
Math 4200 Exam 3 Review

Exam 3 will be on Monday, November 19, 2018. The syllabus for this exam is Chapter
11, Section 13.1, and Chapter 16 in Judson.

You should be sure to know precise definition of the terms we have used, and you should
know precise statements (including all relevant hypotheses) for the main theorems proved.
Know the following terms or phrases, including definitions, and results. Some are repeated
for convenience from earlier sections.

• A function f : G→ H between groups G and H is a homomorphism if f(ab) = f(a)f(b)
for all a, b ∈ G. Some properties of homomorphisms are: f(1) = 1, f(a−1) = (f(a))−1,
f(ak) = (f(a))k for all k ∈ Z.

• A bijective homomorphism f : G→ H is an isomorphism.

• Kernel of a group homomorphism

• Normal subgroup

• Right and left cosets of a subgroup H of a group G.

• The index [G : H] of a subgroup H in a group G.

• Let H be a subgroup of a group G and let a, b ∈ G. Then the following are properties
of the cosets of H:

1. Ha = H if and only if a ∈ H.

2. Ha = Hb if and only if ab−1 ∈ H.

3. If a ∈ Hb, then Ha = Hb.

4. Either Ha = Hb or Ha ∩Hb = ∅.
5. The distinct right (left) cosets of H are a partition of G, and if the order of G is

finite, then the number of right (left) cosets is |G|/|H|.

• If G is a group and H is a subgroup, then H is a normal subgroup if gH = Hg for all
g ∈ G.

• A subgroup H of G is normal if and only if gHg−1 ⊆ H for all g ∈ G.

• If G is a group, then then subgroups {1}, G and Z(G) = the center of G, are always
normal subgroups of G.

• If G is abelian, then every subgroup of G is normal in G.

• If H is a subgroup of index 2 in G, then H is normal in G.

• If K is a normal subgroup of G, then Ka ·Kb = Kab is a well defined multiplication of
right (=left) cosets. In this case the set G/K = {Ka : a ∈ G} of right (=left) cosets of
K forms a group under this multiplication. Some of the properties of this group G/K
are:
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1. The group operation is (Ka)(Kb) = Kab.

2. The identity of G/K is the coset K.

3. The inverse of Ka is Ka−1, i.e., (Ka)−1 = Ka−1.

4. The exponent rule in G/K is (Ka)n = Kan.

5. The order of Ka is the smallest positive power n such that an ∈ K.

6. The mapping ϕ : G → G/K defined by ϕ(a) = Ka is a surjective group homo-
morphism.

7. If G is abelian, then G/K is abelian.

8. If G = 〈a〉 is cyclic, then G/K is also cyclic; in fact G/K = 〈Ka〉
9. If G is finite, then |G/K| = |G|/|K| = [G : K].

• If α : G → H is a group homomorphism, the (1) α(G) is a subgroup of H, and (2)
Ker(α) is a normal subgroup of G.

• Isomorphism Theorem for Groups. If α : G → H is a group homomorphism,
then α(G) ∼= G/Ker(α).

• Know the criterion for an abelian groupG to be the internal direct product of subgroups
H and K. Specifically, G is the internal direct sum of H and K provided HK =
{hk : h ∈ H, k ∈ K} and H ∩K = {1}. In this case G is isomorphic to the external
direct product H ×K via the isomorphism φ : H ×K → G given by φ(h, k) = hk.

• Fundamental Theorem of Finite Abelian Groups. Every finite abelian group
G is isomorphic to a direct product of cyclic groups of prime power order.

• Ring, commutative ring.

• Subring

• Subring Test. A subset S of a ring R is a subring if and only if

1. 0 ∈ S.

2. If s ∈ S and t ∈ S, then s+ t, st, and −s are all in S.

• Units in a ring

• Characteristic of a ring.

• Division Ring

• Field

• A ring R is an integral domain if R is commutative with identity, 1 6= 0, and ab =
0 =⇒ a = 0 or b = 0.

• A subring of a field is an integral domain.
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• The characteristic of any domain is either 0 or a prime.

• Every finite integral domain is a field.

• An ideal of a ring R is an additive subgroup A such that Ra ⊆ A and aR ⊆ A for all
a ∈ A. Thus, to check that a nonempty A ⊂ R is an ideal, it is necessary to check:

1. If a, b ∈ A then a± b ∈ A.

2. If a ∈ A and r ∈ R, then ra ∈ A and ar ∈ A.

• Let A be an ideal of the ring R. Then the additive factor group R/A becomes a ring
with the multiplication (r+A)(s+A) = rs+A. The unity of R/A is 1 +A, and R/A
is commutative if R is commutative (but R/A can be commutative without R being
commutative).

• Let A is an ideal of a ring R, then the ideals of R/A are all of the form B/A where B
is an ideal of R containing A. (Theorem 4, page 183).

• If R is commutative and a ∈ R, then Ra = {ra|r ∈ R} is an ideal of R called the
principal ideal generated by a.

• An ideal P of a commutative ring R is a prime ideal if P 6= R and P has the property:

If rs ∈ P , then r ∈ P or s ∈ P .

• An ideal M of a ring R is maximal if M 6= R and the only ideals A such that M ⊆
A ⊆ R are A = M and A = R.

• The only ideals of a division ring R are |set0 and R.

• If R is a commutative ring, an ideal P 6= R is a prime ideal if and only if R/P is an
integral domain.

• If R is a commutative ring, an ideal A of R is maximal if and only if R/A is a field.

• If R is a commutative ring, then every maximal ideal is a prime ideal.

• If R is a ring, then the ideals of the matrix ring Mn(R) are all of the form Mn(A)
where A is an ideal of R.

• If R and S are rings, a map θ : R→ S is a ring homomorphism if for all r and r1 ∈ R:

1. θ(r + r1) = θ(r) + θ(r1).

2. θ(rr1) = θ(r)θ(r1).

• If θ : R→ S is a ring homomorphism, then

1. θ(R) is a subring of S.

2. Ker(θ) is an ideal of R.
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• Isomorphism Theorem for Rings. If θ : R → A is a ring homomorphism, then
θ(R) ∼= R/Ker(θ), via the ring isomorphism θ : R/Ker(θ) → θ(R) given by θ(r +
Ker(θ)) = θ(r).

• Chinese Remainder Theorem. Let A and B be ideals of a ring R.

1. If A+B = R then R/(A ∩B) ∼= R/A×R/B.

2. If A+B = R and A ∩B = 0 then ∼= R/A×R/B.

• If m and n are relatively prime, then Zmn
∼= Zm × Zn. Here the isomorphism is an

isomorphism of rings.

Review Exercises

1. Let N be a normal subgroup of prime index p in a group G. Explain why the quotient
group G/N is cyclic.

I Solution. Since |G/N | = [G : N ] = p, it follows that the order of G/N is prime,
and hence is cyclic. (Every group of prime order is cyclic, with any nonidentity element
being a generator.) J

2. List the cosets of 〈7〉 in Z∗16. Is the quotient group Z∗16/〈7〉 cyclic?

I Solution. 〈7〉 = {1, 7} since 72 = 1 in Z∗16. Thus, the cosets are 〈7〉, 3〈7〉 = {3, 5},
9〈7〉 = {9, 15}, and 11〈7〉 = {11, 13}. Since |Z∗16/〈7〉| = 4 and (3〈7〉)2 = 9〈7〉 6= 〈7〉 it
follows that o(3〈7〉) = 4 so Z∗16/〈7〉 is cyclic with generator 3〈7〉. J

3. Let R be the additive group of the real numbers, Z its cyclic subgroup

〈1〉 = {. . . ,−2,−1, 0, 1, 2, . . .}

and let W be the quotient group R/Z.

(a) What is the order of the coset (−2/5) + Z in the group W?

I Solution. Since the group operation is addition, the order of a coset r + Z in
R/Z is the smallest positive integer n such that nr ∈ Z, if there is such a number,
otherwise the order is infinite. If r = −2/5 then 5r = −2 ∈ Z and for any integer
m smaller than 5, mr /∈ Z. Thus, the order of (−2/5) + Z in the group W is
5. J

(b) Use the fact that
√

3 is irrational to show that the coset
√

3 + Z does not have
finite order in the group W .

I Solution. If
√

3 + Z has order n > 0, then n
√

3 = m ∈ Z. Thus,
√

3 = m/n
is rational. Since

√
3 is not rational, it follows that there is no such n, and hence

the order of
√

3 + Z is infinite. J
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4. If G = Z6 × Z4 let H = {(0, 0), (0, 2)} and K = {(0, 0), (3, 0)}.

(a) Check that H and K are subgroups of G.

I Solution. Since 2(0, 2) = (0, 0) it follows thatH = 〈(0, 2)〉 and since 2(3, 0) =
(0, 0) it follows that K = 〈(3, 0)〉. Thus, both H and K are cyclic groups of order
2. J

(b) List all of the cosets of H. List all of the cosets of K.

I Solution.

Cosets of H
{(0, 0), (0, 2)} {(0, 1), (0, 3)}
{(1, 0), (1, 2)} {(1, 1), (1, 3)}
{(2, 0), (2, 2)} {(2, 1), (2, 3)}
{(3, 0), (3, 2)} {(3, 1), (3, 3)}
{(4, 0), (4, 2)} {(4, 1), (4, 3)}
{(5, 0), (5, 2)} {(5, 1), (5, 3)}

Cosets of K
{(0, 0), (3, 0)} {(0, 1), (3, 1)}
{(0, 2), (3, 2)} {(0, 3), (3, 3)}
{(1, 0), (4, 0)} {(1, 1), (4, 1)}
{(1, 2), (4, 2)} {(1, 3), (4, 3)}
{(2, 0), (5, 0)} {(2, 1), (5, 1)}
{(2, 2), (5, 2)} {(2, 3), (5, 3)}

J

(c) What is the isomorphism class of G/H?

I Solution. The group Z12 is cyclic of order 12, so it has an element of order 12.
The group Z6 × Z2 has the order of every element divisible by 6 since 6(a, b) =
(0, 0) for all (a, b) ∈ Z6 × Z2. From the coset table for the subgroup H, we see
that 6(r, 0) = (0, 0) ∈ H and 6(r, 1) = (0, 0) ∈ H for all r ∈ Z6. Since these are
representatives of all cosets in G/H, it follows that the order of every element of
G/H is divisible by 6. Since there is no element of order 12, it follows that G/H
must be isomorphic to Z6 × Z2.

Since 6(1, 1) = (0, 2) /∈ K and since 4(1, 1) = (4, 0) /∈ K, it follows that the
order of (1, 1)+K is not 1, 2, 3, 4, or 6. Thus it must be 12 so that G/K is cyclic
of order 12, that is, G/K is isomorphic to Z12. J

(d) What is the isomorphism class of G/K?

I Solution. Since 6(1, 1) = (0, 2) /∈ K and since 4(1, 1) = (4, 0) /∈ K, it follows
that the order of (1, 1) + K is not 1, 2, 3, 4, or 6. Thus it must be 12 so that
G/K is cyclic of order 12, that is, G/K is isomorphic to Z12. J

5. Give a complete list of the distinct isomorphism classes of abelian groups of order 600.

I Solution. The prime factorization of 600 is 600 = 23 · 3 · 52. Thus, by the Fun-
damental theorem of finite abelian groups, any group of order 600 is a product of an
abelian group of order 8, a group of order 3, and an abelian group of order 25. The
abelian groups of order 8 are Z8, Z4×Z2 and Z2×Z2×Z2. The only group of order 3
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is Z3, and the abelian groups of order 25 are Z25 and Z5 × Z5. Thus, there are a total
of 6 (up to isomorphism) groups of order 600:

Z8 × Z3 × Z25
∼= Z600

Z4 × Z2 × Z3 × Z25
∼= Z2 × Z300

Z2 × Z2 × Z2 × Z3 × Z25
∼= Z2 × Z2 × Z150

Z8 × Z3 × Z5 × Z5
∼= Z5 × Z120

Z4 × Z2 × Z3 × Z5 × Z5
∼= Z10 × Z60

Z2 × Z2 × Z2 × Z3 × Z5 × Z5
∼= Z2 × Z10 × Z30

In this list, the groups on the left are written as a product of cyclic groups of prime
power order. The isomorphic groups on the right are written in what is called invariant
factor form, which is in the form Zn1×Zn2×· · ·×Znr where ni | ni+1 for 1 ≤ i < r. J

6. Are the groups Z5 × Z10 × Z25 × Z36 × Z54 and Z50 × Z108 × Z450 isomorphic?

I Solution. To answer this, write each of the groups as a product of cyclic groups
of prime power order. Note that both groups have the same order, namely, 2,430,000.
The first group decomposed as a product of cyclic groups of prime power order gives

Z5 × Z2 × Z5 × Z5 × Z5 × Z4 × Z9 × Z2 × Z27

while the second group decomposes into a product of cyclic groups of prime power
order as

Z2 × Z25 × Z4 × Z27 × Z2 × Z25 × Z9

Since these two products do not have the same numbers of factors of each prime power
order, they are not isomorphic. J

7. What is the isomorphism type of the group U(20) (the group of units of the ring Z20).

I Solution. U(20) = {1, 3, 7, 9, 11, 13, 17, 19} which is a group of order 8. Then
〈3〉 = {1, 3, 9, 7} and 〈11〉 = {1, 11}. Thus, 〈3〉 ∩ 〈11〉 = {1} so |〈3〉〈11〉| = 8. Hence,
U(20) = 〈3〉〈11〉 ∼= Z4 × Z2. J

8. Two of the following groups of order 864 are isomorphic. Which are the two?

(a) Z2 × Z12 × Z36

(b) Z3 × Z12 × Z24

(c) Z4 × Z4 × Z6 × Z9

I Solution. As in problem 6, decompose each group into a product of cyclic groups
of prime power order:

(a) Z2 × Z4 × Z3 × Z4 × Z9
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(b) Z3 × Z4 × Z3 × Z8 × Z3

(c) Z4 × Z4 × Z2 × Z3 × Z9

From this, it is clear the groups (a) and (c) are isomorphic, and they are not isomorphic
to group (b). J

9. Which of the following are subrings of the field R of real numbers.

(a) A =
{
m+ n

√
2|m, n ∈ Z and n is even

}
I Solution. Apply the subring test. Let a = m + n

√
2 and b = r + s

√
2 be

arbitrary elements of A. This means that m, n, r, s are in Z with n and s
even. Then a + b = (m + r) + (n + s)

√
2 and ab = (mr + 2ns) + (ms + nr)

√
2.

Since n and s are even it follows that n + s and ms + nr are both even. Hence
a + b ∈ Z and ab ∈ Z, and A is closed under addition and multiplication. Next
−a = (−m) + (−n)

√
2 and −n is even since n is even. Thus −a ∈ A for all

a ∈ A. Last 1 = 1 + 0
√

2 and since 0 is even, we have 1 ∈ A. Hence A satisfies
all conditions of the subring test, and hence A is a subring of R. J

(b) B =
{
m+ n

√
2|m, n ∈ Z and m is odd

}
I Solution. a =

√
2 = 0 + 1

√
2 ∈ B but a + a = 0 + 2

√
2 /∈ B since 2 is not

odd. J

10. Consider the following conditions on the set of all 2× 2 matrices

[
a b
c d

]
with rational

entries. Which conditions below define a commutative ring? If the set is a ring, find
all units.

(a) All matrices with d = a, c = b.

I Solution. The conditions d = a, c = b determine the set A of matrices with

entries in Q of the form

[
a b
b a

]
. Since

[
a b
b a

]
+

[
c d
d c

]
=

[
a+ c b+ d
b+ d a+ c

]
it

follows that A is closed under addition. Moreover, letting a = 1, b = 0 shows

that the identity matrix I =

[
1 0
0 1

]
∈ A. Also −

[
a b
b a

]
=

[
−a −b
−b −a

]
∈ A. It

remains to check that A is closed under multiplication and that multiplication is
commutative. But this follows from the calculation:[

a b
b a

] [
c d
d c

]
=

[
ac+ bd ad+ bc
ad+ bc ac+ bd

]
=

[
c d
d c

] [
a b
b a

]
.

J

(b) All matrices with a = 0 and d = 0.
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I Solution. The set of such matrices is not closed under multiplication. For a
counterexample consider the multiplication[

0 1
1 0

] [
0 1
1 0

]
=

[
1 0
0 1

]
.

Hence, it cannot be a ring. J

11. An element a of a commutative ring R is called nilpotent if an = 0 for some positive
integer n. Prove that if u is a unit and a is nilpotent, then u− a is a unit in R.

I Solution. Let x be any element of R. Then the distributive law and rules of
exponents give the formula

(1− x)(1 + x+ x2 + · · ·+ xk) = 1− xk+1.

If a ∈ R is nilpotent with an = 0, then letting x = a in this formula and k = n − 1
gives

(1− a)(1 + a+ a2 + · · ·+ an−1) = 1− an = 1.

Thus, if a is nilpotent then 1− a is a unit with (1− a)−1 = (1 + a+ a2 + · · ·+ an−1).
Now let u be any unit and let a be a nilpotent element of R with an = 0. Then
(au−1)n = anu−n = 0 so au−1 is also nilpotent. Then (1− au−1) is a unit by the above
calculation. Hence u−a = u(1−au−1) is a product of two units, and hence a unit. J

12. Define φ : Z[
√

2]→ Z[
√

2] by φ(m+ n
√

2) = m− n
√

2, for all m, n ∈ Z. Show that φ
is an isomorphism of Z[

√
2] with itself.

I Solution. The mapping φ : Z[
√

2]→ Z[
√

2] given by φ(m+ n
√

2) = m− n
√

2, for
all m, n ∈ Z is its own inverse since φ2 is the identity. Therefore, φ is one-to-one and
onto. Moreover,

φ((m1 + n1

√
2) + (m2 + n2

√
2)) = φ((m1 +m2) + (n1 + n2)

√
2)

= (m1 +m2)− (n1 + n2)
√

2

= (m1 − n1

√
2) + (m2 − n2

√
2)

= φ(m1 + n1

√
2) + φ(m2 + n2

√
2),

and

φ((m1 + n1

√
2)(m2 + n2

√
2)) = φ((m1m2 + 2n1n2) + (m1n2 +m2n1)

√
2)

= (m1m2 + 2n1n2)− (m1n2 +m2n1)
√

2

= (m1 − n1

√
2)(m2 − n2

√
2)

= φ(m1 + n1

√
2)φ(m2 + n2

√
2).

It follows that φ is an isomorphism of Z[
√

2] with itself. J

13. What is the characteristic of the ring Zm × Zn?
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I Solution. Since the order of (a, b) ∈ Zm × Zm is the least common multiple of the
order of a and the order of b, it follows that the order of the unit element (1, 1) of
Zm×Zn is the least common multiple of m and n, Thus, the characteristic of Zm×Zn

is lcm(m, n). J

14. Let φ : Z[i]→ Z5 be defined by φ(n+mi) = [n+ 2m]5.

(a) Show that φ is a ring homomorphism.

I Solution. The addition is easy to check. I will only check the multiplicative
property:

φ((n+mi)(n′ +m′i)) = φ((nn′ −mm′) + (mn′ + nm′)i)

= [(nn′ −mm′) + 2(mn′ + nm′)]5

= [(nn′ + 4mm′) + 2(mn′ + nm′)]5

= [n+ 2m]5[n
′ + 2m′]5

= φ(n+mi)φ(n′ +m′i).

Thus, φ is a ring homomorphism. J

(b) What is Ker(φ)?

Ker(φ) = {n+mi | [n+ 2m]5 = [0]5}
= {n+mi | 5|(n+ 2m)} .

15. In the ring Z[i] of Gaussian integers (see Example 5.1.5) let 〈p〉 be the ideal generated
by a prime number. Show that Z[i]/〈p〉 has p2 elements, and has characteristic p.

I Solution. Since p · 1 ∈ 〈p〉, it follows that p · (1 + 〈p〉) = p · 1 + 〈p〉 = 0 + 〈p〉 so
that 1 has additive order p in Z[i]/〈p〉. Thus the characteristic of this ring is p.

Let n1 + n2i ∈ Z[i]. Using the division algorithm (for integers) write n1 = q1p + r1
and n2 = q2p+ r2 where 0 ≤ r1, r2 < p. Then (n1 + n2i) + 〈p〉 = (r1 + r2i) + 〈p〉 since
〈p〉 = {m+ ni | p|m and p|n}. Thus, 〈p〉 has exactly p2 cosets. This can also be shown
by noting that the additive abelian group of Z[i] is isomorphic to Z× Z, while that of
Z[i]/〈p〉 is Zp × Zp. J

16. In the ring of Gaussian integers show that the ideal 〈5− i〉 is not a prime ideal.

Hint: Show that Z[i]/〈5 − i〉 ∼= Z26 by defining an onto ring homomorphism φ : Z →
Z[pi]/〈5− i〉 by φ(n) = n+ 〈5− i〉.

I Solution. Define φ : Z→ Z[i]/〈5− i〉 by φ(n) = n+ 〈5− i〉, for all n ∈ Z. This is
the composition of the inclusion mapping from the subring Z into Z[i] and the natural
projection mapping from Z[i] onto Z[i]/〈5 − i〉 so it is the composition of two ring
homomorphisms, and hence a ring homomorphism.
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To show that φ is onto we will show that every coset of 〈5 − i〉 has an integer repre-
sentative. To see this, note that (a+ 5b)− (a+ bi) = b(5− i) ∈ 〈5− i〉 so that

a+ 5b+ 〈5− i〉 = a+ bi+ 〈5− i〉.

Hence φ(a + 5b) = a + 5b + 〈5 − i〉 = a + bi + 〈5 − i〉 and since a + bi is an arbitrary
element of Z[i] it follows that φ is onto.

To determine ker(φ), note that 26 = (5 + i)(5− i) ∈ 〈5− i〉. It follows that 26 ∈ ker(φ)
and hence 26Z ⊆ ker(φ). To show the reverse inclusion, suppose that n ∈ ker(φ). Then
n ∈ 〈5− i〉, so n = c + di)(5− i) for some c, d ∈ Z. Thus n = 5c + d and 5d− c = 0,
so c = 5d and thus n = 26d ∈ 26Z.

It follows that Z[i]/〈5− i〉 ∼= Z/26Z. Since Z/26Z is not an integral domain, the ideal
〈5− i〉 is not a prime ideal. J
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