- Due: April 21, 2010
- 1. Show that the splitting field of $f(x) = x^4 + 1$ is $F = \mathbb{Q}(\alpha) = \mathbb{Q}(\sqrt{2}, i)$ where $\alpha = e^{\pi i/4} = (\sqrt{2} + \sqrt{2}i)/2$. Determine the Galois group $G = \operatorname{Gal}(F/\mathbb{Q})$ and the correspondence between subfields of F and subgroups of G.
 - **Solution.** Since $\alpha^4 = (e^{\pi i/4})^4 = e^{\pi i} = -1$ it follows that α is a root of $x^4 + 1$. Similarly, any odd power of α satisfies $(\alpha^{2k+1})^4 = (\alpha^4)^{2k+1} = (-1)^{2k+1} = -1$. Thus, roots of $x^4 + 1$ are $\alpha = (\sqrt{2} + \sqrt{2}i)/2$, $\alpha^3 = e^{3\pi i/4} = (-\sqrt{2} + \sqrt{2}i)/2$, $\alpha^5 = e^{5\pi i/4} = -\alpha = (-\sqrt{2} \sqrt{2}i)/2$ and $\alpha^7 = e^{7\pi i/4} = -\alpha^3 = (\sqrt{2} \sqrt{2}i)/2$. Therefore, all roots are in $\mathbb{Q}(\alpha)$ so the splitting field of $x^4 + 1$ is $F = \mathbb{Q}(\alpha)$. Note that $\alpha + \alpha^7 = \sqrt{2}$ so $\sqrt{2} \in F$ and $\alpha \alpha^7 = \sqrt{2}i \in F$ so $i = \sqrt{2}i/\sqrt{2} \in F$. Hence, $\mathbb{Q}(\sqrt{2}, i) \subseteq F$. Moreover, $\alpha = (\sqrt{2} + \sqrt{2}i)/2 \in \mathbb{Q}(\sqrt{2}, i)$ so $F = \mathbb{Q}(\alpha) \subseteq \mathbb{Q}(\sqrt{2}, i)$. Hence, the splitting field of $x^4 + 1$ is $F = \mathbb{Q}(\alpha) = \mathbb{Q}(\sqrt{2}, i)$.

Since $[F:\mathbb{Q}] = [\mathbb{Q}(\sqrt{2}, i):\mathbb{Q}(\sqrt{2})][\mathbb{Q}(\sqrt{2}):\mathbb{Q}] = 2 \times 2 = 4$, it follows that the Galois group of $x^4 + 1$ has order 4. Any $\phi \in \operatorname{Gal}(F/\mathbb{Q})$ must take $\sqrt{2}$ to $\pm \sqrt{2}$ and i to $\pm i$. Since $\operatorname{Gal}(F/\mathbb{Q})$ has order 4, each of these 4 possible outcomes actually occurs. Thus, there are elements $\phi_1 = \operatorname{id}, \phi_2, \phi_3$, and ϕ_4 of $\operatorname{Gal}(F/\mathbb{Q})$ such that:

$$\begin{array}{c|cccc}
 & \sqrt{2} & i \\
\hline
\phi_1 & \sqrt{2} & i \\
\phi_2 & -\sqrt{2} & i \\
\phi_3 & \sqrt{2} & -i \\
\phi_4 & -\sqrt{2} & -i
\end{array}$$

The group operation is composition, so it follows from the above table that the group multiplication table for $\operatorname{Gal}(F/\mathbb{Q})$ is

Since $\phi_1 = \text{id}$ it follows that every nonidentity element has order 2, so this group is isomorphic to the Klein 4-group $\mathbb{Z}_2 \times \mathbb{Z}_2$.

The subgroups of $Gal(F/\mathbb{Q})$ are $\langle id \rangle$, $H_1 = \langle \phi_2 \rangle$, $H_2 = \langle \phi_3 \rangle$, $H_3 = \langle \phi_4 \rangle$, and $G = Gal(F/\mathbb{Q})$. The corresponding subfields of F are given by the fixed fields of the subgroups of G: $F = F^{\langle id \rangle} = F$, $F^{H_1} = \mathbb{Q}(i)$, $F^{H_2} = \mathbb{Q}(\sqrt{2})$, $F^{H_3} = \mathbb{Q}(\sqrt{2}i)$, and $F^G = \mathbb{Q}$.

- 2. Determine the splitting field F of $x^4 x^2 6$ over \mathbb{Q} . Determine the Galois group $G = \operatorname{Gal}(F/\mathbb{Q})$ and the correspondence between subfields of F and subgroups of G.
 - ▶ Solution. Since $x^4 x^2 6 = (x^2 3)(x^2 + 2)$ the roots of $x^4 x^2 6$ are $\pm \sqrt{3}$ and $\pm \sqrt{2}i$. Thus, the splitting field F is $F = \mathbb{Q}(\sqrt{3}, \sqrt{2}i)$ and this is essentially equivalent to exercise 1. Since $[F : \mathbb{Q}] = [\mathbb{Q}(\sqrt{3}, \sqrt{2}i) : \mathbb{Q}(\sqrt{3})][\mathbb{Q}(\sqrt{3}) : \mathbb{Q}] = 2 \times 2 = 4$, it follows

Math 4201

that the Galois group of $x^4 - x^2 - 6$ has order 4. Any $\phi \in \operatorname{Gal}(F/\mathbb{Q})$ must take $\sqrt{3}$ to $\pm \sqrt{3}$ and $\sqrt{2}i$ to $\pm \sqrt{2}i$. Since $\operatorname{Gal}(F/\mathbb{Q})$ has order 4, each of these 4 possible outcomes actually occurs. Thus, there are elements $\phi_1 = \operatorname{id}$, ϕ_2 , ϕ_3 , and ϕ_4 of $\operatorname{Gal}(F/\mathbb{Q})$ such that:

$$\begin{array}{c|ccc} & \sqrt{3} & \sqrt{2}i \\ \hline \phi_1 & \sqrt{3} & \sqrt{2}i \\ \phi_2 & -\sqrt{3} & \sqrt{2}i \\ \phi_3 & \sqrt{3} & -\sqrt{2}i \\ \phi_4 & -\sqrt{3} & -\sqrt{2}i \end{array}$$

The group operation is composition, so it follows from the above table that the group multiplication table for $Gal(F/\mathbb{Q})$ is

Since $\phi_1 = \text{id}$ it follows that every nonidentity element has order 2, so this group is isomorphic to the Klein 4-group $\mathbb{Z}_2 \times \mathbb{Z}_2$.

The subgroups of $Gal(F/\mathbb{Q})$ are $\langle id \rangle$, $H_1 = \langle \phi_2 \rangle$, $H_2 = \langle \phi_3 \rangle$, $H_3 = \langle \phi_4 \rangle$, and $G = Gal(F/\mathbb{Q})$. The corresponding subfields of F are given by the fixed fields of the subgroups of G: $F = F^{\langle id \rangle} = F$, $F^{H_1} = \mathbb{Q}(\sqrt{2}i)$, $F^{H_2} = \mathbb{Q}(\sqrt{3})$, $F^{H_3} = \mathbb{Q}(\sqrt{6}i)$, and $F^G = \mathbb{Q}$.

- 3. Show that $F = \mathbb{Z}_2(u)$ where u is a root of $f(x) = x^4 + x + 1$ is the splitting field of f(x) over \mathbb{Z}_2 . Determine the Galois group $G = \operatorname{Gal}(F/\mathbb{Z}_2)$ and the correspondence between subfields of F and subgroups of G.
 - ▶ Solution. Since f(x) has no roots in \mathbb{Z}_2 , the only irreducible quadratic over \mathbb{Z}_2 is $x^2 + x + 1$, and $x^4 + x + 1 \neq (x^2 + x + 1)^2$, it follows that f(x) is irreducible. Thus, $F = \mathbb{Z}_2(u)$ has degree 4 over \mathbb{Z}_2 . The group $Gal(F/\mathbb{Z}_2)$ is thus cyclic of order 4 and generated by the Frobenius map $\phi : F \to F$ with $\phi(x) = x^2$ (Theorem 8.1.8). Since any automorphism of F over \mathbb{Z}_2 must take a root of $x^4 + x + 1$ to another root, we can look for additional roots by applying ϕ to known roots. One root is given as u. Thus, additional roots are $\phi(u) = u^2$, $\phi(u^2) = u^4 = u + 1$ and $\phi(u + 1) = u^2 + 1$. Thus, we have found all 4 roots of f(x) in F so F is the splitting field of f(x) over \mathbb{Z}_2 .

Since $G = \operatorname{Gal}(F/\mathbb{Z}_2) = \langle \phi \rangle$ where $\phi(x) = x^2$ and $\phi^4 = \operatorname{id}$, it follows that the only proper subgroup of G is the cyclic group of order two $\langle \phi^2 \rangle$. The map $\phi^2(x) = \phi(\phi(x)) = \phi(x^2) = \phi(x)^2 = x^4$. Thus, the fixed field of $\langle \phi^2 \rangle$ is the set of all elements v of F such the $v^4 = v$. Since a basis for F over \mathbb{Z}_2 is $\{1, u, u^2, u^3\}$, a typical element of v is $v = a_0 + a_1v + a_2v^2 + a_3v^3$. Then, using the fact that $u^4 + u + 1 = 0$ implies $u^4 = u + 1$

Math 4201 2

gives

$$v^{4} = a_{1} + a_{1}u^{4} + a_{2}u^{8} + a_{3}u^{12}$$

$$= a_{0} + a_{1}(u+1) + a_{2}(u^{2}+1) + a_{3}(u^{3}+u^{2}+u+1)$$

$$= (a_{0} + a_{1} + a_{2} + a_{3}) + (a_{1} + a_{3})u + (a_{2} + a_{3})u^{2} + a_{3}u^{3}.$$

Setting $v^4 = v$ gives a system of equations:

$$a_0 = a_0 + a_1 + a_2 + a_3$$

 $a_1 = a_1 + a_3$
 $a_2 = a_2 + a_3$
 $a_3 = a_3$.

Solving these equations gives $a_3 = 0$ and $a_1 + a_2 = 0$ so that $a_1 = a_2$. Thus, the fixed field of ϕ^2 consists of the elements of the form $a_0 + a_1(u + u^2)$. These are the elements $\{0, 1, u + u^2, u + u^2 + 1\}$. This is the only subfield of F other than F and \mathbb{Z}_2 since the Galois group has only one subgroup other than $\langle id \rangle$ and G.

Do the following exercises from Beachy-Blair:

Page 391: 3, 4

- 3. Find the Galois group of $x^5 1$ over \mathbb{Q} .
 - ▶ Solution. We have the factorization $x^5 1 = (x 1)(x^4 + x^3 + x^2 + x + 1)$, where the second factor is irreducible by Corollary 4.4.7. It follows that the splitting field F of $x^5 1$ over \mathbb{Q} has degree at least 4, and since $x^5 1$ has no repeated roots over \mathbb{Q} , Theorem 8.1.6 implies that the Galois group G of $x^5 1$ over \mathbb{Q} has order at least 4. On the other hand, the proof of Theorem 8.4.2 implies that G is isomorphic to a subgroup of $\mathbb{Z}_5^* \cong \mathbb{Z}_4$, and so we must have $G \cong \mathbb{Z}_4$.
- 4. Find the Galois group of $x^9 1$ over \mathbb{Q} .
 - ▶ Solution. The proof of Theorem 8.4.2 implies that the Galois group G of $x^9 1$ over \mathbb{Q} is isomorphic to a subgroup of $\mathbb{Z}_9^* \cong \mathbb{Z}_6$. We can factor $x^9 1$ as

$$x^{9} - 1 = (x^{3} - 1)(x^{6} + x^{3} + 1) = (x - 1)(x^{2} + x + 1)(x^{6} + x^{3} + 1).$$

To see that $x^6 + x^3 + 1$ is irreducible, note that a polynomial f(x) is irreducible if and only if the polynomial g(x) = f(x+r) is irreducible. But if $f(x) = x^6 + x^3 + 1$ and r = 1, then g(x) = f(x+1) so

$$q(x) = (x+1)^6 + (x+1)^3 + 1 = x^6 + 6x^5 + 15x^4 + 21x^3 + 18x^2 + 9x + 3.$$

Math 4201 3

Note that 3 divides every coefficient except for x^6 and 3^2 does not divide the constant term, so Eisenstein's criterion applies to conclude that g(x) is irreducible. Then also f(x) is irreducible.

Due: April 21, 2010

Since f(x) is a factor of $x^9 - 1$, it follows that the splitting field of $x^9 - 1$ over \mathbb{Q} has degree at least 6 and hence the order of the Galois group is at least 6. Since G is isomorphic to a subgroup of \mathbb{Z}_6 we conclude that $G \cong \mathbb{Z}_6$.

Math 4201 4