Instructions. Answer each of the questions on your own paper, and be sure to show your work so that partial credit can be adequately assessed. There is a total of 70 points possible. Put your name on each page of your paper.

- 1. [12 Points] Let m = 143 and n = 176.
 - (a) Calculate the greatest common divisor $d = \gcd(m, n)$.
 - (b) Write d in the form sm + tn for some integers s and t.
- 2. **[12 Points]** Use induction to prove **one** of the following. Take your pick. (Just make a direct induction proof. Do not assume any other facts about congruences or summation formulas.)
 - (a) For any positive integer n, $n^3 + 5n$ is a multiple of 3.
 - (b) For any positive integer n, $\sum_{k=1}^{n} (2k+1) = n(n+2)$.
- 3. [10 Points] Use properties of congruences to compute the following. Express your answers as the least residue $(\mod n)$, that is, in the form $x \pmod{n}$ where $0 \le x < n$. Make the arithmetic as easy as possible.
 - (a) $708 \cdot 75 \cdot 6999 \pmod{7}$
 - (b) $7^5 + (602)^5 \pmod{6}$
- 4. [12 Points] Short answer questions.
 - (a) Fill in the blanks to complete the statement of the division algorithm: Let a and b be integers with b > 0. Then there exist unique integers q and r such that
 - (b) Euclid's Lemma states: Let a and b be integers and let p be a number.

where

If $p \mid ab$, then

- (c) True or False. If, for nonzero integers a, b, d, there are integers x and y with ax+by = d, then d is the greatest common divisor of a and b.
- (d) Define a binary operation \circ on the integers \mathbb{Z} to be ordinary subtraction. That is, $a \circ b = a b$. Is 0 an identity element for the binary operation \circ ? Explain.
- 5. [12 Points] Define a relation ~ on \mathbb{Z}_8 by $x \sim y$ if $x^2 = y^2$, where $x, y \in \mathbb{Z}_8$.
 - (a) Verify that \sim is an equivalence relation on \mathbb{Z}_8 .
 - (b) Find all of the distinct equivalence classes for the equivalence relation \sim .

6. **[12 Points]** Let
$$G_1 = \left\{ \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} : a, b, c \in \mathbb{R}, ac \neq 0 \right\}$$
 and $G_2 = \left\{ \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} : a, c \in \mathbb{R}, ac \neq 0, b \in \mathbb{Z} \right\}$.

- (a) Show that G_1 is a subgroup of $GL_2(\mathbb{R})$.
- (b) Show that G_2 is not a subgroup of $GL_2(\mathbb{R})$.

Bonus (10 Points) If G is a group with $x^2 = e$ for all $x \in G$, where e is the identity, prove that G is abelian.