
Homework #2 Solutions Due: September 5, 2018

Do the following exercises from the text:
Chapter 2 (Section 2.3): 2, 12, 17(a)-(b), 23

2. Prove that 13 + 23 + · · ·+ n3 =
n2(n + 1)2

4
for all n ∈ N.

Proof. The proof is by induction on n. For n ∈ N, let S(n) be the statement

13 + 23 + · · ·+ n3 =
n2(n + 1)2

4
.

Then S(1) is the statement 13 =
12(1 + 1)2

4
, which is true since 13 = 1 and

12(1 + 1)2

4
=

1.

For the induction step, assume that S(k) is true for some k ≥ 1. Thus, we are assuming
that

13 + 23 + · · ·+ k3 =
k2(k + 1)2

4
.

Add (k + 1)3 to both sides of this equation to get

13 + 23 + · · ·+ k3 + (k + 1)3 =
k2(k + 1)2

4
+ (k + 1)3

=
k2(k + 1)2 + 4(k + 1)3

4

=
(k + 1)2(k2 + 4(k + 1))

4

=
(k + 1)2(k + 2)2

4
.

This shows that the truth of S(k) implies the truth of S(k+1). Hence, by the induction
principle, S(n) is true for all n ∈ N .

12. Show that the power set of any set X with exactly n elements has 2n elements.

Proof. Use induction on the number n of elements of X. For n ∈ N let S(n) be
the statement: “Any set X with n elements has a power set P(X) with exactly 2n

elements.”

For the base step of the induction argument, let X be any set with exactly 1 element,
say X = {a}. Then the only subsets of X are the empty set ∅ and the entire set
X = {a}. Thus |P(X)| = 2 = 21 = 2|X|, so the base case is true. For the induction
step, assume that k ∈ N is arbitrary and that any set X with |X| = k has |P(X)| = 2k.

Let X be any set with |X| = k + 1, and count the number of subsets of X. Suppose
X = {a1, . . . , ak, ak+1}. The subsets of X are of two types. First, there are all of the
subsets of X that do not contain ak+1, which consist of all subsets of {a1, . . . , ak}. By
the induction hypothesis, there are 2k subsets of {a1, . . . , ak}, so there are 2k subsets
of X that do not contain ak+1. Then there are the subsets of X that do contain the
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element ak+1. Every such subset of X has the form Y ∪ {ak+1}, where Y is a subset
of X that does not contain ak+1. Since our induction hypothesis is that there are 2k

subsets Y of X \{a1, . . . , ak}, there are also 2k subsets of X that contain ak+1. Hence,
we conclude that there are 2k + 2k = 2 · 2k = 2k+1 subsets of X. Thus, we have shown
that the truth of statement S(k) implies the truth of statement S(k + 1). By the
induction principle, S(n) is true for all n ∈ N.

17. The Fibonacci numbers are defined inductively by f1 = 1, f2 = 1, and fn+2 = fn+1+fn
for n ∈ N.

(a) Prove that fn < 2n for all n ∈ N.

Proof. Use induction on n. Let S(n) be the statement: “fn < 2n.” For the base
case, f1 = 1 < 2 = 21 so S(1) is true. Also, S(2) is true since f2 = 1 < 22. We will
use the strong induction principle. Thus our induction hypothesis is that fk < 2k

for 1 ≤ k ≤ n. Thus, let n ≥ 2 be given. By the induction hypothesis and the
definition of fn,

fn = fn−1 + fn−2 < 2n−1 + 2n−2 < 2n−1 + 2n−1 = 2 · 2n−1 = 2n.

By the strong induction principle, S(n) is true for all n ∈ N.

(b) Prove that fn+1fn−1 = f 2
n + (−1)n for all n ≥ 2.

Proof. The proof is by induction on n. For n ≥ 2 let S(n) be the statement:

fn+1fn−1 = f 2
n + (−1)n.

The statement S(2) is true since, for n = 2, fn+1fn−1 = f 2
n+(−1)n is the statement

f3f1 = f 2
2 + (−1)2 which is 2 · 1 = 12 + 1 which is true.

Now assume that k ≥ 2 and that S(k) is true, that is, assume fk+1fk−1 = f 2
k +

(−1)k. Rewrite this as

f 2
k − fk+1fk−1 = −(−1)k = (−1)k−1

. Now consider the left hand side with k replaced by k + 1. Then, using the
recursive definitions of fk+1 and fk+2,

f 2
k+1 − fk+2fk = fk+1(fk + fk−1)− fk+2fk

= fk(fk+1 − fk+2) + fk+1fk−1

= fk(−fk) + fk+1fk−1

= −(f 2
k − fk+1fk−1)

= (−1)(−1)k−1

= (−1)k.

Thus, if S(k) is true for some k ≥ 2, then S(k + 1) is also true. By the principle
of induction, S(n) is true for all n ≥ 2.
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23. Define the least common multiple of two nonzero integers a and b to be the
nonnegative integer m such that both a and b divide m, and if a and b both
divide any other integer n, then m also divides n. Prove that there exists a
unique least common multiple of for any two nonzero integers a and b.

Proof. Suppose a and b are nonzero integers. Let

S = {n ∈ Z : n > 0, a | n and b | n} .

S 6= ∅ since a and b both divide ab and −(ab), and one of these two integers is
positive. Since S is a nonempty subset of N, it has a smallest element m. We
claim that m is a least common multiple of a and b. By the definition of S, a | m
and b | m. Now let n be any positive integer such that a | n and b | n. We need to
show that m | n. To see this, divide n by m to get n = mq + r where 0 ≤ r < m.
Since r = n −mq is a linear combination of m and n, and since a divides both
m and n it follows that a | r. Similarly b | r. If r > 0, it follows that r ∈ S and
r < m, which contradicts that m is the smallest element of S. Thus, r = 0 and
n = mq so that m | n.

To show that the least common multiple is unique, suppose that m and m′ are
both least common multiples. Then, m | m′ and m′ | m, so that m′ = ±m and
since both are positive, m = m′.

Supplemental Problems:

1. Show that any positive integer n ≥ 12 can be written as a linear combination 3u + 7v
for nonnegative integers u, v.

I Solution. Thus, the question is if any positive integer n ≥ 12 can be written as
n = 3u + 7v for some nonnegative integers u and v. Thus, let S(n) be the statement
n = 3u + 7v for some nonnegative integers u and v. Since 12 = 3 · 4 + 0 · 7, S(12)
is true. Now assume that S(k) is true for some k ≥ 12. Then k = 3u + 7v for some
nonnegative integers u and v.

Case 1: v = 0. In this case u ≥ 4 since k ≥ 12. Then k+1 = 3(u−2)+7 and u−2 > 0.

Case 2: v = 1. In this case u ≥ 2 since k = 3u + 7 · 1 ≥ 12. Thus, as in case 1,
k + 1 = 3(u− 2) + 7 · 2.

Case 3: v ≥ 2. In this case, k + 1 = 3(u + 5) + 7(v − 2).

Thus, if k ≥ 12 and k = 3u+ 7v, then k + 1 = 3u′+ 7v′ so that if S(k) is true, then so
is S(k+1). By the principle of mathematical induction, S(k) is true for all k ≥ 12. J

2. Compute the gcd of m = −231 and n = 150 and express it as a linear combination of
m and n.
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I Solution. Use the Euclidean Algorithm:

−231 = (−2) · 150 + 69

150 = 2 · 69 + 12

69 = 5 · 12 + 9

12 = 1 · 9 + 3

9 = 3 · 3 + 0

Thus gcd(−231, 150) = 3. Reversing the process gives

3 = 12− 9 = 12− (69− 5 · 12) = 6 · 12− 69 = 6(150− 2 · 69)− 69

= 6 · 150− 13 · 69 = 6 · 150− 13(−231 + 2 · 150)

= (−20) · 150 + (−13)(−231).

J

3. Let A =

[
2 1
0 2

]
. Using mathematical induction, show that An =

[
2n n2n−1

0 2n

]
for all

positive integers n.

I Solution. Let S(n) be the statement An =

[
2n n2n−1

0 2n

]
.

Since A1 = A =

[
2 1
0 2

]
=

[
21 1 · 21−1

0 21

]
, it follows that S(1) is a true statement.

For the inductive step, assume that S(k) is true. That is, assume that k ≥ 1 and

Ak =

[
2k k2k−1

0 2k

]
. Then

Ak+1 = Ak · A

=

[
2k k2k−1

0 2k

]
·
[
2 1
0 2

]
=

[
2k · 2 2k + k2k−1 · 2

0 2k · 2

]
=

[
2k+1 (k + 1)2k

0 2k+1

]
.

The last matrix is of the form

[
2n n2n−1

0 2n

]
for n = k + 1. Hence S(k + 1) is a

true statement whenever S(k) is true. It follows from the principle of mathematical
induction that S(n) is true for all n ≥ 1, i.e., the proposed formula for An is valid for
all n ≥ 1. J

4. Prove that 2n > n3 for every integer n ≥ 10.
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I Solution. Let S(n) be the statement 2n > n3. If n = 10, then 210 = 1024 > 1000 =
103 so S(10) is a true statement.

For the inductive step, assume that S(k) is true for some k ≥ 10. Thus, we are
assuming that 2k > k3. Then

2k+1 = 2 · 2k > 2k3 = k3 + k3 = k3 + k · k2

> k3 + 7k2 = k3 + 3k2 + 3k2 + k2 > k3 + 3k2 + 3k + 1 = (k + 1)3.

Reading from the beginning to the end of this chain of inequalities, we see that if
k ≥ 10 and 2k > k3, then it follows that 2k+1 > (k + 1)3. Thus, if S(k) is true for
some k ≥ 10, then S(k + 1) is also true. By the principle of mathematical induction,
it follows that S(n) is true for all n ≥ 10. J
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