.
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2.6 PYTHAGOREAN TRIPLES

Everyone is familiar with the fact that the triangle with sides 3, 4, and 5 is a right
triangle, or, what is the same thing, that

32 + 42 = 52

Only slightly less familiar is the fact that

5 2 +12 2 =13 2 and 82+152=172 .

The problem we wish to consider here is that of finding all such triples of positive
integers, called Pythagorean triples.

In the first place, it is clear that if a, b, c is a Pythagorean triple, then so is ka, kb,
kc, for any integer k. Thus 6, 8, 10 and 9, 12, 15 are such triples, although neither is
essentially different from the parent triple 3, 4, 5. In view of this fact, it is clear that
our chore will be essentially completed if we find all Pythagorean triples whose
elements are relatively prime. Such triples are called primitive Pythagorean triples.

Suppose, now, that x, y, z is a primitive Pythagorean triple so that x2 + y2 = z2

and (x, y, z) = 1 . We first show that this implies that (x, y) = (x, z) = (y, z) = 1 . For
example, if (x, z) = d > 1, then, by the Fundamental Theorem of Arithmetic, there
exists a prime^ such thalp\d. Since d\xand d\z, it follows thatp\x,p\z,p\z2,p\x2, and
p\z2 — x2. Butz2 — x2 = y2. Thus, p\y2 and, by Corollary 2.9, p\y. This contradicts
(x, y, z) = 1, so it must be the case that (x, z) = 1. Similarly, one can show that
(x,y) = (y,z)=l.

From the preceding paragraph, it follows that x and y cannot both be even. It is
also true that they cannot both be odd. This follows from the fact, discussed in
Section 1.7, that the square of an odd integer must be of the form 4q+ 1 and the
square of an even integer must be of the form 4q, so that the square of an integer
cannot be of the form 4q + 2 or 4q + 3. Thus, if x and y were both odd, then
x2 = 4r + 1 andy2 = 45+1 for some rand s and z2 = x2 + y2 = 4(r + s) + 2. This
says that z2 is of the form 4q + 2, and this is impossible, as noted above. Hence, it
must be the case that one of x and y is even, the other odd.

For definiteness, take x even and y odd. Of course, z2 will then be of the form
4q + 1, so z is also odd. Hence, z — y and z + y are both even and

Let z — y — 2u and z + y = 2v. Then

z = v + u and y= v — u,

and it can be shown that one of u and v is even, the other odd, and that (u, v) = 1 . For
if (u, v) = d> 1, then d\u, d\v, so d\ and d\y, in contradiction to the fact that
(z, y) = 1 . Moreover, if u and v are both odd, then z and y are even, and this is also a
contradiction.
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Since x is even, x/2 is an integer and

_ z — y _ z + y __
2 2

Let x/2 — Uri=ip? be the canonical representation of'x/2. Then M • v = Flf-i/?2"'. It
follows from Theorem 2.23 that u = lU-i/j?', v = n?-i#', b{ ̂  0, ct ̂  0, and that
6, + c, = 2a(. If 6, and c, are both different from zero for some/', then ;?, | w and/7,|i>, in
contradiction to the fact that (M, v) = 1. Thus, one of bf and c, is zero for each /'. It
follows that bt and c, are even for each /, say bt = 2 M, and c, = 2v,. Then u = s2,v = t2,
where 5 = H'-ip"' and f = n/=ij?-''. Also (s, t) = 1 and one of 5 and t is even and the
other odd, since the same statements are true about M and v.

Since x > 0 and x = 2 -Juv, it follows that if x, y, z is a primitive Pythagorean
triple, then there exist integers s and t, with (s, t) = 1 and with one of s and t even and
the other odd, such that

x = 2st,

Of course, we must also choose / > s since y > 0.
It is not difficult to prove that the converse of this result is also true. In the first

place, if jc, y, z are defined by the preceding formulas,

x2 + y2 = (2st)2 + (t2 - 52)2

= f4 + 2t2s2 + s4

= (t2 + s2)2

= z2.

Also, if (s, t) = 1 with one of s and t even and the other odd, then x is even and y and z
arebothodd. Suppose that (y, z) = d> 1. Then there exists a prime/? such that p\d.
Therefore, p\y,p\z, sop divides z + y— 2t2andz — y= 2s2. But/? must be odd since
p\ and z is odd. Therefore, p\t2 and p\s2, so p\ and p\ by Corollary 2.9. This
contradicts (s, t)= 1, so it must be the case that (y, z) = 1. Similarly, it can be shown
that (x, y) = (x, z) = 1. Therefore, jc, y, z defined as above form a primitive Py-
thagorean triple and we have proved the following theorem.

THEOREM 2.26. The positive integers x, y, and z with x even form a
primitive Pythagorean triple if and only if there exist integers s and t, with s < t, with
(s, t) = 1 and with one of s and t even and the other odd, such that x = 2st, y =
t2 — s2, and z = t2 + s2.

Since A = xy/2 and x is even, it is obvious that the area of the right triangle
associated with a Pythagorean triple is always an integer. It is interesting that the
inradius of the associated right triangle also is always an integer. This is easily seen by
computing the area of the triangle shown in two different ways.
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Suppose that x, y, z is a primitive Pythagorean triple so that x = 2st, y = t2 — s2, and
z = t2 + s2. Then, if r is the inradius,

and

xy_rx ry rz_
A 2 " 2 + 2 + 2

xy 2st(t2 - s2)
''x + y+z 2st + (t2 - s2) + (t2 + s2)

^ 2st(t - s)(t + s)
2t(s +1)

= s(t - s),

which is an integer. If x, y, z is not a primitive triple, then x = k • 2st, y = k(t2 — s2),
z = k(t2 + s2) for some k and the argument still holds.

EXERCISES 2.6

1. Construct a table of primitive Pythagorean triples for the following values of
(s, r): (1, 2), (1, 4), (2, 3), (1, 6), (2, 5), (3, 4), (1, 8), (2, 7), and (4, 5).

2. The table of Exercise 1 suggests that one of the numbers in any primitive Py-
thagorean triple is divisible by 4, one (not necessarily a different one) is divisible
by 3, and one (again not necessarily different) is divisible by 5. Prove that this is
so.
Hint: By Theorem 1.9, every integer can be written in the form 3q, 3q + 1, or
3q + 2. Similarly, any integer is of the form 5q, 5q + 1, 5q + 2, 5q + 3, or
5^ + 4.

3. Give values of x, y, z such that (x, y, z) = 1 and yet (x, y) > 1, (x, z) > 1, and
(y,z)>l.

4. If x2 + y2 = z2 and (x, y, z) = 1, prove that (x, y) = (y, z) = 1.
5. If (s, t) = 1 and one of 5 and t is even, the other odd, prove that (x, y) =

(x, z) = 1, where x = 1st, y = t2 — s2, and z = t2 + s2.



62 Divisibility Properties of Integers Chap. 2

6. Let x, y, z be a Pythagoren triple and consider the escribed circle as shown in the
diagram. Prove that the radius rx is an integer.

Hint: Calculate the area of the triangle in two different ways.
7. Prove that the radii ry and rz of the other two escribed circles for the triangle of

Exercise 6 also have integral values.
8. Show that (3,4,5) is the only primitive Pythagorean triple consisting of consecu-

tive integers.
9. Show that the only Pythagorean triples in arithmetic progression are of the form

(3k, 4k, 5k) forks: 1.
10. Show that any positive odd integer can be the side of a primitive Pythagorean

triangle whose other side and hypotenuse are consecutive integers.
11. Prove that if the sum of two consecutive integers is a square, then the smaller of

the two integers is a side and the larger of the two integers is the hypotenuse of a
primitive Pythagorean triangle.

Computer Exercise

12. Write a computer program to find all Pythagorean triples (x, y, z) such that
\ — y\ 1. Note that this implies that x = y ± 1 and hence that the triple found
is primitive. Thus, x = 2st, y = t2 — s2, and z = t2 + s2 for suitable integers s
and t with t > s, as noted above. Print a table of values of t, s, x, y, and z ordered
by increasing values of z. Carefully consider this table and make a conjecture
concerning the values of/ and s that generate the triples found.

2.7 THE GREATEST INTEGER FUNCTION

The greatest integer function is frequently quite useful in treating number-theoretic
problems. In this section we define the function, develop its principal properties, and
exhibit some interesting and surprising applications. The reader should note that we
continue to use small Latin letters to represent integers.
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DEFINITION 2.4. If a is a real number, then [a] denotes the greatest in-
teger not exceeding a. Alternatively, [a] is the integer satisfying the inequality

THEOREM 2.27. In the following, a, ft, and 9 denote real numbers,
(i) a - 1< [a] ^ a

(ii) If a s a, then a s [a].
(iii) If a > a, then a & [a] + 1 > [a],
(iv) I fa<# then [a] ^ [ft].
(v) If 0 = a - [a], then 0 s 0 < 1.

(vi) If a = « + 6 with 0 s 0 < 1, then n = [a],
(vii) For any integer n, [« + «] = [a] + n.

(viii) lfa = bq + r with 0 ̂  r < Z>, then q = [alb].

Proof, (i) The inequality a — 1 < [a] =£ a is simply a restatement of the denn-
ing inequality for [a].

(ii) If a + 1 > a, then a s a < a + 1 and a = [a] by Definition 2.4. If
a + 1 y- a, then a + 1 ̂  a and a s a — 1 < [a], by part (i).

(iii) By definition, [a] ̂  a. Since a > a, it follows that a > [a]. Thus, a ̂
[a] + 1 since a and [a] are both integers.

(iv) By definition, [a] =£ a. Therefore, since a^ft,it follows that [a] =£ ft.
But [a] is an integer and so, by part (ii), [a] ^[ft].

(v) The inequality 0 =s a — [a] < 1 follows immediately from part (i). Thus,
0 < e < 1, since 9 = a - [a].

(vi) Since 0 =s 0 < 1 and a = n + 0, it follows that« s « < n + 1. But then
« = [a] by Definition 2.4.

(vii) By part (v), a = [a] + 9 with 0 < 0 < 1. Therefore, a + « = [a] + n + 0
and [a + n] = [a] + n by part (vi).

(viii) Since a = bq + r with 0 =£ r < b, it follows that

with 0 s r/b < 1. Therefore, by part (vi), q = [a/b].

THEOREM 2.28. For any real number a and any integer n > 0,

Proof. By definition
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Therefore,

and it follows from properties (i) and (iii) of Theorem 2.27 that

But this implies that

so

by Definition 2.4, since [a/n] is an integer.

DEFINITION 2.5. Let p be any prime and n any positive integer. If pf\n
and pf+l X n, we say that pf exactly divides n and write pf\\n.

An alternative way of expressing Definition 2.4 is to say th&tpf\\n if and only if
p-^appears in the canonical representation of«. That is, if n = Hl-ip? is the canoni-
cal representation of «, than p"'\\ for each /. Again one can say that pf\\n if and only if
pfis the highest power ofp dividing n. Of course, ifp X n, then/= 0 and we could still
write p°\\n. As we will see immediately, this notational device is concise and useful.

THEOREM 2.29. If«isapositiveintegerand/maprime,then/7e||n!, where

and r is determined by « by the inequality pr<n< pr+l.

Proof. For a given integer k, the multiples ofpk that do not exceed n are pk,
2pk, . . . , qpk, where q is the largest integer such that qpk =£ n. But this says that q is
the largest integer not exceeding n/pk, so that q — [n/pk]. Thus, [n/pk] gives the
number of positive multiples ofpk that do not exceed n. Now, if 1 < m < n, then
m = qpk with (q,p)= 1, 0 ̂  k =£ r, and m contributes precisely k to the total expo-
nent e with which p appears in the canonical representation of «! Moreover, m is
counted precisely k times by the sum

once as a multiple ofp, once as a multiple ofp2, . . . , once as a multiple ofpk, and
no more. Of course, if k = 0, then m is not counted in the sum. Therefore, the sum
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above accounts exactly for the contribution of each m between 1 and n to the
exponent e, as claimed.

As an example of Theorem 2.29, consider the case for n = 28, p = 3. For
0 =£ k =£ 3, let Sk denote the set of integers m with 1 == m ̂  28 of the form m = q • 3*,
fo,3)=l. Thus,

S0 = {1, 2, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 19, 20, 22, 23, 25, 26, 28},

5, = {3, 6, 12, 15,21,24}

52 = {9, 18},
c = f?7\3 \^ili

and this accounts for all the integers n, 1 =£ n ̂  28, each appearing precisely once.
Clearly, each element of S0 contributes nothing to the exponent e with which 3
appears in the canonical representation of 28! Each element of St contributes 1 to e,
each element of S2 contributes 2, and each element of S3 contributes 3. Thus, in this
case

e = 6 + 4 + 3= 13.

Moreover, [28/3] = 9, the number of elements in 5,, S2, and S3; [28/9] = 3, the
number of elements in S2 and 53; [28/27] = 1, the number of elements in 53; and

9 + 3+ 1 = 13 = e.

Now, by Theorem 2.28,
r n

Also, by property (viii) of Theorem 2.27, [n/p] is the quotient obtained when « is

divided by p, is the quotient obtained when [n/p] is divided by p, and so on.
L P J

Thus, the work of determining the exponent ofp in the canonical representation of n\n be conveniently arranged as a sequence of divisions by p, the sum of the succes-

sive quotients yielding the desired exponent. For example, for p = 3 and n = 28, one
would have

3[28
3[9
3[3
3LL

0,
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where 28 is divided by 3, and then each successive quotient (ignoring remainders) is
divided by 3 until a quotient of 0 is obtained. Thus, [28/3] = 9, [28/32] = 3,
[28/33] = 1, and the desired exponent is 13, as before.

The preceding computation of the exponent of 3 in the canonical representa-
tion of 28! bears a marked resemblance to the calculation of the digits in the posi-
tional representation of 28 to base 3. That this resemblance is more than superficial is
shown by the following theorem.

THEOREM 2.30. If p is prime, if

n = a0 + alp + a^p2 + • • • + arpr

with ar =f= 0 and 0 s a, < /? for each /, and if pe\\n\, then

_n-(a0 + at+ • • • + ar)
P-I

Proof. Since

n — a0 + alp+ • • • + arpr

with ar ¥= 0 and 0 s at < p for each i, it is clear that

H~ \ aiIP] +arpr

arpr~2,

From these equations, it readily follows that

«i+j»h3 -



Sec. 2.7 The Greatest Integer Function 67

If we now add these equations and make use of the fact that

we obtain

(a0 + a, + • • • + a,) + pe = n + e,

from which the desired result immediately follows.

Note that 2810 = 10013. Therefore, using the formula of Theorem 2.30, we
again obtain

28-(l +0 + 0+ 1)
~T=T-

as the exponent of 3 such that 3e||28!
In computer science, it is typical to denote [a] by the symbol |aj and to denote

the least integer not less than a by fal. The notation used here is standard in
mathematics and the reader should understand both. Note, by the way, that fal =
— [—a], as the reader is asked to show in Exercise 3 below. Thus, the least integer
notation, fal, is actually not necessary. However, it is regularly used in computer
science and should be familiar to all students of both mathematics and computer
science.

EXERCISES 2.7

1. Evaluate the following.
(a) [2.7] (b) [-3.5] (c) [-V2] (d) [?]
(e)-[-2.7] (f)-[3.5] (g)-[V2] (h) -[-?]
(i) [2.7 + 0.5] G) [-3.5 + 0.5] (k) [- V2 + 0.5] (I) [? + ±]

2. (a) Under what conditions is [a] + [a] = [2a]?
(b) Under what conditions is [a] + [— a] ¥= 0?

3. Prove that — [— a] is the least integer not less than a, that is, that — [— a] = fal.
4. Prove that no integer is nearer a than [a + £|. If two integers are equally near,

show that [a + ^] is the larger of the two integers.
5. Prove that no integer is nearer a than — [—a + £]. If two integers are equally

near a, show that — [—a + ^] is the smaller of the two integers.
6. Prove that [a] + [a + i] = [2a] for every real number a.

Hint: a = [n] + 0 with 0 < 9 < 1. Consider two cases: 0 s 0 < i and £ s
9< 1.

7. Prove that [a] + [a +1] + [a + $] = [3a] for every real number a.
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8. Prove that

for every real number a and any integer k s 1.
Hint: a = [a] + 6 with 0 =£ 6 < 1 and there exists r with 0 ̂  r < k such that
r/k^e<(r+ \)/k.

9. Find the exponent e such that 3^91!

10. Show that 3 does not divide the binomial coefficient

11. Find the highest power of 10 that divides 91!
12. If a and ft are real numbers, prove that

Hint: Use property (ii) of Theorem 2.27.
13. Use the result of Exercise 12 to prove that

(g + b)\s an integer for any positive integers a and b.

14. Prove that the product of any k consecutive positive integers is divisible by k\.
15. Let a and b be positive integers and suppose that a = 2 j_oa*p', b = 2-i-obj)1,

and a + b = Sf-oc/p1, respectively, are the representations of a, b, and a + b to

t " + Vthe base p. If p/|| show that/= Sf.o(a, + bt - c,)/(p - 1).

16. Let a, b, a + b, p and / be as in Exercise 15. Show that /is the sum of the
carries one makes when adding a to b in base p.
Hint: Let d0 , d{ , . . . , dr be the carries in the aforementioned addition and
note that a0 + b0 = c0 + d0p, d0 + al + bl = cl + d^p, . . . , rfr_, + ar + br

= cr + d,p. Note that 4 = 0.
17. Suppose that we number the rows of Pascal's triangle starting with zero so that

the zeroth row consists of a single 1 , the first row consists of two ones, the second
row is the triple, 1 , 2, 1 in that order, and so on. Show that the number of odd
entries in the «th row of Pascal's triangle is 2J, where 5 is the number of 1 's in the
positional representation of n to base 2.

18. It is only natural to extend Exercise 1 7 and ask how many entries in the «th row
of Pascal's triangle are not divisible by a given prime p. If n = 2 /-o afp' is the
positional representation of n to base p, show that the number in question is
n?-0(fl,+ 1).

19. If p is a prime and pa\\n, prove that p
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20. Let S — {•$,, s2, . . . , sm] be a set of m nonnegative integers, and for each
/ s i , let/0) denote the number of Sj in 5" for which Sj^ i. Then SJli-sy —
Sr-,/0).
(a) Illustrate the result for the set

S = {3, 1,5,2}.

(b) Prove the equality claimed.
*21. Use the result of Exercise 20 to give an alternative proof of Theorem 2.27.

Hint: For each/, with 1 :£_/ == «, let 5,-be the largest integer such thatps'\j. Then
e= I,j-iSj= 2/Li/(/) and it is only necessary to argue that/0) = [n/jf] for
each i.

*22. If n > 0, a = (1 + V5)/2, and Fn is the nth Fibonacci number, prove that

F = —+ —*• n i— '
.V5 2

that is, that Fn is the integer nearest to a"l^>.
Hint: Note that |(1 — V5)/2|< 1 and use Binet's formula developed in Exercise
13 of Section 1.4.

*23. For n 2: 2, prove that Ln = [a" + £] where Ln is the rath Lucas number.
Hint: See Exercise 14 of Section 1.4.

*24. For n > 2, prove that Fn+l = [aFn + $].
*25. For n > 4, prove that /,„+, = [aLn + i].
*26. For n^O, prove that

n+l
^ /« - A

«\ /'
f: Consider the two cases n = 2m + 1 and n = 2m + 2 and prove them

simultaneously by induction on m.

Computer Exercises

27. Write a computer program to generate and print Pascal's triangle.
28. Write a computer program to determine and print the product of the six entries

surrounding any given entry in Pascal's triangle. Make a conjecture based on
the printout of your program.

29. Try to generalize your conjecture in Exercise 28. Write a program to test special
cases of your more general conjecture.

30. Let a,, a2, a3, a4, as, a6 be the six entries in order around any given entry in
Pascal's triangle. Write a program to calculate and print (a i, a3, a$) and (a2, a4,
a6) for any given a. Make a conjecture based on the printout of this program.



3
Prime Numbers

The study of prime numbers naturally begins with the problem of determining
whether a given integer n is prime or composite. Innocent as it may seem, this
problem has no simple general solution, and we shall have to be content with partial
answers. In view of the Fundamental Theorem of Arithmetic, it is clear that in any
given case, the determination could be made by successively dividing the integer in
question by each of the primes that precede it, provided that these primes are known.
In fact, since it is evident that each composite positive integer must have a nontrivial
factor not exceeding its own square root, the answer could be found for any n by
successively dividing by each of the primes not exceeding V«. This greatly reduces
the amount of work that must be done, but the process is still not feasible for
extremely large values of n since the primes are not known much beyond 107.

3.1 THE SIEVE OF ERATOSTHENES

A simple and ingenious approach to the problem which enables one to find all the
primes up to any prescribed limit is the one called the Sieve ofErathosthenes, after the
Greek mathematician Eratosthenes (276 -194 B.C.). This method consists of writing
down all the integers from 2 up to the given limit« and then sieving out, as it were, the
composite numbers. We note first that 2 is the smallest prime and that the multiples
of 2,

2-2,2-3,2-4, . . . ,2k, . . . ,

occur in the list of integers at intervals of two following 2. Thus, if we strike from the
list every second number after 2, we "sieve out" all multiples of 2 not exceeding «, and

70
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we retain only multiples of larger primes. Now 3, the next largest integer not struck
out, is clearly a prime since it is not a multiple of the only prime smaller than itself.
Again, the multiples of 3 occur in the list of integers at intervals of three following 3, so
we now strike out each of these numbers not yet deleted as multiples of 2. The next
number not already deleted must also be a prime, since it is not a multiple of 2 or 3,
the only primes that precede it. Thus, 5 is a prime and every fifth number after 5 must
be deleted as a multiple of 5. Since every composite number must have a prime factor
not exceeding its own square root, every composite number in our list must have a
prime factor not exceeding Vn. Thus, by the time we have deleted all multiples of all
primes not exceeding Vn, we shall have sieved out all composite numbers and those
that remain will be all of the primes not exceeding n.

The table that follows shows the completed sieve for n = 200. Note that since
172 = 289, the process is completed by the time all multiples of 13 have been struck
from the list. The prime numbers have been circled to make them stand out in the
table.

THE SIEVE OF ERATOSTHENES FOR n = 200
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Variations on the sieve method still provide the most effective means for com-
puting factor tables and tables of prime numbers. Probably the best such tables (and
certainly the best accessible) are those by D. N. Lehmer [Carnegie Institution of
Washington, D.C., Publications No. 105 (1909) and No. 165 (1914); New York:
Hafner Publishing Company, 1956], which extend to somewhat beyond 10 million.
Unpublished tables by J. P. Kulik (1773-1863) in possession of the Academy of
Sciences of Vienna extend up to 100 million, but there is some doubt as to their
accuracy.

For easy reference in connection with material in this text, a table of primes less
than 10,000 is given on pages 235-238 and a table of complete factorizations of
positive integers less than 1000 is given on pages 239-243.

3.2 THE INFINITUDE OF PRIMES

Careful study of the tables of primes suggests many interesting conjectures, some of
which have been proved, whereas others still resist attack. For example, in the first
five groups of 1000 positive integers there are, respectively,

168, 135, 127, 120, and 119

primes. However, if we skip over to the last five groups of 1000 integers preceding
10,000,000, we find that they contain

62, 58, 67, 64, and 53

primes, respectively. This suggests that the primes occur less and less frequently
among the larger integers, and it also suggests that there is no end to the sequence of
primes. It is, in fact, relatively easy to prove that there are infinitely many primes.
Many such proofs exist, and the first proof is due to Euclid (7330 - 265 B.C.). It is also
possible to prove that the primes occur less and less frequently among the larger
integers, but the proofs are much more difficult. The first results along this line were
obtained by the Russian mathematician P. L. Tchebychef in 1850. We consider
TchebycheFs work in Section 3.3. The proof of the following theorem is a variant of
that of Euclid.

THEOREM 3.1. There are infinitely many primes.

Proof. We first note that some primes do exist, so that the following argument is
not vacuous.

Supposethatthereareonlyafinitenumberofprimes,say/>i,/?2> • • • ,/>r,and
consider the integer n = ptp2 • • • pr+ 1. Clearly, «>/>, for /= 1,2, . . . ,r, son
must be composite. By the Fundamental Theorem of Arithmetic, n must have prime
divisors. Thus, p,|n for some/. But then pt\l, and this is impossible. Therefore, there
must be infinitely many primes.
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A glance at the table on page 71 shows that except for 2 and 5, all the primes
occur in the first, third, seventh, and ninth columns of the table and that there are
nearly the same number of primes in each column. Larger tables show that this trend
continues, so that one might reasonably guess that if the table on page 71 were
extended ad infinitum, there would be infinitely many primes in each of these
columns. More neatly put, one might guess that there are infinitely many primes of
the form 10k + 1, infinitely many of the form 10/c + 3, infinitely many of the form
I0k + 7, and infinitely many of the form \0k + 9. Similarly, if the primes are
arranged according to divisibility by 4, all except the prime 2 are of the form 4 k + 1 or
4/c + 3 and there seem to be about equally many of each type. Thus, one might
reasonably guess that there are infinitely many primes of the form 4/c + 1 and
infinitely many of the form 4k + 3. The fact is that all these guesses are cqrrect; the
results mentioned are all special cases of a most remarkable theorem proved by G. L.
Dirichlet in 1837. The proof, which depends on the analytic methods of complex
function theory, is much too difficult for inclusion here, so we must be content with
just the statement of the theorem.

THEOREM 3.2. (Dirichlet's Theorem). If (a, d) = 1 with a > 0 and d > 0,
then there are infinitely many primes of the form a + kd.

It is clear that the conditions of Dirichlet's theorem are necessary since if
(a,d) = r> l,thenr|(a + kd) for every k and a + A*/is never a prime for/cs 1. The
difficulty arises in showing that the conditions are sufficient. However, certain
special cases of Dirichlet's theorem can be handled by arguments similar to that of
Theorem 3.1. The following theorem provides an example.

Note that, by the division algorithm, all odd primes must be of the form 4 k + 1
or 4k + 3. But 4k + 3 = 4(k + 1) - 1 is of the form 4k - 1. Thus, it is also true that
all odd primes must be of the form 4k ± 1.

THEOREM 3.3. There are infinitely many primes of the form 4k — 1.

Proof. Since 3, 7, and 11 are of this form, the following argument is not vac-
uous. Suppose that there are only finitely many primes of this form, say pt, p2,
. . . , pr, and consider the number

m = 4p1p2 • • • pr- 1.

Since m is of the form 4/c — 1 and m > pt for each i, it follows that m is composite and
must have prime factors of the form 4k + 1 or 4fc — 1. Since the product of any two
numbers of the form 4k + 1 is again of that form, it follows that m has at least one
prime divisor of the form 4/c— 1. Thus, p\m for some /. But then pt\, and this is
impossible. Therefore, there must be infinitely many primes of the form 4/c — 1.

Another conjecture suggested by the tables of primes is that there are infinitely
many so-called twin primes, that is, pairs p and p + 1 which are both primes. The
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table on page 7 1 contains 1 5 such pairs, and more extensive tables show that these
pairs continue to appear. There are, in fact, 36 pairs of twin primes between
1012 - 104 and 1012 + 104, and 1,000,000,009,649 and 1,000,000,009,651 are the
largest in this range. However, unlike the proof that there are infinitely many primes,
no proof that there are infinitely many twin primes has been found. A number of
criteria for their existence have been established, but a proof that twin primes are
infinite in number has resisted the efforts of the best mathematicians over the years.
The most significant, though inconclusive, result was obtained in 1921 by Viggo
Brun, using a variation on the method of the Sieve of Eratosthenes. Again, we must
be content to state the theorem without proof.

THEOREM 3.4. (Brun's Theorem). If q runs through the sequence of twin
primes, then 2(l/<?) converges.

If the preceding series were divergent, there would necessarily be infinitely
many twin primes. As it is, one can only infer that the twin primes are relatively
scarce and, possibly, only finite in number. This, by the way, can be contrasted with
the corresponding theorem for all primes.

THEOREM 3.5. If p runs through all prime values, then E(l/p) diverges.

Proof. Let x andy be any two positive integers, let pt denote the zth prime, and
let N(x, j ) denote the number of positive integers n =£ x such that p, X n for any i > j.
If n is such an integer, we may write n = rs\e r and 5 are positive integers and
where r is square-free, that is, r is not divisible by the square of any prime. We may
now estimate N(x, j) by considering the number of ways of choosing r and 5 so as to
construct n 's of the desired type. In the first place, s s Vn ^ Vjc, so that there are at
most Vx possible choices for s. Also, since r is square-free,

with a, : = 0 or 1 for each i. Since there are two choices for each ex, , it follows that there
are precisely 2J possible choices for r. Thus, we finally have that there exist at most
2J ' • Jx positive integers n satisfying the given conditions. Thus,

2'- (3.1)

for any two positive integers :c and/
Now, suppose that S JL t \/pt converges. Then, by the general theory of infinite

series, there must exist some j such that

JU4 <">
For this particular value of j, we reestimate N(x,j) by estimating the number of
integers n ̂  x that are divisible by some pt with / >j and that are, therefore, not



Sec. 3.2 The Infinitude of Primes 75

counted by N(x, j). For such an /, the integers p,, 2ph . . . , kpt, where k is the
largest integer such that kpf ^ x, are the values of n ̂  x that are divisible by /?,. Thus,
for each / > j, there are at most x/pt such values of «. It follows that the number of
values of n < x not counted by N(x, j) is at most S"-/+i x/p,. Thus, using (3.2), we
obtain

»
x-N(x,j)iz 2 -<r, (3.3)

i-j+i Pi 2

and it follows that

^<N(x,j). (3.4)

Combining this result with (3.1), we obtain

| < 2' • Vx or x < 22>+2

for every positive integer jc. But this is clearly false, since the set of positive integers is
unbounded. Therefore, the assumption that I,T-\, converges is false and the
proof is complete.

Although it is obvious from Theorems 3.4 and 3.5 that the set of twin primes is
much less numerous than the set of all primes, the inductive evidence that there are
infinitely many twin primes is quite strong. On the other hand, it is easy to show that
there are arbitrarily long stretches of consecutive composite numbers; so the distri-
bution of the primes among the integers must be extremely irregular. To see that this
last assertion is true, consider the sequence n\ 2, n\ 3, . . . , n\ n for n ̂  2.
The first of these numbers is clearly divisible by 2, the second by 3, the third by 4, and
so on. Thus, we have n — 1 consecutive composite integers for any n s 2.

In view of this great irregularity in the occurrence of primes, it is not surprising
that no general formula has been found for finding the nth prime. It has not even
been possible to find simple functions that assume only prime values for integral
arguments, and the only simple functions that are known to assume infinitely many
prime values are the linear functions/(«) = a + ndof Dirichlet's theorem. While the
function

/(n) = «2-81« + 1681 =(n-40)2-(«-40) + 41

yields prime values for all n = 1,2, . . . ,80, it is not presently known whether even
such a simple quadratic function as h(ri) = n2 + 1 assumes infinitely many prime
values for integral values of n. That no polynomial can assume only prime values is
shown in the following theorem.

THEOREM 3.6. If/(«) = aknk + flt_, nk~l + • • • + a,n + a0 is a non-
constant polynomial with integral coefficients, then /(n) must be composite for
infinitely many values of the integer «.



76 Prime Numbers Chap. 3

Proof. It is no restriction to assume that ak > 0 so that lim „_,„/(«) = °°.
Hence, for an integer m sufficiently large, the integer/(m) > 1. Let y =f(ni). Then,
for any r,

f(m + ry) = ak(m + ry)k + • • • + al (m + ry) + a0

=f(»i) + yg(r)
= y + y • g(r)

where g(r) is a polynomial in r with integral coefficients whose leading term is
akyk~lrk. Therefore, limr_oo g(r) = °°, and there must exist an integer r0 such that
g(r) > 1 for all r ̂  r0. Thus,/(m + ry) is composite for all integers r ̂  r0 and the
theorem is proved.

EXERCISES 3.2

1. If p is a prime different from 2 or 3, show that it must be of the form 6k + 1 or
6k + 5. Note that 6k + 5 = 6(k + I) - 1 is of the form 6k - 1. Thus, it is also
true that all primes but 2 or 3 are of the form 6k ± 1.

2. Prove that there are infinitely many primes of the form 6k — 1.
3. Try to prove that there are infintely many primes of the form 4k + 1 by imitating

the proof of Theorem 3.3. Why does the proof break down?
4. How many twin primes lie in the range 9000 < n < 10,000?
5. If p and p + 2 are twin primes and p > 3, prove that 6\(p + 1).
6. If p s q > 5 and p and q are both primes, show that 24\(p2 — q2).

Hint: Use Theorem 2.12.
7. LetN = plp2 • • • pr + Pr+iPr+2 ' ' ' Pr+s with r a 1 and 5 a land where the

Pi are distinct primes. Show that pi, X N for 1 < / < r + j and hence deduce
again that there exist infinitely many primes.

8. Show that we cannot have a prime triplet of the form p, p + 2, p + 4 for/7 > 3.
Hint: See Exercise 6 of Section 1.7.

9. What would you conjecture about prime pairs of the form p, p + 4? p, p + 6?
p, p + 8? Check the table of primes at the back of the book.

Computer Exercise

10. Write a computer program implementing the Sieve of Eratosthenes for 1 <
n < 500.
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As we have seen, the distribution of the primes considered individually appears to be
most erratic. Over all, however, their distribution turns out to be amazingly regular.
One measure of the distribution of the primes is the function n(x) that denotes the
number of primes not exceeding x. For example, n( 1) = 0, n(2) = 1, n(4) = 2, and
n(pn) = n, where pn denotes the «th prime. An explicit formula for n(n) for every «
would be equivalent to a formula for pn and, as mentioned earlier, no such formula is
known. However, n(x) was studied in much detail as early as the latter part of the
eighteenth century by Legendre and also by Gauss, then still in his teens, with a view
toward finding a relatively simple function whose value approximated that of n(x).
In particular, both men sought a function/(jc) such that, for large values of x, the
difference between n(x) and/(x) was small in relation to TT(JC). In fact, they hoped to
find/(jt) such that

lim
n(x)-f(x)

n(x)
= lim I 1 -

x—*<*> \^ 7t(x)
= 0,

or what amounts to the same thing, such that

Legendre conjectured that for the natural logarithm, In x = log,*,

x_
Inx- 1.08366

was such an approximating function, and Gauss guessed that both x/\n x and

Li(x)
p du

=
h ln"

were good approximating functions, with Li(x) giving the better results. Although
neither had a proof that his function was a good approximation to n(x) in the sense
described above, it is interesting to see what actually happens for various values of x.
In the accompanying table, the values in the last three columns are given to the
nearest integer.

X

1,000
10,000
100,000

1,000,000
10,000,000

it(x)

168
1,229
9,592
78,498
664,579

x
\nx

145
1,086
8,686
72,382
620,419

x
Inx -1.08366

172
1,231
9,588
78,543
665,138

Li(x)

178
1,246
9,630
78,628
664,918
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This line of research finally culminated in the following two very remarkable
theorems, which we must offer here without proof.

THEOREM 3.7. (Tchebychef's Inequality). There exist positive constants
Ci and c2 such that, for all x & 2,

.
In x In x

THEOREM 3.8. (The Prime Number Theorem)

.X—- x/\n x

It follows from Tchebychef's inequality that there exist positive constants c3

and c4 such that

c3n In n <pn < c4/i In n

for all « > 2, where pn denotes the wth prime. This, in turn, yields an alternative
proof of Theorem 3.5 since

pn c4« In n

and 2"-2 1/n In n diverges.
Also, it follows from the prime number theorem (Theorem 3.8) that

,
n— « n In n

and conversely, so that this statement is equivalent to that of the prime number
theorem. It may be of interest to see how the implication goes in at least one
direction. Suppose we assume that

x

Setting x = pn, we have n(pn) = n and it follows that

»— Pn
(3.5)

Since the logarithm is a continuous function, the logarithm of the limit of a function
is the limit of the logarithm of the function, provided that the limit of the function is
positive. Thus, taking the logarithm of the preceding limit, we have that

lim {In n + In In pn — In pn} = 0
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and, hence, that

f In n , In In pn
lim In pn • \- -: I f = 0.

[_\npn lnpn J

For this is to be true, the limit of the quantity in braces must be zero, and since

it follows that

«
hm — = 0,
»— \npn

..
hm
»-- In pn

Using this result in (3.5), we finally obtain

« In n In p
= hm

i— pn In«
«In n

= hm ,

as claimed. The reader will find it interesting to prove the implication in the other
direction.

It is also of interest to note that the prime number theorem is equivalent to the
assertion that

where Li(x) = / 2 dt/ln t is the approximating function of Gauss. To see this, it is
only necessary to show that

For if this is so, we have

n(x)
1 = lim

x/ln x
TT(Y\ lim

= lim

Li(x) x/ln x
n(x)
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Integrating by parts, we obtain

f*dt_ x 2 (* dt
J2 l n f ~ l n x ln2 + J2 mV

Since 1/ln2/ is positive and decreasing for t> 1, it follows that for x s 4,

r* dt

>/x — 2 x — Vx Vx 4x
I—r^—T— ̂  . , _ +

In2 2 iln2x In2 2

From this it follows that

('(dt/bft)
h ^ ln

V x - l n 2 2

so that

(X(dt/\n2t)
. h =lim ^-— = 0. (3.7)

x-» jc/ln x

Finally, since limx_«, x/ln x — °°, if we divide both sides of (3.6) by x/ln xandmake
use of (3.7), we obtain

/;
x/ln x *—- x/ln x

as claimed.

EXERCISES 3.3

*1. Deduce from the prime number theorem that

for any constant c.
*2. Assume that

lim -1
*-»« x/(ln x — c)

nlnn
lira = 1,
«—» Pn

where pn denotes the «th prime and deduce the prime number theorem.
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Hint: For x^2, determine n by pn =£ x < pnJp , so that

« = n(ptt) s n(x) < TC(/VH) = n + 1

Computer Exercises

3. Using the program of Exercise 10 of Section 3.2 as a subroutine, write a computer
program to see which of the primes less than 500 can be represented as the sum of
two squares of positive integers. Endeavor to make a general guess based on the
output of your program.

4. Write a computer program to ascertain which of the primes less than 500 can
serve as the length of the hypotenuse of a primitive Pythagorean triangle. En-
deavor to make a general guess based on the output of your program.

3.4 MERSENNE, FERMAT, AND PERFECT NUMBERS

Various methods have been developed for determining whether certain special types
of numbers are prime or composite, and the largest primes known have been discov-
ered in this way. The current champion is 2859>433 — 1, an enormous giant with
258,716 digits in its decimal expansion. Determining that 2859f433 - 1 is prime is
only the latest in a long and interesting series of events that started in 1 644 when a
French monk, Father Marin Mersenne, found that the first few primes p for which
Mp — 1" — 1 is prime arep = 2, 3, 5, 7, 13, 17, and 19. Beyond this, he conjectured
that Mp would be prime for p = 3 1 , 67, 1 27, and 257 and that no other such primes
would occur for p in this range. Mersenne was later found to be mistaken in the five
casesp = 61,67, 89, 107,and257;thatis,M61,A/89, and A/107 are prime andM67 and
A/257 are not. Nevertheless, in his honor, numbers of the form 2 " — 1 are called
Mersenne numbers and primes of this form are called Mersenne primes. We show
below that if a" — 1 is a prime, then it must, in fact, be a Mersenne prime.

M127 was shown to be prime in 1876 by a Frenchman, Edouard Lucas, who
developed a neat and efficient method of attack. In 1930, D. H. Lehmer improved
Lucas's algorithm and began to use computers to test Mp for further values of p. By
1963, the list of known Mersenne primes had grown to 23, with the additions corre-
sponding to the primes p = 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689,
9941, and 1 1,213. When 211-213 - 1 was shown to be prime at the University of
Illinois, the result was subtly announced to the world by using the metered stamp
cancellation shown on all university mail for a period of several months. The next

IS PRIME
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numbers added to the list were M19>937 in 1 97 1 ; Af21j70, in 1 978 after a three-year effort
by two teenagers, Laura Nickel and Curt Noll, then first-year students at California
State University at Hayward; M23209 in February 1979, also by Nickel and Noll;
A/44497 in April 1979; M86243 and M132049 in 1983; M216091 in 1985; MI10503 in 1988;
M756839 in 1992; and M859433 in January 1994.

Determining M859433 prime took several hours on the latest Cray super-
computer. Indeed, searching for new Mersenne primes has become a standard test to
demonstrate the speed of newly developed computers. Historically, it has required
about four times as much computer time to discover each new Mersenne prime as it
would to rediscover all previously known Mersenne primes. However, human na-
ture being what it is, we can expect that the search for these extremely large primes
will not end here. In fact, the Lucas - Lehmer test for primality of Mersenne primes is
given in the exercises of Section 4.2. Thus, if sufficient running time on a sufficiently
powerful machine can be secured, the reader can happily enter the competition and
perhaps at least briefly receive recognition in the Guinness Book of World Records.

But what about other numbers of the form a" — 1? Might they provide even
more huge primes? The answer, in the negative, is given in the following theorem.

THEOREM 3.9. If a" - 1 is a prime, n > 1 , and a > 1 , then a = 2 and n is a
prime.

Proof. Since

a" - 1 = (a - IXa"-' + a"'2 + • • • + a + 1)

and the second factor is clearly greater than 1, it follows that a — 1 = 1 and a = 2.
Otherwise, the first factor would also exceed 1 and a" — 1 would be composite.
Moreover, if n were composite so that n = rs with r > \ s> 1 , then

2"- 1 = (2r- \)(2*s~v + 2«*-2) + • • • +2'+ 1)

and each factor on the right clearly exceeds 1 . This is again a contradiction, so n must
be a prime.

A statement similar to that of Mersenne was made by Fermat, who conjectured
that 22" -I- 1 is a prime for every nonnegative integer n. This is certainly true for
n = 0, 1 , 2, 3, and 4. But in 1 732, Euler showed that 225 + 1 is divisible by 64 1 and so
is not a prime. Indeed, in spite of extensive theoretical and computational efforts, no
more Fermat primes have been discovered and many number theorists suspect that
no more exist. Still, Fermat's guess was not unreasonable, as the following theorem
shows.

THEOREM 3.10. If a" + 1 is a prime, a > 1, n > 0, then a is even and
n = 2' for some r.

Proof. If a were odd, then a" + 1 ̂ 4 would be even and so would not be a
prime. Moreover, suppose that « had an odd factor greater than 1 , say n = mq with q
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odd and q > 1 . Then

a"+l=ami+l
= (flm + l)(fl «(«-»- a «(«-2)+ . . . _ f l m + i )

Since <7 s 3, both factors are greater than 1 and this contradicts the fact that a" + 1 isa
prime. Therefore, n has no odd factor and so must be of the form n = 2 ' for some
nonnegative integer r.

Finally, we consider an interesting set of numbers called perfect numbers which
were certainly studied by the Greeks and possibly even before and which are inti-
mately related to Mersenne primes. Most simply, a perfect number is one such as
6 = 1 + 2 + 3 which is equal to the sum of its proper divisors. Using more modern
notation, we give the following definition in terms of the function a(ri), the sum of the
positive divisors of n (see Section 2.5).

DEFINITION 3.1. A positive integer a is called perfect in case a(d) = la.

For example, since

<r(6) = 1 + 2 + 3 + 6=12

and

cr(28) = 1 + 2 + 4 + 7 + 14 + 28 = 56,

it follows that 6 and 28 are both perfect. Similarly, 496 and 8 1 28 are perfect, and the
reader may notice that each of these numbers is even. Indeed, the only known perfect
numbers are even, and all of these are as characterized in the following theorem, the
first part of which was known to Euclid.

THEOREM 3.11. If 2"- 1 is a prime, then a = 2"~l (2" - 1) is perfect and
every even perfect number is of this form.

Proof. Lsta = 2"~l(2n— 1), where 2"— lisa prime. Then, by Theorem 2.24,

<T[2"-'(2"-l)]
2"— 1

= 2a,

and it follows that a is perfect.

Conversely, suppose that a is an even perfect number. Determine n and m by
the equation
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and the conditions n ̂  2, m odd, m > 0. Since a is perfect, we have again

m2" = 2a
= o(a)

Therefore,

m2"

Since

is an integer and (2", 2" — 1) = 1, this implies that (2" — l)|m and hence that

m

Moreover,

m2" m
2--i 2--r

so that a(m) is equal to the sum of m and one other positive divisor of m. Thus, m
must have only two positive divisors, and so must be a prime. Also, it must be the
case that

m
2"- 1

Therefore, m = 2" — 1 and a = 2"~'(2" — 1), where 2" — 1 is a prime.
Of course, it is not known if there exist infinitely many even perfect numbers

since, as Theorem 3.11 shows, there is a one-to-one correspondence between even
perfect numbers and Mersenne primes and it is not known if the set of Mersenne
primes is infinite. Also, it is not presently known if any odd perfect numbers exist,
although, curiously, theorems do exist which show that if m is an odd perfect number,
then m must be very large. Peter Hagis has shown that every odd perfect number m
must have at least 8 distinct prime factors and G. Cohen has shown that m must
exceed 1080. In 1977, M. Buxton and S. Elmore announced that, in fact, m must
exceed 10200 but they have never published a paper to this effect. In any case, it seems
increasingly likely that no odd perfect numbers exist.
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EXERCISES 3.4

1. If n is even, show by exhibiting the other factor that a + 1 is also a factor of
a"- 1.

2. Show that a + 1 is not a factor of a" + 1 if n is even and a > 1.
3. If &(ri) is the «th Fermat number, show that (&(n), &(n + k)) = 1 for every

pair of positive integers n and k.
Hint: Show that &(n)\{&(n + k)- 2).

4. Deduce from Exercise 3 that there are infinitely many primes.
5. (a) lf&(n) is the nth Fermat number, prove that II "Jo1 &(k) = &(n)-2 for

every positive integer n.
(b) Use part (a) to again deduce that (&(n), &(n + k))= 1 for all positive

integers n and k.
6. Test for primality each of the numbers 2 + 1, 22 + 1, 221 + 1, 222* + 1. Since

251 is the largest prime not exceeding the square root of 222* + 1, it will probably
be easier to do this problem by checking Lehmer's table of primes mentioned in
Section 3.1, which, hopefully, is in your library.

7. On the basis of Exercise 6, could you make a conjecture?
8. Let q = 2 "~' • p, where p = 2 " — 1 is a Mersenne prime. List all the divisors of

q and show directly that q is a perfect number.
9. Is either of 523,776 or 33,550,336 a perfect number? It may help to refer to the

table of primes at the back of the book.
10. The following triangular arrays of dots

led the early Greeks to call the numbers 1, 3, 6, 10, 15, . . . triangular num-
bers just as 1, 4, 9, 16, . . . are called square numbers and can be associated
with square arrays of dots. Since 1 = 1, 1+2 = 3, 1+2 + 3 = 6,
1 + 2 + 3 + 4 = 10, and so on, it is clear that the nth triangular number is given
by the formula

Prove that every even perfect number is a triangular number.
11. Which triangular number is 2"~l(2" — 1)?
1 2. If a(a) = ra, a is called multiply perfect or more accurately, r-perfect. Verify that

120 and 672 are 3-perfect and that 2,178,540 is 4-perfect. In making the last
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verification it may be helpful to consult the small factor table at the back of the
book.

*13. Let r and s be even positive integers such that a(r) = 2s and a(s) = 2r. Prove
that there exist Mersenne primes 2" - 1 and 2" - 1 such that r = 2q~l(2p - 1)
and s = 2"~l(2a — 1), and conversely.

Computer Exercises

14. The positive integer a is called abundant ifa(a) > 2a and deficient ifa(d) < 2a.
Write a computer program to classify a as abundant, perfect, or deficient for
1 < a < 100. Study the output carefully and make several conjectures.

15. Use a modified version of the program of Exercise 14 to see if there are any odd
abundant numbers less than 10,000. Can you make any conjecture on the basis
of these data?
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