Do the following exercises from Judson: Chapter 5, Section 5.3: 7, 14, 30, 34 Chapter 6, Section 6.4: 16, 17

Exercises not from the text:

- 1. Let $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 8 & 9 & 5 & 2 & 1 & 6 & 4 & 7 \end{pmatrix}$ and $\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 2 & 8 & 6 & 9 & 4 & 7 & 3 & 1 & 5 \end{pmatrix}$. For each of the permutations σ , τ , σ^2 , $\sigma\tau$, and $\tau\sigma$, determine the following.
 - (a) Find the disjoint cycle factorization of each permutation.
 - (b) Compute the order of each permutation.
 - (c) Determine if each permutation is even or odd.
- 2. Let $G = D_4 = \{1, r, r^2, r^3, s, sr, sr^2, sr^3\}$ where $r^4 = 1, s^2 = 1, srs = r^{-1}$. (See Theorem 5.23) A representation as permutations is $r = \begin{pmatrix} 1 & 2 & 3 & 4 \end{pmatrix}$ and $s = \begin{pmatrix} 2 & 4 \end{pmatrix}$. Let $H = \langle r^2 \rangle$ and $K = \langle s \rangle$. Determine all of the left and right cosets of the subgroups H and K of G.
- 3. Let G be a group and let $g \in G$ be an element. Suppose |G| = 40, $g^8 \neq 1$, and $g^{20} \neq 1$. Show that $G = \langle g \rangle$.
- 4. Suppose a group G has subgroups of orders 45 and 75. If |G| < 400 determine |G|.