- 1. **[20 Points]** Let $G = \langle a \rangle$ be a cyclic group of order 45.
 - (a) Compute the order of each of the following elements: (i) a^2 (ii) a^5 (iii) a^{27}

▶ Solution. The formula for the order of a power
$$a^m$$
 of an element a of order n is $o(a^m) = \frac{n}{\gcd(m, n)}$. Hence, (i) $o(a^2) = \frac{45}{\gcd(2, 45)} = 45/1 = 45$, (ii) $o(a^5) = \frac{45}{\gcd(5, 45)} = 45/5 = 9$, (iii) $o(a^{27}) = \frac{45}{\gcd(27, 45)} = 45/9 = 5$.

(b) How many generators of G are there?

▶ Solution. a^m generates G if and only if $o(a^m) = 45$ if and only if gcd(m, 45) = 1. Thus the number of generators of G is the Euler- φ function of 45, i.e. $\varphi(45) = \varphi(9)\varphi(5) = (3^2 - 3)(5 - 1) = 24$.

(c) Find all of the subgroups of G and draw the subgroup diagram for G.

▶ Solution. All of the subgroups of G are cyclic and there is a unique such subgroup for each divisor k of 45, namely $\langle a^{45/k} \rangle$. The divisors of 45 are 1, 3, 5, 9, 15, and 45 so the subgroups of G are $\langle a \rangle = G$, $\langle a^3 \rangle$, $\langle a^5 \rangle$, $\langle a^9 \rangle$, $\langle a^{15} \rangle$, and $\langle a^{45} \rangle = \langle e \rangle$. The subgroup diagram for G is

2. **[25 Points]**

(a) Complete the definition of group homomorphism: If G and G' are groups, a function $\varphi: G \to G'$ is a group homomorphism if

$$\varphi(ab) = \varphi(a)\varphi(b)$$
 for all $a, b \in G$.

(b) Give the definition of the *kernel* of a group homomorphism.

▶ Solution. Ker(φ) = { $x \in G \mid \varphi(x) = e$ }.

- (c) In each case determine whether $\varphi: G \to G_1$ is a group homomorphism. Use the definition you provided in part (a) to prove that your answer is correct.
 - i. $G = G_1 = \mathbb{Z}_7^*, \quad \varphi(a) = a^2.$

▶ Solution. $\varphi(ab) = (ab)^2 = abab = a^2b^2 = \varphi(a)\varphi(b)$, where the third equality is valid because ba = ab for all choices of a, b in \mathbb{Z}_7^* . Hence, this φ is a group homomorphism.

ii. $G = G_1 = S_3$, $\varphi(a) = a^2$.

► Solution. In this case, $\varphi((1, 2)(1, 3)) = \varphi((1, 3, 2)) = (1, 3, 2)^2 = (1, 2, 3)$, while $\varphi((1, 2))\varphi((1, 3)) = (1, 2)^2(1, 3)^2 = (1)(1) = (1)$. Thus

$$\varphi((1, 2)(1, 3)) \neq \varphi((1, 2))\varphi((1, 3)),$$

and hence, this φ is not a group homomorphism.

- (d) For each function φ in part (c) that is a group homomorphism, find the kernel of φ , denoted Ker(φ), and the image $\varphi(G)$.
 - ▶ Solution. The values of $\varphi : \mathbb{Z}_7^* \to \mathbb{Z}_7^*$ defined by $\varphi(a) = a^2$ are as follows:

From this table, $\operatorname{Ker}(\varphi) = \{1, 6\}$ and $\varphi(G) = \{1, 2, 4\}$.

3. [25 Points] Recall that the dihedral group D_4 is defined by generators and relations as

$$D_4 = \langle a, b | a^4 = e, b^2 = e, ba = a^{-1}b \rangle$$

= {e, a, a², a³, b, ab, a²b, a³b}.

For convenience the multiplication table for D_4 is given here:

•	e	a	a^2	a^3	b	ab	a^2b	a^3b
e	e	a	a^2	a^3	b	ab	a^2b	a^3b
a	a	a^2	a^3	e	ab	a^2b	a^3b	b
a^2	a^2	a^3	e	a	a^2b	a^3b	b	ab
a^3	a^3	e	a	a^2	a^3b	b	ab	a^2b
b	b	a^3b	a^2b	ab	e	a^3	a^2	a
ab	ab	b	a^3b	a^2b	a	e	a^3	a^2
a^2b	a^2b	ab	b	a^3b	a^2	a	e	a^3
a^3b	a^3b	a^2b	ab	b	a^3	a^2	a	e

(a) List all of the *distinct* left cosets of the subgroup $H = \{e, a^2\}$ in D_4 .

◀

▶ Solution. $eH = H = \{e, a^2\}, aH = \{a, a^3\}, bH = \{b, a^2b\}, and abH = \{ab, ga^3b\}.$ ◀

(b) Verify that H a normal subgroup of D_4 ? You may assume that H is a subgroup. It is only necessary to verify that H is normal. Hint: Observe from the multiplication table that $a^2x = xa^2$ for all $x \in D_4$.

▶ Solution. *H* is normal in D_4 provided $ghg^{-1} \in H$ for all $g \in D_4$ and $h \in H$. Since $geg^{-1} = e \in H$ and since $ga^2 = a^2g$ for all $g \in Q$ (by comparing the entries in the third row (a^2g) and third column (ga^2)), we have $ga^2g^{-1} = a^2 \in H$ for all $g \in Q$. Since $H = \{1, a^2\}$ we have shown that $ghg^{-1} = h \in H$ for all $h \in H$ and $g \in D^4$. Hence *H* is normal in D^4 .

(c) Write the multiplication table for the factor group D_4/H .

▶ Solution. The multiplication rule for cosets of a normal group N in a group G is (cN)(dN) = (cd)N, i.e., multiply the corresponding representatives. Thus, using the multiplication table for D_4 we have:

•	H	aH	bH	abH
H	H	aH	bH	abH
aH	aH	H	abH	bH
bH	bH	abH	H	aH
abH	abH	bH	aH	H

(d) Is D_4/H a cyclic group? Explain.

▶ Solution. D_4/H is not cyclic, since |Q/H| = 4 but every nonidentity element has order 2, as seen from the multiplication table above. Indeed, the table shows that $(xH)^2 = H$ for all cosets xH, and the identity of D_4/H is the coset H, so the square of every element of D_4/H is the identity.

4. [10 Points] Compute the number of polynomials in $\mathbb{Z}_5[x]$ of degree 4.

▶ Solution. A polynomial of degree 4 over \mathbb{Z}_5 has the form

$$f(x) = a_4 x^4 + a_3 x^3 + a_2 x^2 + a_1 x + a_0$$

where $a_4 \neq 0 \in \mathbb{Z}_4$, while each of the other coefficients can be any of the five elements of \mathbb{Z}_5 . Since the coefficients can be assigned independently of each other, it follows that there are a total of $4 \cdot 5^4 = 2500$ possible polynomials of degree 4 in $\mathbb{Z}_5[x]$.

- 5. [20 Points] Let $f(x) = x^3 1$ and let $g(x) = x^4 + x^3 + 2x^2 + x + 1$ be polynomials in $\mathbb{Z}_5[x]$.
 - (a) Use the Remainder Theorem to determine if x 2 divides g(x) in $\mathbb{Z}_5[x]$.

g(2) = 0. But

$$g(2) = 2^4 + 2^3 + 2 \cdot 2^2 + 2 + 1 = 35 \equiv 0 \pmod{5}.$$

Hence $g(2) = 0 \in \mathbb{Z}_5$ so x - 2 divides g(x).

- (b) Use Euclid's Algorithm to find $d(x) = \gcd(f(x), g(x))$.
 - ▶ Solution. Use the division algorithm to get

$$x^{4} + x^{3} + 2x^{2} + x + 1 = (x^{3} - 1)(x + 1) + 2x^{2} + 2x + 2,$$

and $x^3-1 = (2x^2+2x+2)(3x+3)$. Hence, the gcd of x^3-1 and $x^4+x^3+2x^2+x+1$ is x^2+x+1 (remember that we defined gcd to be a monic polynomial).

(c) Express d(x) in the form d(x) = a(x)f(x) + b(x)g(x), for polynomials $a(x), b(x) \in \mathbb{Z}_5[x]$.

► Solution.

$$\begin{aligned} x^2 + x + 1 &= 3(2x^2 + 2x + 1) \\ &= 3(x^4 + x^3 + 2x^2 + x + 1 - (x + 1)(x^3 - 1)) \\ &= 3g(x) - 3(x + 1)f(x). \end{aligned}$$

-	
_	
_	
_	