Homework #9 Solutions Due: November 12, 2018

Do the following exercises from Judson:
Section 16.6: 8, 13 (b)

8.

13.

1.

Prove or Disprove: The ring Q(v/2) = {a +bV2:a,be @} is isomorphic to the ring
Q(V3) = {a—i—b\/g:a, be@}.

» Solution. The two rings are not isomorphic. To see this, suppose that ¢ : Q(v/2) —
Q(+/3) is a ring isomorphism and let ¢(v/2) = a + bv/3 € Q(v/3). Since a ring isomor-
phism will take the identity to the identity, we have

2=1+1=9¢(1) + (1) = o(1 +1) = 6(2) = 6(V2v2) = ¢(v2)* = (a + bV3)".

Thus, a? + 2abv/3 + 3b% = 2 and hence 2abv/3 = 2 — a? — 3b2. If ab # 0 then

2 —a® — 3b?
V3=2"2 70 .
2ab

If ab=0 then a =0 or b = 0. IfazOthenb2—§so\/g€Q. If b =0, then 2 = a?

and /2 € Q. Since none of \/§7 \/§, \/g are rational (by the same argument as the
irrationality of v/2), it follows that there can be no isomorphism ¢ between Q(1/2) and

Q(V3). <
(b) Solve the following system of congruences:

r=3 (mod?7)
r=0 (mod 8)
r=5 (mod 15)

» Solution. Since 7, 8, 15 are pairwise relatively prime, the Chinese Remainder theo-
rem applies. Solve the first two congruences. Since 8—7 =1, 2 =3-8—0-7 = 24 is the
solution of the first two congruences modulo 8 - 7 = 56. Thus, the three congruences
can be reduced to the pair of congruences

r =24 (mod 56)
r=>5 (mod 15)

From the Euclidian algorithm, 152 — 4 - 56 = 1. Thus, a solution of the last two
congruences is = 24 - 152 — 224 -5 = 4280 (mod 840). The smallest positive solution
is then x = 80 (mod 840). <

If F'is a field and |F| = ¢, show that a? = a for all @ € F.
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» Solution. Since F is a field, F* = F'\ {0}. Thus, F* is a multiplicative group of
order ¢ — 1. Since the order of every element divides the order of the group, it follows
that for all a # 0, a?~! = 1. Multiplying by a gives a? = a for all a # 0. Since, it is
also true that 07 = 0, it follows that a? = a for all a € F'. <

2. Show that Z[v2] = {m + nv/2|m, n € Z} is a subring of C and find 10 units.

» Solution. 0 = 0+ 0v/2 and 1 = 1 + 0v/2 are in Z(v/2). If a = m + ny/2 and
b = p+ qv2 where m, n, p, ¢ € Z are typical element of Z(y/2) then a +b =
(m4+nv2)£(p+qv2) = (mEq)+(ntq)v2 € Z(v/2). Also, ab = (m+nv/2)(p+qv2) =
(mp + 2nq) + (np + mq)v/2 € Z(v/2). Thus, Z(+/2) is a subring of C by the subring
test.

Assume that u = m +nv2 € Z(v/2). If u* = m —ny/2 then wu* = (m + nv/2)(m —
nyv2) = m? — 2n%. If uwu* = £1 then u is a unit with v~' = +u*. Hence, find some
choices of m and n by trial and error that satisfy m? — 2n? = £1. Here are some
examples: m = £1, n=0; m = +£1, n = £1; m = 3, n = £2. These choices give the
following units: +1, (1 £ /2), +(3 £2v/2). <

3. In each case decide whether A is an ideal of the ring R.
(a) R=Zx7Z,A={(k, k):keZ}

» Solution. a = (1, 1) € Abutifr = (1, 0), thenra = (1, 0)(1, 1) = (1, 0) ¢ A.
Thus, A is not an ideal. <

(b) R:{[g i] :a,b,cEZ},A:{{g IC)} :a,ceZ,be2Z}.

. 1 0 . 11 11
» Solution. a = [0 0] € A but if r = {O 0},then ar = {0 0

is not an ideal. |

} ¢ A. Thus, A

4. Let R = Z[i] be the ring of gaussian integers and let A = R(1 + 3i) = (1 + 3i). Find
the number of elements in the factor ring R/A and describe the cosets.

» Solution. Since 1 +3i € A, sois i(1 +3i) =i—3. Thus,i —3+ A =0+ A so
1+ A =3+ A. Therefore m+ni+ A = m+3n+ A and hence every coset can be written
as k+ A for k € Z. Since 10 = (14 3i)(1 — 3i) € A, it follows that 10 + A = 0 + A.
We claim that R/A = {k + A|0 < k < 10} and all of these cosets are distinct. To see
this, we have already shown that m +ni+ A = (m + 3n) + A. Divide m 4 3n by 10 in
Z to get m + 3n = 10q + k where 0 < k < 10. Then,

m+ni+A=m+3n+A=10+k+A=k+A

since 10 € A. It remains to show that all of the cosets k + A for 0 < k < 10 are
all different. Suppose k + A =j+ Afor 0 < k < j < 10. Then 0 < j — k < 10,
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6.

j—k+A=0+Aandhence j—k € A. Thus, j—k = (1+3i)(r+si) for some r, s € Z.
Multiplying out gives j —k = (r —3s) 4 (3r+ s)i. Comparing real and imaginary terms
gives

r—3s = j—k
3r+s = 0.

Multiplying the second equation by 3 and adding to the first gives 10r = j — k, so that
j — k is a multiple of 10. Since, 1 < 7 —k < 10, it follows that j —k = 0 so that j = k.
Hence, R/A consists of all the cosets k + A for 0 < k < 10 and all of these cosets are
distinct, so |[R/A| = 10. <

Find all maximal ideals of (a) Zsg, (b) Z1o, (¢) Z12, (d) Z,.

» Solution. All of the ideals of Z, are mZ, where m is a divisor of n. Thus, the
ideals of Zg are Zs, 2Zs, 4Zg and 8Zg = {0}. These form a chain

{0} S 4Z4 S 274 C Zs,.

Thus, the only maximal ideal is 2Zg.

Similarly for the other cases: the maximal ideals of Zq are 27,y and 5Z(; the maximal
ideals of Z1o are 2Z15 and 3Z1o; the maximal ideals of Z,, are pZ, where p is a prime
divisor of n. <

(a) Show that Z3[v/2] is a field.

» Solution. This is like Example 5, Page 173. An argument like Example 4
shows that Zs(v/2) is a ring. To show it is a field, it is necessary to show that
every nonzero a € Zs(/2) has a multiplicative inverse. The elements of Z3(v/2)
are r + sv/2 where r and s are in Zs. Let a = r + V2 e Zg(ﬁ) and write
a* = r —sv2. Then aa* = 12 — 252 = 12+ s2 € Z3 since —2 = 1 € Z3. If
a# 0 then r # 0 or s # 0 in Zz. Thus r? + s # 0 in Zs since t> = 0 or 1 for
all t € Zs and thus r? + s can only be 1 or 2 if either 7 # 0 or s # 0. Letting
b= (r? + s%)"ax* gives an element of Z(1/2) with ab = 1 = ba. Hence Zs(\/2) is
a field. <

(b) Show that Z,[v/2] has a unique proper ideal A # 0.

» Solution. The elements of ZQ(\/§) are r + sv/2 where r, s € Zs so that there
are 4 elements 0, 1, V2 and 1 + v/2 where v/2 is an element not in Zs such that
(v/2)2 =2 =0 € Z,. Thus, the multiplication table for Z,(1/2) is

1 V2 1442
0 0 0

I V2 1+4V2
V2.0 V2
1+v2 V2 1

0
1
V2
1442

o O O oo
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The third row of this table shows that A = {O, V2 } is closed under multiplication
by all elements of Z,(1/2). It is also closed under addition. Hence it is a nonzero

ideal. Moreover, 1 and 1+ /2 are units, so any nonzero ideal, other than A will
have a unit and hence will be all of Zy(1/2). <

7. Show that Z x 0 and 0 x Z are prime ideals of Z x Z. Are they maximal ideals?

» Solution. Let m : Z X Z — Z by ©n(r, s) =r and 79 : Z X Z — Z by ma(r, s) = s.
Both m; and 7 are surjective ring homomorphisms. Thus, Z x Z/Ker(m;) = Z for
1 = 1, 2. Hence, the kernel of each of these homomorphisms is a prime ideal, and
Ker(m) = 0 x Z and Ker(m) = Z x 0. So both of these ideals are prime. Neither is
maximal since 0 X Z G 2Z) x ZG Z x Zand Z x 0 G Z x (2Z) G Z x Z. <

8. The nonzero elements of Zs|i] form an abelian group of order 8 (since Zsli] is a field).
Determine the isomorphism class of this group.

» Solution. 1 — i is a nonzero element of Zj3[i], so the order of 1 — i is divisible by 8.
Since (1 —4)? =i, (1 —4)* = —1, it follows that the order is not 1, 2, or 4. Hence the
order must be 8, so the group is cyclic of order 8, and hence isomorphic to Zs. <
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