Exam 1

Instructions. Answer each of the questions on your own paper, and be sure to show your work so that partial credit can be adequately assessed. There is a total of 70 points possible. Put your name on each page of your paper.

Solutions

- 1. [12 Points] Let m = 143 and n = 176.
 - (a) Calculate the greatest common divisor $d = \gcd(m, n)$.
 - ► Solution. Use the Euclidean Algorithm:
 - $176 = 1 \cdot 143 + 33$ $143 = 4 \cdot 33 + 11$ $33 = 3 \cdot 11.$

Therefore, $d = \gcd(143, 176) = 11$.

- (b) Write d in the form sm + tn for some integers s and t.
 - ► Solution. Reverse the above steps to get:

$$11 = 143 - 4 \cdot 33$$

= 143 - 4(176 - 1 \cdot 143)
= 5 \cdot 143 - 4 \cdot 176.

- 2. **[12 Points]** Use induction to prove **one** of the following. Take your pick. (Just make a direct induction proof. Do not assume any other facts about congruences or summation formulas.)
 - (a) For any positive integer n, $n^3 + 5n$ is a multiple of 3.

▶ Solution. Let S(n) be the statement: $n^3 + 5n$ is a multiple of 3 for the integer n. We will use induction to show that S(n) is true for all integers $n \ge 1$.

Base Step. If n = 1 the statement S(1) becomes: $1^3 + 5 \cdot 1$ is a multiple of 3. Since $1^3 + 5 \cdot 1 = 6$ it follows that S(1) is a true statement.

Inductive Step. For a given integer $n \ge 1$, assume that S(n) is a true statement. Thus we are assuming that $n^3 + 5n$ is a multiple of 3 for the given integer n. That is, we are assuming that, for the given integer n, $n^3 + 5n = 3k$ for some integer k. Then

$$(n+1)^3 + 5(n+1) = (n^3 + 3n^2 + 3n + 1) + (5n+5)$$

= (n³ + 5n) + 3n² + 3n + 6
= 3k + 3(n² + n + 2) = 3(k + n² + n + 2)

Thus, we have shown that if $n^3 + 5n$ is a multiple of 3, then $(n+1)^3 + 5(n+1)$ is also a multiple of 3. Therefore, we have shown that if S(n) is true, then so is S(n+1). By the principle of mathematical induction, S(n) is true for all natural numbers $n \ge 1$.

(b) For any positive integer n, $\sum_{k=1}^{n} (2k+1) = n(n+2)$.

▶ Solution. Let S(n) be the statement

$$\sum_{k=1}^{n} (2k+1) = n(n+2)$$

for the integer n.

We will use induction to show that S(n) is true for all integers $n \ge 1$. Base Step. If n = 1 the statement S(1) becomes

$$2 \cdot 1 + 1 = 1(1+2),$$

which is a true statement, since both sides are equal to 3.

Inductive Step. For a given integer $n \ge 1$, assume that S(n) is a true statement. Thus we are assuming that

$$\sum_{k=1}^{n} (2k+1) = n(n+2)$$

for the given integer n. Then for n+1 we get

$$\sum_{k=1}^{n+1} (2k+1) = \left(\sum_{k=1}^{n} (2k+1)\right) + 2(n+1) + 1$$

= $n(n+2) + 2(n+1) + 1$ (by the induction hypothesis $S(n)$)
= $n^2 + 2n + 2n + 2 + 1 = n^2 + 4n + 3 = (n+1)((n+1)+2).$

Therefore, we have shown that if S(n) is true, then so is S(n+1). By the principle of mathematical induction, S(n) is true for all natural numbers $n \ge 1$.

- 3. [10 Points] Use properties of congruences to compute the following. Express your answers as the least residue $(\mod n)$, that is, in the form $x \pmod{n}$ where $0 \le x < n$. Make the arithmetic as easy as possible.
 - (a) $708 \cdot 75 \cdot 6999 \pmod{7}$

▶ Solution. 708 \equiv 1 (mod 7), 75 \equiv 5 (mod 7), and 6999 \equiv -1 \equiv 6 (mod 7). Therefore,

$$708 \cdot 75 \cdot 6999 \equiv 1 \cdot 5 \cdot 6 \equiv 30 \equiv 2 \pmod{7}.$$

◄

- (b) $7^5 + (602)^5 \pmod{6}$
 - ▶ Solution. $7 \equiv 1 \pmod{6}$ and $602 \equiv 2 \pmod{6}$. Thus,

$$7^5 + (602)^5 \equiv 1^5 + 2^3 \equiv 1 + 32 \equiv 33 \equiv 3 \pmod{6}.$$

◀

4. [12 Points] Short answer questions.

(a) Fill in the blanks to complete the statement of the division algorithm: Let a and b be integers with b > 0. Then there exist unique integers q and r such that

a = bq + r	where	$0 \le r < b$	•
------------	-------	---------------	---

- (b) Euclid's Lemma states: Let a and b be integers and let p be a prime number. If $p \mid ab$, then $p \mid a \text{ or } p \mid b$.
- (c) True or False. If, for nonzero integers a, b, d, there are integers x and y with ax+by = d, then d is the greatest common divisor of a and b. False Example: $3 \cdot 2 + 2 \cdot (-2) = 2$ but gcd(3, 2) = 1.
- (d) Define a binary operation \circ on the integers \mathbb{Z} to be ordinary subtraction. That is, $a \circ b = a b$. Is 0 an identity element for the binary operation \circ ? Explain. Answer: No, 0 is not an identity since $a \circ 0 = a 0 = a$ but $0 \circ a = 0 a = -a \neq a$ if $a \neq 0$.
- 5. [12 Points] Define a relation ~ on \mathbb{Z}_8 by $x \sim y$ if $x^2 = y^2$, where $x, y \in \mathbb{Z}_8$.
 - (a) Verify that \sim is an equivalence relation on \mathbb{Z}_8 .

▶ Solution. To show that ~ is an equivalence relation, it is necessary to show that it is (1) reflexive, (2) symmetric, and (3) transitive.

(1) If $x \in \mathbb{Z}_8$ then $x^2 = x^2$ so $x \sim x$, and \sim is reflexive.

(2) If $x, y \in \mathbb{Z}_8$ and $x \sim y$ then $x^2 = y^2$. Since = is symmetric, $y^2 = x^2$ so that $y \sim x$. Hence \sim is symmetric.

(3) If $x, y, z \in \mathbb{Z}_8$ with $x \sim y$ and $y \sim z$, then $x^2 = y^2$ and $y^2 = z^2$. But = is transitive, so $x^2 = z^2$ and hence $x \sim z$. Thus, \sim is transitive.

Since \sim is reflexive, symmetric, and transitive, it is an equivalence relation.

(b) Find all of the distinct equivalence classes for the equivalence relation $\sim.$

▶ Solution. Consider the following table summarizing the calculation of x^2 for all $x \in \mathbb{Z}_8$:

x	0	1	2	3	4	5	6	7
x^2	0	1	4	1	0	1	4	1

There is an equivalence class for each distinct value of x^2 . Thus, the equivalence classes are

$$[10] = \{0, 4\}, \quad [1] = \{1, 3, 5, 7\}, \quad [2] = \{2, 6\}.$$

6. **[12 Points]** Let $G_1 = \left\{ \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} : a, b, c \in \mathbb{R}, ac \neq 0 \right\}$ and $G_2 = \left\{ \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} : a, c \in \mathbb{R}, ac \neq 0, b \in \mathbb{Z} \right\}$.

(a) Show that G_1 is a subgroup of $GL_2(\mathbb{R})$.

▶ Solution. Note that G_1 is just the set of all upper triangular 2×2 matrices with entries in \mathbb{R} . That is, G_1 is the set of invertible 2×2 matrices with real entries, such that the entry in the second row, first column is 0, and this is the only restriction on an invertible 2×2 matrix for being in G_1 . Since det $\begin{bmatrix} a & b \\ 0 & c \end{bmatrix} = ac - b \cdot 0 = ac \neq 0$ it follows

Exam 1

that G_1 is a subset of $\operatorname{GL}_2(\mathbb{R})$. To check that G_1 is a subgroup of $\operatorname{GL}_2(\mathbb{R})$, we need to check that the three conditions of Proposition 3.30 are satisfied.

(1) The identity of $GL_2(\mathbb{R})$ is the identity matrix $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$. This is in G_1 since the entry in the second row first column is 0, which is the only condition for being in G_1 .

(2) Suppose $A, B \in G_1$. Then $A = \begin{bmatrix} a_1 & b_1 \\ 0 & c_1 \end{bmatrix}$ and $B = \begin{bmatrix} a_2 & b_2 \\ 0 & c_2 \end{bmatrix}$ so

$$AB = \begin{bmatrix} a_1 a_2 & a_1 b_2 + b_1 a c_2 \\ 0 & c_1 c_2 \end{bmatrix}.$$

Since AB is upper triangular, $AB \in G_1$ and G_1 is closed under multiplication. (3) If $A = \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} \in G_1$, then the inverse of A in $\operatorname{GL}_2(\mathbb{R})$ is

$$A^{-1} = \frac{1}{ac} \begin{bmatrix} c & -b \\ -0 & a \end{bmatrix} = \begin{bmatrix} 1/a & -b/(ac) \\ 0 & 1/c \end{bmatrix}$$

which is upper triangular and hence $A^{-1} \in G_1$.

(b) Show that G_2 is not a subgroup of $GL_2(\mathbb{R})$.

▶ Solution. To show that G_2 is not a subgroup of $\operatorname{GL}_2(\mathbb{R})$ (even though it is a subset of G_1 and hence a subset of $\operatorname{GL}_2(\mathbb{R})$) it is sufficient to show that one of the above 3 conditions for being a subgroup fails. Let $A = \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix}$. Then $A \in G_2$ but $A^{-1} = \begin{bmatrix} 1/2 & -1/2 \\ 0 & 1 \end{bmatrix}$ and this is not in G_2 since the upper right entry is not an integer. Thus, G_2 is not closed under inverses and hence is not a subgroup.

Bonus (10 Points) If G is a group with $x^2 = e$ for all $x \in G$, where e is the identity, prove that G is abelian.

▶ Solution. The condition that $x^2 = e$ means that $x = x^{-1}$ for all elements $x \in G$. Then, if $a, b \in G$, then

$$ab = (ab)^{-1} = b^{-1}a^{-1} = ba$$

where the second equality is Proposition 3.19. Since a and b are arbitrary, it follows that ab = ba for all $a, b \in G$ and hence G is abelian.