Instructions. Answer each of the questions on your own paper and be sure to show your work so that partial credit can be adequately assessed. There is a total of 75 points possible. Put your name on each page of your paper.

- 1. [12 Points] Complete the following definitions.
 - (a) A subset I of a ring R is an *ideal* of R if ...
 - (b) If R is a commutative ring with identity, and P is an ideal of R with $P \neq R$, then P is a *prime ideal* of R if . . .
 - (c) If R is a commutative ring with identity, then the *characteristic* of R is ...
- 2. **[12 Points]** Let $G = \left\{ \begin{bmatrix} 1 & a \\ 0 & b \end{bmatrix} : a, b \in \mathbb{R}, b \neq 0 \right\}$, and $H = \left\{ \begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix} : a \in \mathbb{R} \right\}$. You may assume that G is a subgroup of the invertible 2×2 matrices with real coefficients under matrix multiplication. Let \mathbb{R}^* denote the group of nonzero real numbers under multiplication.
 - (a) Show that the function $f: G \to \mathbb{R}^*$ given by $f\left(\begin{bmatrix} 1 & a \\ 0 & b \end{bmatrix}\right) = b$ is a group homomorphism.
 - (b) Find $\operatorname{Ker}(f)$.
 - (c) Show that H is a normal subgroup of G and that $G/H \cong \mathbb{R}^*$. (*Hint*: Parts (a), (b) and First Isomorphism Theorem.)
- 3. **[12 Points]**
 - (a) Find all distinct isomorphism classes of abelian groups of order 75.
 - (b) If G is a finite abelian group of order 75, explain why G has one subgroup of order 5 or six subgroups of order 5.
- 4. **[12 Points]** Determine which of the following are ideals of the rings given. For those that are, no proof is required. For those which are not, an explanation is required.
 - (a) Is $3\mathbb{Z}$ an ideal of \mathbb{Z} ?
 - (b) Is \mathbb{R} an ideal of $\mathbb{R}[x]$?

(c) Is
$$I = \left\{ \begin{bmatrix} a & 0 \\ c & 0 \end{bmatrix} \middle| a, c \in \mathbb{Z} \right\}$$
 an ideal of $M_2(\mathbb{Z})$?

- 5. [15 Points] Let $I = \langle 2 \rangle = 2\mathbb{Z}[i] = \{2a + 2bi : a, b \in \mathbb{Z}\}$ be the principal ideal generated by 2 in the Gaussian integers $\mathbb{Z}[i]$.
 - (a) Describe all the elements in $\mathbb{Z}[i]/I,$ with justification. Give an explicit list of distinct elements.
 - (b) Calculate:
 - i. ((1+i)+I) + ((3-2i)+I)
 - ii. ((1+i)+I)((1+i)+I)
 - (c) Show that I is not a prime ideal in $\mathbb{Z}[i]$.
- 6. [12 Points]Let R be an integral domain.
 - (a) Prove that cancellation holds over R. That is, if $a, b, c \in R$, with ab = ac and $a \neq 0$, then prove that b = c.
 - (b) An element $c \in R$ is *idempotent* if $c^2 = c$. Prove that in an integral domain R, if c is a nonzero idempotent, then c = 1.