Do the following exercises from Judson: Chapter 11, Section 11.3: 7, 13

- 7. In the group \mathbb{Z}_{24} , let $H = \langle 4 \rangle$ and $: N = \langle 6 \rangle$.
 - (a) List the elements in H + N and $H \cap N$.
 - ▶ Solution. $H = \{0, 4, 8, 12, 16, 20\}$ and $N = \{0, 6, 12, 18\}$. Thus,

$$H + N = \{0, 2, 4, 6, 8, 10, 12, 12, 14, 16, 18, 20, 22\} = \langle 2 \rangle.$$

and $H \cap N = \{0, 12\}.$

(b) List the cosets in (H+N)/N.

▶ Solution. $0 + N = N = \{0, 6, 12, 18\}, 2 + N = \{2, 8, 14, 20\}, 4 + N = \{4, 10, 16, 22\}.$ ◀

(c) List the cosets in $H/(H \cap N)$.

▶ Solution. $0+(H\cap N) = H\cap N = \{0, 12\}, 4+(H\cap N) = \{4, 16\}, 8+(H\cap N) = \{8, 20\}.$ ◀

(d) Give the correspondence between (H + N)/N and $H/(H \cap N)$ described in the proof of the Second Isomorphism Theorem.

▶ Solution. The correspondence is $\phi(h + (H \cap N)) = h + N$. This gives: $\phi(0 + (H \cap N)) = 0 + N$, $\phi(4 + (H \cap N)) = 4 + N$, and $\phi(8 + (H \cap N)) = 8 + N = 2 + N$.

13. Prove or disprove: $\mathbb{Q}/\mathbb{Z} \cong \mathbb{Q}$.

▶ Solution. Note that every nonzero element of \mathbb{Q} has infinite order in the additive group \mathbb{Q} . To see this, suppose that $q \neq 0 \in \mathbb{Q}$. In an additive group the k^{th} power of q is kq and kq = 0 if and only if k = 0. Thus, there is no element of finite order in \mathbb{Q} . However, in the group \mathbb{Q}/\mathbb{Z} , every element has finite order. To see this, suppose that $q \in \mathbb{Q}$ and consider the coset $q + \mathbb{Z}$. Since $q \in \mathbb{Q}$, $q = \frac{r}{s}$ where $r, s \in \mathbb{Z}$ with $s \neq 0$. Then $s(q + \mathbb{Z}) = sq + \mathbb{Z} = r + \mathbb{Z} = 0 + \mathbb{Z}$ since $r \in \mathbb{Z}$. Thus, $q + \mathbb{Z}$ has finite order $(\leq s)$ in \mathbb{Q}/\mathbb{Z} . Since \mathbb{Q}/\mathbb{Z} has nonzero elements of finite order and \mathbb{Q} does not, they cannot be isomorphic. Any isomorphism preserves the order of elements.

Exercises not from the text:

1. Let $T = \{z \in \mathbb{C}^* \mid |z| = 1\}$. Prove that \mathbb{C}^*/T is isomorphic to \mathbb{R}^+ , the group of positive real numbers under multiplication.

▶ Solution. Define $\phi : \mathbb{C}^* \to \mathbb{R}^+$ by $\phi(z) = |z|$. Since $\phi(zw) = |zw| = |z| |w| = \phi(z)\phi(w)$, ϕ is a group homomorphism. Moreover, $\operatorname{Ker}(\phi) = \{z \in \mathbb{C}^* : \phi(z) = |z| = 1\} = T$. ϕ is onto since $\phi(a) = a$ for all $a \in \mathbb{R}^+$. By the first isomorphism theorem, $\mathbb{C}^*/T = \mathbb{C}^*/\operatorname{Ker}(\phi) \cong \phi(\mathbb{C}^*) = \mathbb{R}^+$.

2. Suppose that G is a finite group and that $\phi: G \to \mathbb{Z}_{10}$ is an onto group homomorphism. What can we say about the order of G? Generalize this statement.

▶ Solution. By the first isomorphism theorem, $G/\operatorname{Ker}(\phi) \cong \mathbb{Z}_1 0$. Thus, by Lagrange's theorem, $|G| / |\operatorname{Ker}(\phi)| = |\mathbb{Z}_{10}| = 10$. Therefore, 10 divides the order of G. In general, if $\phi : G \to H$ is onto, then the order of H divides the order of G.

3. If H and K are normal subgroups of a group G and $H \cap K = \{e\}$, prove that G is isomorphic to a subgroup of $G/H \times G/K$.

▶ Solution. Define $\phi : G \to G/H \times G/K$ by $\phi(g) = (gH, gK)$. Then ϕ is a homomorphism since

$$\phi(g_1g_2) = (g_1g_2H, g_1g_2K)$$

= $((g_1H)(g_2H), (g_1K)(g_2K)$
= $(g_1H, g_1K)(g_2H, g_2K)$
= $\phi(g_1)\phi(g_2).$

Then by the first isomorphism theorem $G/\operatorname{Ker}(\phi)$ is isomorphic to $\phi(G) \subset G/H \times G/K$. But $g \in \operatorname{Ker}(\phi)$ if and only if $\phi(g) = (gH, gK) = (H, K)$ if and only if $g \in H$ and $g \in K$, i.e., $g \in H \cap K = \{e\}$. Hence $\operatorname{Ker}(\phi) = \{e\}$ and $G \cong \phi(G)$, which is a subgroup of $G/H \times G/K$.

4. Let N be a normal subgroup of a finite group G. Prove that the order of the group element gN in G/N divides the order of g.

▶ Solution. Let *n* be the order of *g*. Then $g^n = e$ and $(gN)^n = g^n N = eN = N$, which is the identity in G/N. Thus, the order of gN divides *n*.