
Homework #6 Solutions Due: October 17, 2018

Do the following exercises from Judson:
Chapter 9, Section 9.3: 5, 11, 12, 16 (d)

5. Show that U(5) is isomorphic to U(10), but U(12) is not isomorphic to U(10).

I Solution. U(5) = {2, 22 = 4, 23 = 3, 24 = 1} = 〈2〉 is cyclic of order 4 with gener-
ator 2. U(10) = {3, 32 = 9, 33 = 7, 34 = 1} = 〈3〉 is cyclic of order 4 with generator
3. Thus, there is an isomorphism φ : U(5)→ U(10) given by φ(2k) = 3k for all k ∈ Z.
This is well defined since 24 = 1 ∈ U(5) while 34 = 1 ∈ U(10). Since there are only 4
elements, this amounts to φ(1) = 1, φ(2) = 3, φ(4) = 9, and φ(3) = 7, which is clearly
one-to-one and onto. Since φ(2k2m) = φ(2k+m) = 3k+m = 3k3m, it follows that φ is a
group homomorphism.

U(12) = {1, 5, 7, 11}. Since 22 = 1, 52 = 1, and 112 = 1, all elements other than the
identity have order 2. Since there is no element of order 4, U(12) cannot be isomorphic
to U(10), which has an element, namely 3, of order 2. J

11. Find five non-isomorphic groups of order 8.

I Solution. The five groups are Z8, Z2×Z4, Z2×Z2×Z2, D4 (the symmetry group
of a square), Q8 (the quaternion group). The first 3 are abelian, so none of the first
3 are isomorphic to D4 or Q8, since these are both non-abelian. D4 has 2 elements of
order 4, namely r and r3, where r is the rotation by 90◦. Q8 has 6 elements of order
4, namely ±i, ±j, ±k. Thus D4 is not isomorphic to Q8. Z8 has an element of order
8, namely 1, Z2 × Z4 has an element of order 4, but no element of higher order, and
Z2 ×Z2 ×Z2 has all non-identity elements of order 2. Thus, none of the three abelian
groups are isomorphic to another of the three. Hence, all of these groups of order 8
are distinct, in that none is isomorphic to another of the listed groups of order 8. J

12. Prove that S4 is not isomorphic to D12.

I Solution. Both groups have order 24 and are non-abelian. However, D12 has an
element of order 12, namely, the rotation r by 30◦, whereas, the largest order of an
element in S4 is 4, given by a 4-cycle. Since S4 does not have an element of order 12,
it cannot be isomorphic to D12. J

1. Find the order of the element (8, 8, , 8) in Z10 × Z24 × Z80.

I Solution. In Z10 the order of 8 is 10/ gcd(8, 10) = 10/2 = 5. In Z24 the order of 8
is 24/ gcd(8, 24) = 24/8 = 3, while in Z80 the order of 8 is 80/ gcd(8, 80) = 80/8 = 10.
Thus, the order of (8, 8, , 8) in Z10 × Z24 × Z80 is the least common multiple of 5, 3,
10, which is 30. J

Chapter 10, Section 10.3: 4, 7
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4. Let T be the group of nonsingular upper triangular 2 × 2 matrices with entries in R;

that is matrices of the form

[
a b
0 c

]
where a, b, c ∈ R and ac 6= 0. Let U consist of

matrices of the form

[
1 x
0 1

]
where x ∈ R.

(a) Show that U is a subgroup of T .

I Solution. First, U ⊂ T is clear since each element of U is upper triangular
and nonsingular (each has determinant 1). The identity matrix is in U , and[

1 x
0 1

] [
1 y
0 1

]
=

[
1 x+ y
0 1

]
∈ U,

while

[
1 x
0 0

]−1

=

[
1 −x
0 0

]
. Thus, U contains the identity of T , is closed under

matrix multiplication, and is closed under inverses. Thus U is a subgroup of
T . J

(b) Prove that U is abelian.

I Solution.[
1 x
0 1

] [
1 y
0 1

]
=

[
1 x+ y
0 1

]
=

[
1 y + x
0 1

] [
1 y
0 1

]
=

[
1 x
0 1

]
Thus, multiplication in U is commutative and U is abelian. J

(c) Prove that U is a normal subgroup of T .

I Solution. Let A =

[
1 x
0 1

]
∈ U and let B =

[
a b
0 c

]
∈ T be arbitrary. To show

that U is normal in T it is sufficient to show that BAB−1 ∈ U for al choices of
A ∈ U and B ∈ T . (By Theorem 10.3.)

BAB−1 =

[
a b
0 c

] [
1 x
0 1

] [
1
a
− b

ac

0 1
c

]
=

[
a b
0 c

] [
1
a
− b

ac
+ x

c

0 1
c

]
=

[
1 − b

c
+ xa

c
+ b

c

0 1

]
The last matrix is in U for all choices of A and B, so U is normal in T . J

(d) Show that the factor group T/U is abelian.

Math 4200 2



Homework #6 Solutions Due: October 17, 2018

I Solution. The elements of T/U are the cosets AU where A ∈ T , and multi-
plication in T/U is coset multiplication, that is, (AU)(BU) = (AB)U . Thus, to
show that T/U is abelian, it is necessary to show that (AB)U = (BA)U for all
A, B ∈ T . The condition for the two left cosets to be equal is (from Lemma 6.3
(5)): (AB)−1(BA) ∈ U . Thus, we need to show that B−1A−1BA ∈ U for all A,

B ∈ T . If A =

[
a b
0 c

]
and B =

[
r s
0 t

]
, then

B−1A−1BA =

[
1
r
− s

rt

0 1
t

] [
1
a
− b

ac

0 1
c

] [
a b
0 c

] [
r s
0 t

]
=

[
1
ra
− b

rac
− s

rct

0 1
tc

] [
ar rb+ cs
0 ct

]
=

[
1 b

a
+ cs

ra
− bt

ra
− s

r

0 1

]
∈ U

Thus (AB)U = (BA)U so T/U is abelian. J

(e) Is T normal in GL2(R)?

I Solution. If A =

[
0 1
1 0

]
and B =

[
1 1
0 1

]
, then A = A−1 and B ∈ T . Then,

ABA−1 =

[
0 1
1 0

] [
1 1
0 1

] [
0 1
1 0

]
=

[
0 1
1 0

] [
1 1
1 0

]
=

[
1 0
1 1

]
/∈ T.

Thus T is not a normal subgroup of GL2(R). Note that since the above B is also
in U , we have also shown that U is not a normal subgroup of GL2(R). J

1. Prove or disprove: If H is a normal subgroup of G such that H and G/H are abelian,
then G is abelian.

I Solution. This is false. One counterexample is provided by Exercise 4. Namely,
the subgroup U of T is an abelian and normal subgroup of T and T/U is abelian, but

the group T is not abelian. For example, if A =

[
1 0
0 2

]
and B =

[
1 1
0 1

]
then

AB =

[
1 1
0 2

]
6=

[
1 2
0 2

]
= BA

Another example is to take G = S3 and H = 〈
[
1 2 3

]
〉. Then H is a cyclic subgroup

of G of order 3, so the index [G : H] = 2 and hence H is a normal subgroup. The
factor group G/H has order 6/3 = 2. Since 2 is prime this means that G/H is cyclic
of order 2, and hence abelian. Thus, both H and G/H are abelian, but G = S3 is not
abelian. J
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Exercises not from the text:

1. If G is any group, define α : G→ G by α(g) = g−1. Show that G is abelian if and only
if α is a homomorphism.

I Solution. Assume that G is abelian. then

α(gh) = (gh)−1 = h−1g−1 = g−1h−1 = α(g)α(h)

where the third equality is because G is abelian. Thus, α is a group homomorphism.

Conversely, assume that α is a group homomorphism and let g, h ∈ G. Then

gh = (g−1)−1(h−1)−1

= α(g−1)α(h−1)

= α(g−1h−1)

= α((hg)−1)

= ((hg)−1)−1

= hg

where the third equality is because α is a homomorphism. Since g and h are arbitrary,
it follows that G is abelian. J

2. If α : G → G1 is a homomorphism, show that K = {g ∈ G : α(g) = 1} is a subgroup
of G.

I Solution. The identity 1 of G is in K since α(1) = 1 for any homomorphism.
If g, h ∈ K, then α(gh) = α(g)α(h) = 1 · 1 = 1 so gh ∈ K. If g ∈ K then
α(g−1) = α(g)−1 = 1−1 = 1 so g−1 ∈ K. Thus K is a subgroup of G. J

3. In each case determine whether α : G→ G1 is an isomorphism.

(a) G = G1 = Z, α(n) = 2n.

I Solution. α is a homomorphism, but it is not an isomorphism since it is not
onto. In fact α(G) = 2Z 6= Z. J

(b) G = G1 = Z∗
5, α(g) = g3.

I Solution. This is a homomorphism since Z∗
5 is abelian so α(gh) = (gh)3 =

g3h3 = α(g)α(h). Since 03 = 0, 13 = 1, 23 = 3, 33 = 2, and 43 = 4 in Z∗
5, it follows

that α is bijective, and hence an isomorphism. J

(c) G = G1 = Z8, α(g) = 2g.

I Solution. This is a homomorphism since α(g + h) = 2(g + h) = 2g + 2h =
α(g) + α(h). It is not an isomorphism since it is not injective: α(0) = 0 = α(4)
but 4 6= 0 in Z8. J
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