Do the following exercises from Judson: Section 16.6: 8,13 (b)

- 1. If F is a field and |F| = q, show that $a^q = a$ for all $a \in F$.
- 2. Show that $\mathbb{Z}[\sqrt{2}] = \{m + n\sqrt{2} | m, n \in \mathbb{Z}\}\$ is a subring of \mathbb{C} and find 10 units.
- 3. In each case decide whether A is an ideal of the ring R.

(a)
$$R = \mathbb{Z} \times \mathbb{Z}, A = \{(k, k) : k \in \mathbb{Z}\}$$

(b) $R = \left\{ \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} : a, b, c \in \mathbb{Z} \right\}, A = \left\{ \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} : a, c \in \mathbb{Z}, b \in 2\mathbb{Z} \right\}.$

- 4. Let $R = \mathbb{Z}[i]$ be the ring of gaussian integers and let $A = R(1+3i) = \langle 1+3i \rangle$. Find the number of elements in the factor ring R/A and describe the cosets.
- 5. Find all maximal ideals of (a) \mathbb{Z}_8 , (b) \mathbb{Z}_{10} , (c) \mathbb{Z}_{12} , (d) \mathbb{Z}_n .
- 6. (a) Show that $\mathbb{Z}_3[\sqrt{2}]$ is a field.
 - (b) Show that $\mathbb{Z}_2[\sqrt{2}]$ has a unique proper ideal $A \neq 0$.
- 7. Show that $\mathbb{Z} \times 0$ and $0 \times \mathbb{Z}$ are prime ideals of $\mathbb{Z} \times \mathbb{Z}$. Are they maximal ideals?
- 8. The nonzero elements of $\mathbb{Z}_3[i]$ form an abelian group of order 8 (since $\mathbb{Z}_3[i]$ is a field). Determine the isomorphism class of this group.