Do the following exercises from the text: Chapter 3, Section 3.4: 1 (b), (f); 16, 28, 33, 40, 43, 46

- 1. Find all $x \in \mathbb{Z}$ satisfying each of the following equations.
 - (b) $5x + 1 \equiv 13 \pmod{23}$

▶ Solution. This can be viewed as an equation in equivalence classes modulo 23. That is, the equation is [5][x] + [1] = [13] in \mathbb{Z}_{23} . Since 23 is prime, [5] has a multiplicative inverse in \mathbb{Z}_{23} . This can be calculated by applying Euclid's Lemma, starting by dividing 23 by 5:

$$23 = 4 \cdot 5 + 3 5 = 1 \cdot 3 + 2 3 = 1 \cdot 2 + 1$$

Thus, gcd(23, 5) = 1 and reversing the calculation gives

$$1 = 1 \cdot 3 - 2$$

= 3 - (5 - 1 \cdot 3) = 2 \cdot 3 - 5
= 2(23 - 4 \cdot 5) - 5
= 2 \cdot 23 - 9 \cdot 5

Therefore, $[5]^{-1} = [-9] = [14]$ since -9 + 23 = 14. The equation [5][x] + [1] = [13] is equivalent to the equation [5][x] = [13] - [1] = [12], and multiplying this by $[5]^{-1} = [14]$ gives

$$[x] = [5]^{-1}[12] = [14][12] = [14 \cdot 12] = [168] = [7],$$

where the last equality is obtained by dividing 168 by 23 $(168 - 23 \cdot 7 + 7)$. The congruence equality [x] = [7] is equivalent to x = 7 + 23k for $k \in \mathbb{Z}$, so all solutions of the original congruence are all integers of the form x = 7 + 23k.

(f) $3x \equiv 1 \pmod{6}$

▶ Solution. Suppose that $3x \equiv 1 \pmod{6}$. This means that 3x - 1 = 6k for some $k \in \mathbb{Z}$. Then 3(x - 2k) = 1 which means that 3 divides 1, which is not true in the integers. Thus, there are no $x \in \mathbb{Z}$ satisfying this equation.

16. Give a specific example of some group G and elements $g, h \in G$ where $(gh)^n \neq g^n h^n$.

► Solution. Any elements g, h of a group G such that $gh \neq hg$ will work. For a concrete example let $G = \operatorname{GL}_2(\mathbb{R})$, let $g = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ and $h = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$. Then $gh = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ so $(gh)^2 = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$ while $g^2h^2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

-

28. If G is a group and $a, b \in G$, then the equation xa = b has a unique solution in G.

Proof. If $x = ba^{-1}$ then $xa = (ba^{-1})a = b(a^{-1}a) = be = b$ so $x = ba^{-1}$ is a solution to xa = b. To see that this is the only solution to the equation, suppose $x \in G$ and xa = b. Multiplying on the right by a^{-1} gives $(xa)a^{-1} = ba^{-1}$ and, by associativity, $(xa)a^{-1} = x(aa^{-1}) = xe = x$. Thus ba^{-1} is the unique solution to the group equation xa = b.

33. Let G be a group and suppose that $(ab)^2 = a^2b^2$ for all a and b in G. Prove that G is an abelian group.

Proof. The group G is abelian if ab = ba for all a and b in G. Thus, let a and b be arbitrary elements of G. Then, by hypothesis $(ab)^2 = a^2b^2$. Expanding this, the left had side is $(ab)^2 = abab$ while the right hand side is $a^2b^2 = aabb$. Thus $(ab)^2 = a^2b^2$ means that abab = aabb. Multiply this on the left by a^{-1} to get $a^{-1}(abab) = a^{-1}(aabb)$, which by associativity gives $(a^{-1}a)(bab) = (a^{-1}a)(abb)$. Since $a^{-1}a = e$ this gives e(bab) = e(abb) so that bab = abb. Now multiply this last expression on the right by b^{-1} to get $(bab)b^{-1} = (abb)b^{-1}$. By associativity again, this gives $(ba)(bb^{-1}) = (ab)(bb^{-1})$ and since $bb^{-1} = e$, we conclude that ba = ab. Since a and b are arbitrary elements of G, it follows that G is abelian.

40. Let G consist of the 2×2 matrices of the form

$$\begin{bmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{bmatrix},$$

where $\theta \in \mathbb{R}$. Prove that G is a subgroup of $SL_2(\mathbb{R})$.

Proof. First note that if $A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$, then det $A = \cos^2 \theta + \sin^2 \theta = 1$ so $A \in SL_2(\mathbb{R})$. Hence, G is a subset of $SL_2(\mathbb{R})$. To check that it is a subgroup, verify the three properties in Proposition 3.30.

• The identity of $SL_2(\mathbb{R})$ is the identity matrix $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$. Since, $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$

for $\theta = 0$, it follows that $I \in G$.

• Suppose that $A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ and $B = \begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix}$ are elements of G, where θ and ϕ are in \mathbb{R} . Then

$$AB = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} \cos\phi & -\sin\phi \\ \sin\phi & \cos\phi \end{bmatrix}$$
$$= \begin{bmatrix} \cos\theta\cos\phi - \sin\theta\sin\phi & -\cos\theta\sin\phi - \sin\theta\cos\phi \\ \sin\theta\cos\phi + \cos\theta\sin\phi & -\sin\theta\sin\phi + \cos\theta\sin\phi \end{bmatrix}$$
$$= \begin{bmatrix} \cos(\theta + \phi) & -\sin(\theta + \phi) \\ \sin(\theta + \phi) & \cos(\theta + \phi) \end{bmatrix}.$$

Since $\theta + \phi \in \mathbb{R}$ it follows that $AB \in G$.

• Suppose that $A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ is an element of G, where $\theta \in \mathbb{R}$. Since $\det A = 1$, the inverse of the matrix A is (see Example 3.26)

$$A^{-1} = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix} = \begin{bmatrix} \cos(-\theta) & -\sin(-\theta) \\ \sin(-\theta) & \cos(-\theta) \end{bmatrix} \in G$$

since $-\theta \in \mathbb{R}$.

Thus, G satisfies the three conditions of Proposition 3.30, and hence G is a subgroup of $SL_2(\mathbb{R})$.

43. Prove or disprove: $SL_2(\mathbb{Z})$ is a subgroup of $SL_2(\mathbb{R})$.

▶ Solution. We will prove that this is a true statement. That is, $SL_2(\mathbb{Z})$ is a subgroup of $SL_2(\mathbb{R})$. To do this, check the 3 conditions of Proposition 3.30.

- First, the identity of $SL_2(\mathbb{R})$ is the identity matrix $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$. Since this matrix has integer entries and has determinant 1, it follows that $I \in SL_2(\mathbb{Z})$.
- Now assume that $A = \begin{bmatrix} a_1 & b_1 \\ c_1 & d_1 \end{bmatrix}$ and $B = \begin{bmatrix} a_2 & b_2 \\ c_2 & d_2 \end{bmatrix}$ are elements of $SL_2(\mathbb{Z})$. This means that det $A = \det B = 1$ and all of the entries of the two matrices are integers. Then $\det(AB) = \det A \det B = 1 \cdot 1 = 1$ and

$$AB = \begin{bmatrix} a_1a_2 + b_1c_2 & a_1b_2 + b_1d_2 \\ c_1a_2 + c_1c_2 & c_1b_2 + d_1d_2 \end{bmatrix}$$

Therefore all of the entries of AB are sums of products of integers and hence are integers. Hence $AB \in SL_2(\mathbb{Z})$.

• If $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in SL_2(\mathbb{Z})$, then a, b, c, and d are integers and det A = ad - bc = 1. Therefore, $A^{-1} = \frac{1}{1} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$. Thus, the entries of A^{-1} are integers

and det $A^{-1} = da - (-b)(-c) = ad - bc = det A = 1$. Hence A^{-1} is in $SL_2(\mathbb{Z})$.

Therefore, $SL_2(\mathbb{Z})$ satisfies the 3 conditions of Proposition 3.30 and hence is a subgroup of $SL(\mathbb{R})$.

46. Prove or disprove: If H and K are subgroups of a group G, then the subset $H \cup K$ is a subgroup of G.

▶ Solution. We will show that this is false by giving a counterexample. Let G = U(8), the group of units of \mathbb{Z}_8 . See Table 3.12 for the multiplication table for U(8). Let $H = \{1, 3\}$ and $K = \{1, 5\}$. Then the multiplication tables for H and K:

show that each is closed under multiplication modulo 8, contains 1, and each element is its own inverse. This shows that H and K are subgroups of U(8). Then $H \cup K = \{1, 3, 5\}$ and this is not a subgroup of U(8) since $3 \cdot 5 = 7$ which is not in $H \cup K$. Thus $H \cup K$ fails condition 2 of Proposition 3.30, and hence it is not a subgroup of U(8).