Do the following exercises from Judson: Section 16.6: 8, 13 (b)

8. Prove or Disprove: The ring $\mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} : a, b \in \mathbb{Q}\}$ is isomorphic to the ring $\mathbb{Q}(\sqrt{3}) = \{a + b\sqrt{3} : a, b \in \mathbb{Q}\}.$

▶ Solution. The two rings are not isomorphic. To see this, suppose that $\phi : \mathbb{Q}(\sqrt{2}) \to \mathbb{Q}(\sqrt{3})$ is a ring isomorphism and let $\phi(\sqrt{2}) = a + b\sqrt{3} \in \mathbb{Q}(\sqrt{3})$. Since a ring isomorphism will take the identity to the identity, we have

$$2 = 1 + 1 = \phi(1) + \phi(1) = \phi(1 + 1) = \phi(2) = \phi(\sqrt{2}\sqrt{2}) = \phi(\sqrt{2})^2 = (a + b\sqrt{3})^2.$$

Thus, $a^2 + 2ab\sqrt{3} + 3b^2 = 2$ and hence $2ab\sqrt{3} = 2 - a^2 - 3b^2$. If $ab \neq 0$ then

$$\sqrt{3} = \frac{2 - a^2 - 3b^2}{2ab} \in \mathbb{Q}.$$

If ab = 0 then a = 0 or b = 0. If a = 0 then $b^2 - \frac{2}{3}$ so $\sqrt{\frac{2}{3}} \in \mathbb{Q}$. If b = 0, then $2 = a^2$ and $\sqrt{2} \in \mathbb{Q}$. Since none of $\sqrt{2}$, $\sqrt{3}$, $\sqrt{\frac{2}{3}}$ are rational (by the same argument as the irrationality of $\sqrt{2}$), it follows that there can be no isomorphism ϕ between $\mathbb{Q}(\sqrt{2})$ and $\mathbb{Q}(\sqrt{3})$.

13. (b) Solve the following system of congruences:

$$x \equiv 3 \pmod{7}$$
$$x \equiv 0 \pmod{8}$$
$$x \equiv 5 \pmod{15}$$

▶ Solution. Since 7, 8, 15 are pairwise relatively prime, the Chinese Remainder theorem applies. Solve the first two congruences. Since 8-7=1, $x=3\cdot 8-0\cdot 7=24$ is the solution of the first two congruences modulo $8\cdot 7=56$. Thus, the three congruences can be reduced to the pair of congruences

$$x \equiv 24 \pmod{56}$$
$$x \equiv 5 \pmod{15}$$

From the Euclidian algorithm, $15^2 - 4 \cdot 56 = 1$. Thus, a solution of the last two congruences is $x = 24 \cdot 15^2 - 224 \cdot 5 = 4280 \pmod{840}$. The smallest positive solution is then $x \cong 80 \pmod{840}$.

1. If F is a field and |F| = q, show that $a^q = a$ for all $a \in F$.

▶ Solution. Since F is a field, $F^* = F \setminus \{0\}$. Thus, F^* is a multiplicative group of order q-1. Since the order of every element divides the order of the group, it follows that for all $a \neq 0$, $a^{q-1} = 1$. Multiplying by a gives $a^q = a$ for all $a \neq 0$. Since, it is also true that $0^q = 0$, it follows that $a^q = a$ for all $a \in F$.

2. Show that $\mathbb{Z}[\sqrt{2}] = \{m + n\sqrt{2} | m, n \in \mathbb{Z}\}\$ is a subring of \mathbb{C} and find 10 units.

▶ Solution. $0 = 0 + 0\sqrt{2}$ and $1 = 1 + 0\sqrt{2}$ are in $\mathbb{Z}(\sqrt{2})$. If $a = m + n\sqrt{2}$ and $b = p + q\sqrt{2}$ where $m, n, p, q \in \mathbb{Z}$ are typical element of $\mathbb{Z}(\sqrt{2})$ then $a \pm b = (m+n\sqrt{2})\pm(p+q\sqrt{2}) = (m\pm q)+(n\pm q)\sqrt{2} \in \mathbb{Z}(\sqrt{2})$. Also, $ab = (m+n\sqrt{2})(p+q\sqrt{2}) = (mp+2nq) + (np+mq)\sqrt{2} \in \mathbb{Z}(\sqrt{2})$. Thus, $\mathbb{Z}(\sqrt{2})$ is a subring of \mathbb{C} by the subring test.

Assume that $u = m + n\sqrt{2} \in \mathbb{Z}(\sqrt{2})$. If $u^* = m - n\sqrt{2}$ then $uu^* = (m + n\sqrt{2})(m - n\sqrt{2}) = m^2 - 2n^2$. If $uu^* = \pm 1$ then u is a unit with $u^{-1} = \pm u^*$. Hence, find some choices of m and n by trial and error that satisfy $m^2 - 2n^2 = \pm 1$. Here are some examples: $m = \pm 1$, n = 0; $m = \pm 1$, $n = \pm 1$; $m = \pm 3$, $n = \pm 2$. These choices give the following units: ± 1 , $\pm (1 \pm \sqrt{2})$, $\pm (3 \pm 2\sqrt{2})$.

- 3. In each case decide whether A is an ideal of the ring R.
 - (a) $R = \mathbb{Z} \times \mathbb{Z}, A = \{(k, k) : k \in \mathbb{Z}\}$

▶ Solution. $a = (1, 1) \in A$ but if r = (1, 0), then $ra = (1, 0)(1, 1) = (1, 0) \notin A$. Thus, A is not an ideal.

- (b) $R = \left\{ \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} : a, b, c \in \mathbb{Z} \right\}, A = \left\{ \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} : a, c \in \mathbb{Z}, b \in 2\mathbb{Z} \right\}.$ $\blacktriangleright \text{ Solution. } a = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \in A \text{ but if } r = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \text{ then } ar = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \notin A. \text{ Thus, } A \text{ is not an ideal.}$
- 4. Let $R = \mathbb{Z}[i]$ be the ring of gaussian integers and let $A = R(1+3i) = \langle 1+3i \rangle$. Find the number of elements in the factor ring R/A and describe the cosets.

▶ Solution. Since $1 + 3i \in A$, so is i(1 + 3i) = i - 3. Thus, i - 3 + A = 0 + A so i + A = 3 + A. Therefore m + ni + A = m + 3n + A and hence every coset can be written as k + A for $k \in \mathbb{Z}$. Since $10 = (1 + 3i)(1 - 3i) \in A$, it follows that 10 + A = 0 + A. We claim that $R/A = \{k + A | 0 \le k < 10\}$ and all of these cosets are distinct. To see this, we have already shown that m + ni + A = (m + 3n) + A. Divide m + 3n by 10 in \mathbb{Z} to get m + 3n = 10q + k where $0 \le k < 10$. Then,

$$m+ni+A=m+3n+A=10q+k+A=k+A$$

since $10 \in A$. It remains to show that all of the cosets k + A for $0 \le k < 10$ are all different. Suppose k + A = j + A for $0 \le k \le j < 10$. Then $0 \le j - k < 10$,

j-k+A = 0+A and hence $j-k \in A$. Thus, j-k = (1+3i)(r+si) for some $r, s \in \mathbb{Z}$. Multiplying out gives j-k = (r-3s)+(3r+s)i. Comparing real and imaginary terms gives

$$\begin{aligned} r - 3s &= j - k \\ 3r + s &= 0. \end{aligned}$$

Multiplying the second equation by 3 and adding to the first gives 10r = j - k, so that j - k is a multiple of 10. Since, $1 \le j - k < 10$, it follows that j - k = 0 so that j = k. Hence, R/A consists of all the cosets k + A for $0 \le k < 10$ and all of these cosets are distinct, so |R/A| = 10.

5. Find all maximal ideals of (a) \mathbb{Z}_8 , (b) \mathbb{Z}_{10} , (c) \mathbb{Z}_{12} , (d) \mathbb{Z}_n .

▶ Solution. All of the ideals of \mathbb{Z}_n are $m\mathbb{Z}_n$ where *m* is a divisor of *n*. Thus, the ideals of \mathbb{Z}_8 are \mathbb{Z}_8 , $2\mathbb{Z}_8$, $4\mathbb{Z}_8$ and $8\mathbb{Z}_8 = \{0\}$. These form a chain

$$\{0\} \subsetneqq 4\mathbb{Z}_8 \subsetneqq 2\mathbb{Z}_8 \gneqq \mathbb{Z}_8.$$

Thus, the only maximal ideal is $2\mathbb{Z}_8$.

Similarly for the other cases: the maximal ideals of \mathbb{Z}_{10} are $2\mathbb{Z}_{10}$ and $5\mathbb{Z}_{10}$; the maximal ideals of \mathbb{Z}_{12} are $2\mathbb{Z}_{12}$ and $3\mathbb{Z}_{12}$; the maximal ideals of \mathbb{Z}_n are $p\mathbb{Z}_n$ where p is a prime divisor of n.

6. (a) Show that $\mathbb{Z}_3[\sqrt{2}]$ is a field.

▶ Solution. This is like Example 5, Page 173. An argument like Example 4 shows that $\mathbb{Z}_3(\sqrt{2})$ is a ring. To show it is a field, it is necessary to show that every nonzero $a \in \mathbb{Z}_3(\sqrt{2})$ has a multiplicative inverse. The elements of $\mathbb{Z}_3(\sqrt{2})$ are $r + s\sqrt{2}$ where r and s are in \mathbb{Z}_3 . Let $a = r + s\sqrt{2} \in \mathbb{Z}_3(\sqrt{2})$ and write $a^* = r - s\sqrt{2}$. Then $aa^* = r^2 - 2s^2 = r^2 + s^2 \in \mathbb{Z}_3$ since $-2 = 1 \in \mathbb{Z}_3$. If $a \neq 0$ then $r \neq 0$ or $s \neq 0$ in \mathbb{Z}_3 . Thus $r^2 + s^2 \neq 0$ in \mathbb{Z}_3 since $t^2 = 0$ or 1 for all $t \in \mathbb{Z}_3$ and thus $r^2 + s^2$ can only be 1 or 2 if either $r \neq 0$ or $s \neq 0$. Letting $b = (r^2 + s^2)^{-1}a^*$ gives an element of $\mathbb{Z}(\sqrt{2})$ with ab = 1 = ba. Hence $\mathbb{Z}_3(\sqrt{2})$ is a field.

(b) Show that $\mathbb{Z}_2[\sqrt{2}]$ has a unique proper ideal $A \neq 0$.

▶ Solution. The elements of $\mathbb{Z}_2(\sqrt{2})$ are $r + s\sqrt{2}$ where $r, s \in \mathbb{Z}_2$ so that there are 4 elements 0, 1, $\sqrt{2}$ and $1 + \sqrt{2}$ where $\sqrt{2}$ is an element not in \mathbb{Z}_2 such that $(\sqrt{2})^2 = 2 = 0 \in \mathbb{Z}_2$. Thus, the multiplication table for $\mathbb{Z}_2(\sqrt{2})$ is

The third row of this table shows that $A = \{0, \sqrt{2}\}$ is closed under multiplication by all elements of $\mathbb{Z}_2(\sqrt{2})$. It is also closed under addition. Hence it is a nonzero ideal. Moreover, 1 and $1 + \sqrt{2}$ are units, so any nonzero ideal, other than A will have a unit and hence will be all of $\mathbb{Z}_2(\sqrt{2})$.

7. Show that $\mathbb{Z} \times 0$ and $0 \times \mathbb{Z}$ are prime ideals of $\mathbb{Z} \times \mathbb{Z}$. Are they maximal ideals?

▶ Solution. Let $\pi_1 : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ by $\pi(r, s) = r$ and $\pi_2 : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ by $\pi_2(r, s) = s$. Both π_1 and π_2 are surjective ring homomorphisms. Thus, $\mathbb{Z} \times \mathbb{Z} / \operatorname{Ker}(\pi_i) \cong \mathbb{Z}$ for i = 1, 2. Hence, the kernel of each of these homomorphisms is a prime ideal, and $\operatorname{Ker}(\pi_1) = 0 \times \mathbb{Z}$ and $\operatorname{Ker}(\pi_2) = \mathbb{Z} \times 0$. So both of these ideals are prime. Neither is maximal since $0 \times \mathbb{Z} \subsetneqq (2\mathbb{Z}) \times \mathbb{Z} \subsetneqq \mathbb{Z} \times \mathbb{Z}$ and $\mathbb{Z} \times 0 \subsetneqq \mathbb{Z} \times (2\mathbb{Z}) \subsetneqq \mathbb{Z} \times \mathbb{Z}$.

8. The nonzero elements of $\mathbb{Z}_3[i]$ form an abelian group of order 8 (since $\mathbb{Z}_3[i]$ is a field). Determine the isomorphism class of this group.

▶ Solution. 1 - i is a nonzero element of $\mathbb{Z}_3[i]$, so the order of 1 - i is divisible by 8. Since $(1 - i)^2 = i$, $(1 - i)^4 = -1$, it follows that the order is not 1, 2, or 4. Hence the order must be 8, so the group is cyclic of order 8, and hence isomorphic to \mathbb{Z}_8 .