
Homework #9 Solutions Due: November 12, 2018

Do the following exercises from Judson:
Section 16.6: 8, 13 (b)

8. Prove or Disprove: The ring Q(
√

2) =
{
a+ b

√
2 : a, b ∈ Q

}
is isomorphic to the ring

Q(
√

3) =
{
a+ b

√
3 : a, b ∈ Q

}
.

I Solution. The two rings are not isomorphic. To see this, suppose that φ : Q(
√

2)→
Q(
√

3) is a ring isomorphism and let φ(
√

2) = a+ b
√

3 ∈ Q(
√

3). Since a ring isomor-
phism will take the identity to the identity, we have

2 = 1 + 1 = φ(1) + φ(1) = φ(1 + 1) = φ(2) = φ(
√

2
√

2) = φ(
√

2)2 = (a+ b
√

3)2.

Thus, a2 + 2ab
√

3 + 3b2 = 2 and hence 2ab
√

3 = 2− a2 − 3b2. If ab 6= 0 then

√
3 =

2− a2 − 3b2

2ab
∈ Q.

If ab = 0 then a = 0 or b = 0. If a = 0 then b2 − 2
3

so
√

2
3
∈ Q. If b = 0, then 2 = a2

and
√

2 ∈ Q. Since none of
√

2,
√

3,
√

2
3

are rational (by the same argument as the

irrationality of
√

2), it follows that there can be no isomorphism φ between Q(
√

2) and
Q(
√

3). J

13. (b) Solve the following system of congruences:

x ≡ 3 (mod 7)

x ≡ 0 (mod 8)

x ≡ 5 (mod 15)

I Solution. Since 7, 8, 15 are pairwise relatively prime, the Chinese Remainder theo-
rem applies. Solve the first two congruences. Since 8−7 = 1, x = 3 ·8−0 ·7 = 24 is the
solution of the first two congruences modulo 8 · 7 = 56. Thus, the three congruences
can be reduced to the pair of congruences

x ≡ 24 (mod 56)

x ≡ 5 (mod 15)

From the Euclidian algorithm, 152 − 4 · 56 = 1. Thus, a solution of the last two
congruences is x = 24 · 152 − 224 · 5 = 4280 (mod 840). The smallest positive solution
is then x ∼= 80 (mod 840). J

1. If F is a field and |F | = q, show that aq = a for all a ∈ F .
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I Solution. Since F is a field, F ∗ = F \ {0}. Thus, F ∗ is a multiplicative group of
order q − 1. Since the order of every element divides the order of the group, it follows
that for all a 6= 0, aq−1 = 1. Multiplying by a gives aq = a for all a 6= 0. Since, it is
also true that 0q = 0, it follows that aq = a for all a ∈ F . J

2. Show that Z[
√

2] =
{
m+ n

√
2|m, n ∈ Z

}
is a subring of C and find 10 units.

I Solution. 0 = 0 + 0
√

2 and 1 = 1 + 0
√

2 are in Z(
√

2). If a = m + n
√

2 and
b = p + q

√
2 where m, n, p, q ∈ Z are typical element of Z(

√
2) then a ± b =

(m+n
√

2)±(p+q
√

2) = (m±q)+(n±q)
√

2 ∈ Z(
√

2). Also, ab = (m+n
√

2)(p+q
√

2) =
(mp + 2nq) + (np + mq)

√
2 ∈ Z(

√
2). Thus, Z(

√
2) is a subring of C by the subring

test.

Assume that u = m + n
√

2 ∈ Z(
√

2). If u∗ = m − n
√

2 then uu∗ = (m + n
√

2)(m −
n
√

2) = m2 − 2n2. If uu∗ = ±1 then u is a unit with u−1 = ±u∗. Hence, find some
choices of m and n by trial and error that satisfy m2 − 2n2 = ±1. Here are some
examples: m = ±1, n = 0; m = ±1, n = ±1; m = ±3, n = ±2. These choices give the
following units: ±1, ±(1±

√
2), ±(3± 2

√
2). J

3. In each case decide whether A is an ideal of the ring R.

(a) R = Z× Z, A = {(k, k) : k ∈ Z}

I Solution. a = (1, 1) ∈ A but if r = (1, 0), then ra = (1, 0)(1, 1) = (1, 0) /∈ A.
Thus, A is not an ideal. J

(b) R =

{[
a b
0 c

]
: a, b, c ∈ Z

}
, A =

{[
a b
0 c

]
: a, c ∈ Z, b ∈ 2Z

}
.

I Solution. a =

[
1 0
0 0

]
∈ A but if r =

[
1 1
0 0

]
, then ar =

[
1 1
0 0

]
/∈ A. Thus, A

is not an ideal. J

4. Let R = Z[i] be the ring of gaussian integers and let A = R(1 + 3i) = 〈1 + 3i〉. Find
the number of elements in the factor ring R/A and describe the cosets.

I Solution. Since 1 + 3i ∈ A, so is i(1 + 3i) = i − 3. Thus, i − 3 + A = 0 + A so
i+A = 3+A. Therefore m+ni+A = m+3n+A and hence every coset can be written
as k + A for k ∈ Z. Since 10 = (1 + 3i)(1 − 3i) ∈ A, it follows that 10 + A = 0 + A.
We claim that R/A = {k + A|0 ≤ k < 10} and all of these cosets are distinct. To see
this, we have already shown that m+ ni+A = (m+ 3n) +A. Divide m+ 3n by 10 in
Z to get m+ 3n = 10q + k where 0 ≤ k < 10. Then,

m+ ni+ A = m+ 3n+ A = 10q + k + A = k + A

since 10 ∈ A. It remains to show that all of the cosets k + A for 0 ≤ k < 10 are
all different. Suppose k + A = j + A for 0 ≤ k ≤ j < 10. Then 0 ≤ j − k < 10,
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j−k+A = 0+A and hence j−k ∈ A. Thus, j−k = (1+3i)(r+si) for some r, s ∈ Z.
Multiplying out gives j−k = (r−3s)+(3r+s)i. Comparing real and imaginary terms
gives

r − 3s = j − k
3r + s = 0.

Multiplying the second equation by 3 and adding to the first gives 10r = j−k, so that
j− k is a multiple of 10. Since, 1 ≤ j− k < 10, it follows that j− k = 0 so that j = k.
Hence, R/A consists of all the cosets k + A for 0 ≤ k < 10 and all of these cosets are
distinct, so |R/A| = 10. J

5. Find all maximal ideals of (a) Z8, (b) Z10, (c) Z12, (d) Zn.

I Solution. All of the ideals of Zn are mZn where m is a divisor of n. Thus, the
ideals of Z8 are Z8, 2Z8, 4Z8 and 8Z8 = {0}. These form a chain

{0} $ 4Z8 $ 2Z8 $ Z8.

Thus, the only maximal ideal is 2Z8.

Similarly for the other cases: the maximal ideals of Z10 are 2Z10 and 5Z10; the maximal
ideals of Z12 are 2Z12 and 3Z12; the maximal ideals of Zn are pZn where p is a prime
divisor of n. J

6. (a) Show that Z3[
√

2] is a field.

I Solution. This is like Example 5, Page 173. An argument like Example 4
shows that Z3(

√
2) is a ring. To show it is a field, it is necessary to show that

every nonzero a ∈ Z3(
√

2) has a multiplicative inverse. The elements of Z3(
√

2)
are r + s

√
2 where r and s are in Z3. Let a = r + s

√
2 ∈ Z3(

√
2) and write

a∗ = r − s
√

2. Then aa∗ = r2 − 2s2 = r2 + s2 ∈ Z3 since −2 = 1 ∈ Z3. If
a 6= 0 then r 6= 0 or s 6= 0 in Z3. Thus r2 + s2 6= 0 in Z3 since t2 = 0 or 1 for
all t ∈ Z3 and thus r2 + s2 can only be 1 or 2 if either r 6= 0 or s 6= 0. Letting
b = (r2 + s2)−1a∗ gives an element of Z(

√
2) with ab = 1 = ba. Hence Z3(

√
2) is

a field. J

(b) Show that Z2[
√

2] has a unique proper ideal A 6= 0.

I Solution. The elements of Z2(
√

2) are r + s
√

2 where r, s ∈ Z2 so that there
are 4 elements 0, 1,

√
2 and 1 +

√
2 where

√
2 is an element not in Z2 such that

(
√

2)2 = 2 = 0 ∈ Z2. Thus, the multiplication table for Z2(
√

2) is

· 0 1
√

2 1 +
√

2
0 0 0 0 0

1 0 1
√

2 1 +
√

2√
2 0

√
2 0

√
2

1 +
√

2 0 1 +
√

2
√

2 1
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The third row of this table shows that A =
{

0,
√

2
}

is closed under multiplication

by all elements of Z2(
√

2). It is also closed under addition. Hence it is a nonzero
ideal. Moreover, 1 and 1 +

√
2 are units, so any nonzero ideal, other than A will

have a unit and hence will be all of Z2(
√

2). J

7. Show that Z× 0 and 0× Z are prime ideals of Z× Z. Are they maximal ideals?

I Solution. Let π1 : Z× Z→ Z by π(r, s) = r and π2 : Z× Z→ Z by π2(r, s) = s.
Both π1 and π2 are surjective ring homomorphisms. Thus, Z × Z/Ker(πi) ∼= Z for
i = 1, 2. Hence, the kernel of each of these homomorphisms is a prime ideal, and
Ker(π1) = 0 × Z and Ker(π2) = Z × 0. So both of these ideals are prime. Neither is
maximal since 0× Z $ (2Z)× Z $ Z× Z and Z× 0 $ Z× (2Z) $ Z× Z. J

8. The nonzero elements of Z3[i] form an abelian group of order 8 (since Z3[i] is a field).
Determine the isomorphism class of this group.

I Solution. 1− i is a nonzero element of Z3[i], so the order of 1− i is divisible by 8.
Since (1− i)2 = i, (1− i)4 = −1, it follows that the order is not 1, 2, or 4. Hence the
order must be 8, so the group is cyclic of order 8, and hence isomorphic to Z8. J
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