Instructions. Answer each of the questions on your own paper and be sure to show your work so that partial credit can be adequately assessed. There is a total of 75 points possible. Put your name on each page of your paper.

- 1. **[12 Points]** Complete the following definitions.
 - (a) A subset I of a ring R is an *ideal* of R if ... I is an additive subgroup of R and for each $a \in I$ and $r \in R$, $ar \in I$ and $ra \in I$.
 - (b) If R is a commutative ring with identity, and P is an ideal of R with $P \neq R$, then P is a prime ideal of R if ... whenever $a, b \in R$ satisfy ab = 0, then a = 0 or b = 0.
 - (c) If R is a commutative ring with identity, then the *characteristic* of R is ... the order of the multiplicative unit element 1 of R.
- 2. **[12 Points]** Let $G = \left\{ \begin{bmatrix} 1 & a \\ 0 & b \end{bmatrix} : a, b \in \mathbb{R}, b \neq 0 \right\}$, and $H = \left\{ \begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix} : a \in \mathbb{R} \right\}$. You may assume that G is a subgroup of the invertible 2×2 matrices with real coefficients under matrix multiplication. Let \mathbb{R}^* denote the group of nonzero real numbers under multiplication.
 - (a) Show that the function $f: G \to \mathbb{R}^*$ given by $f\left(\begin{bmatrix} 1 & a \\ 0 & b \end{bmatrix}\right) = b$ is a group homomorphism.

► Solution. Let
$$A = \begin{bmatrix} 1 & a \\ 0 & b \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & c \\ 0 & d \end{bmatrix}$ be elements of G . Then

$$f(AB) = f\left(\begin{bmatrix} 1 & 1 \\ 0 & b \end{bmatrix} \begin{bmatrix} 1 & c \\ 0 & d \end{bmatrix} \right) = f\left(\begin{bmatrix} 1 & c + ad \\ 0 & bd \end{bmatrix} \right) = bd = f(A)f(B).$$

Thus f is a group homomorphism.

(b) Find $\operatorname{Ker}(f)$.

▶ Solution. The identity of \mathbb{R}^* is 1, so the kernel of f is the set of all $A \in G$ with f(A) = 1, which is exactly the subgroup H of G ◀

(c) Show that H is a normal subgroup of G and that $G/H \cong \mathbb{R}^*$. (*Hint*: Parts (a), (b) and First Isomorphism Theorem.)

▶ Solution. Since $H = \operatorname{Ker}(f)$, H is a normal subgroup of G. The first isomorphism theorem then shows that $G/\operatorname{Ker}(f) \cong f(G)$. But $H = \operatorname{Ker}(f)$ by part (b) and f is onto since, for any $b \in \mathbb{R}^*$, b = f(A) for $A = \begin{bmatrix} 1 & 0 \\ 0 & b \end{bmatrix}$, so $f(G) = \mathbb{R}^*$. Thus, $G/H \cong \mathbb{R}^*$

3. **[12 Points]**

(a) Find all distinct isomorphism classes of abelian groups of order 75.

▶ Solution. Since $75 = 5^2 \cdot 3$ There are 2 abelian groups of order 75: $\mathbb{Z}_{25} \times \mathbb{Z}_3$ and $\mathbb{Z}_5 \times \mathbb{Z}_5 \times \mathbb{Z}_3$.

(b) If G is a finite abelian group of order 75, explain why G has one subgroup of order 5 or six subgroups of order 5.

▶ Solution. If G is an abelian group of order 75, then G is isomorphic to one of the two groups in part (a).

Case 1: Suppose that G is isomorphic to $\mathbb{Z}_{25} \times \mathbb{Z}_3$. It is sufficient to compute the number of subgroups of $\mathbb{Z}_{25} \times \mathbb{Z}_3$ of order 5, since this will be the same as for G. A subgroup H of $\mathbb{Z}_{25} \times \mathbb{Z}_3$ of order 5 is a cyclic subgroup of order 5 generated by (a, b) where the order of (a, b) is 5. Since this order is the least common multiple of the order of a and the order of b, it follows that |a| = 5 and |b| = 1 since |a| | 25and |b| | 3. Thus, b = 1 and the generator of H is (a, 1) where a is an element of order 5 in \mathbb{Z}_{25} . But \mathbb{Z}_{25} is cyclic of order 25, and hence has a unique subgroup K of order 5, namely the subgroup of \mathbb{Z}_{25} generated by 5, and each nonzero element of $\langle 5 \rangle$ is also an element of \mathbb{Z}_{25} that generates K. Thus, the only subgroup of $\mathbb{Z}_{25} \times \mathbb{Z}_3$ of order 5 is $K \times \langle 1 \rangle$ where K is the unique subgroup of \mathbb{Z}_{25} of order 5. **Case 2:** Suppose that G is isomorphic to $\mathbb{Z}_5 \times \mathbb{Z}_5 \times \mathbb{Z}_3$. Then it is sufficient to compute the number of subgroups of $\mathbb{Z}_5 \times \mathbb{Z}_5 \times \mathbb{Z}_3$ of order 5. As in Case 1, a subgroup of $\mathbb{Z}_5 \times \mathbb{Z}_5 \times \mathbb{Z}_3$ will be $K \times \langle 1 \rangle$ where K is a subgroup of $\mathbb{Z}_5 \times \mathbb{Z}_5$ of order 5. Any nonzero element (a, b) of $\mathbb{Z}_5 \times \mathbb{Z}_5$ has order $\operatorname{lcm}(|a|, |b|) = 5$ since both a and b have order 1 or 5 and at least one of them has order 5. Thus, the subgroups of $\mathbb{Z}_5 \times \mathbb{Z}_5$ are the cyclic subgroups $\langle (a, b) \rangle$ generated by a nonzero element (a, b) of $\mathbb{Z}_5 \times \mathbb{Z}_5$. Each subgroup of order 5 has 4 nonzero elements, each of order 5. Moreover, if K_1 and K_2 are two subgroups of order 5, then $K_1 \cap K_2$ is a subgroup of both K_1 and K_2 . Thus, $|K_1 \cap K_2| = 1$ or 5. If $|K_1 \cap K_2| = 1$ then K_1 and K_2 have only the identity (0, 0) in common. Otherwise, $K_1 = K_2$ since $|K_1 \cap K_2| = 5$ and $|K_1 \cap K_2|$ is a subgroup of both K_1 and K_2 . Thus, each subgroup of $\mathbb{Z}_5 \times \mathbb{Z}_5$ consists of 4 elements of order 5 plus the identity (0, 0). Since there are 24 nonzero elements of $\mathbb{Z}_5 \times \mathbb{Z}_5$ and each subgroup of order 5 accounts for 4 of them, it follows that there are 6 subgroups of $\mathbb{Z}_5 \times \mathbb{Z}_5$. Hence, there are exactly 6 subgroups of G in Case 2.

Since Cases 1 and 2 cover all abelian groups of order 75, it follows that each such group has either 1 subgroup of order 5 (Case 1) or 6 subgroups of order 5 (Case 2).

- 4. **[12 Points]** Determine which of the following are ideals of the rings given. For those that are, no proof is required. For those which are not, an explanation is required.
 - (a) Is 3Z an ideal of Z? Answer: This is an ideal. (All ideals of Z are of the form $n\mathbb{Z}$ for $n \in \mathbb{Z}$.
 - (b) Is \mathbb{R} an ideal of $\mathbb{R}[x]$? Answer: This is not an ideal since $1 \in \mathbb{R}$ and $x \in \mathbb{R}[x]$, but $1 \cdot x = x \notin \mathbb{R}$.

(c) Is
$$I = \left\{ \begin{bmatrix} a & 0 \\ c & 0 \end{bmatrix} \middle| a, c \in \mathbb{Z} \right\}$$
 an ideal of $M_2(\mathbb{Z})$? **Answer:** This is not an ideal since $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \in I$ and $B = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \in M_2(\mathbb{Z})$, but $AB = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \notin I$.

- 5. [15 Points] Let $I = \langle 2 \rangle = 2\mathbb{Z}[i] = \{2a + 2bi : a, b \in \mathbb{Z}\}$ be the principal ideal generated by 2 in the Gaussian integers $\mathbb{Z}[i]$.
 - (a) Describe all the elements in $\mathbb{Z}[i]/I$, with justification. Give an explicit list of distinct elements.

▶ Solution. Let $a + bi \in \mathbb{Z}[i]$. Divide each of a and b by 2 to get $a = 2q_1 + r$ and $b = 2q_2 + s$ where $0 \leq r, s < 2$. Then

 $a + bi = (2q_1 + r) + (2q_2 + s)i = (r + si) + 2(q_1 + q_2i).$

Hence, any element a + bi can be written as a sum of an element of I (namely $2(q_1 + q_2i)$ and an element r + si where $0 \le r, s < 1$. Thus, every element of $\mathbb{Z}[i]/I$ is one of the 4 cosets

$$0+I$$
, $1+I$, $i+I$, $(1+i)+I$.

These elements are all distinct since the difference between any two different elements 0, 1, i, 1 + i is not of the form 2(m + ni) and hence not in I. Thus, the 4 listed elements are all of the distinct cosets in $\mathbb{Z}[i]/I$.

- (b) Calculate:
 - i. ((1+i)+I) + ((3-2i)+I) Answer: (4-i) + I = i + I
 - ii. ((1+i)+I)((1+i)+I) Answer: $(1+i)^2 + I = 2i + i = 0 + I$

(c) Show that I is not a prime ideal in $\mathbb{Z}[i]$.

▶ Solution. $(1+i)^2 = 2i \in I$ but $1+i \notin I$ since 1 is odd.

6. [12 Points]Let R be an integral domain.

(a) Prove that cancellation holds over R. That is, if $a, b, c \in R$, with ab = ac and $a \neq 0$, then prove that b = c.

▶ Solution. Assume that R is an integral domain and ab = ac but $a \neq 0$. Then subtracting ac from both sides of the equation gives ab - ac = 0 so that a(b-c) = 0. Since R is an integral domain, this means that a = 0 or b - c = 0. Since $a \neq 0$ this means that b - c = 0 which implies that b = c by adding c to both sides of the equation.

(b) An element $c \in R$ is *idempotent* if $c^2 = c$. Prove that in an integral domain R, if c is a nonzero idempotent, then c = 1.

▶ Solution. Use the cancellation property proved above. If c is an idempotent, then $c^2 = c$ which implies that $c \cdot c = c \cdot 1$, which, by part (a), implies that c = 1.