Do the following exercises from Judson: Chapter 4, Section 4.4: 7, 11, 14, 22 (b), (d); 30

Exercises not from the text:

1. Find all generators of the cyclic group $G = \langle g \rangle$ if:

(a)
$$|g| = 18$$
 (b) $|G| = \infty$

- 2. Let $G = \langle g \rangle$ with |g| = 24. List all of the generators for the unique subgroup of G of order 8.
- 3. In each case determine whether G is cyclic.

(a)
$$G = U(12)$$
 (b) $G = U(11)$

- 4. Let |g| = 18 in a group *G*. Compute: (a) $|g^8|$ (b) $|g^5|$ (c) $|g^3|$
- 5. In each case find all the subgroups of $G = \langle g \rangle$ and draw the lattice diagram.
 - (a) $|g| = p^2$, where p is prime.
 - (b) $|g| = p^3$, where p is prime.
 - (c) |g| = pq, where p and q are distinct primes.
 - (d) $|g| = p^2 q$, where p and q are distinct primes.
- 6. Let |g| = 40. List all of the elements of $\langle g \rangle$ that have order 10.

7. Prove that
$$H = \left\{ \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix} \middle| n \in \mathbb{Z} \right\}$$
 is a cyclic subgroup of $\operatorname{GL}_2(\mathbb{R})$.