Do the following exercises from Beachy-Blair:

Page 234: 2(a), (b); 3(b), (f); 7;
Page 249: 7

Supplemental Exercises (i.e., not from the text).

1. Let R be a commutative ring with $a, b \in R$.

 (a) If ab is a unit, show that both a and b are units.

 (b) If ab is a divisor of zero, then either a or b is a divisor of zero.

2. (a) If F is a field and $f(x) \in F[x]$ is a nonzero polynomial, show that $f(x)$ has a multiplicative inverse if and only if the degree of $f(x)$ is 0.

 Hint: Proposition 4.1.5 will be useful.

 (b) If $R = \mathbb{Z}_4$, show that $f(x) = 2x + 1$ has a multiplicative inverse in $R[x]$.

3. What is the characteristic of the ring $\mathbb{Z}_m \oplus \mathbb{Z}_n$?

4. Let $\phi : \mathbb{Z}[i] \to \mathbb{Z}_5$ be defined by $\phi(n + mi) = [n + 2m]_5$.

 (a) Show that ϕ is a ring homomorphism.

 (b) What is $\text{ker}(\phi)$?