Instructions. Answer each of the questions on your own paper and put your name on each page of your paper.

- 1. Give an example of each of the following. No proofs are required for this exercise only.
 - (a) A nonabelian group of order 12.

▶ Solution. Two possible examples are the dihedral group D_{12} of order 12, and the alternating group A_4 .

(b) An abelian, but noncyclic group of order 12.

▶ Solution. $\mathbb{Z}_2 \times \mathbb{Z}_6$. Several of you gave $\mathbb{Z}_3 \times \mathbb{Z}_4$ as an example. But this group is in fact cyclic of order 12. (See Exercise 11 (c).)

(c) A normal subgroup H of the symmetric group S_3 , and a non-normal subgroup K of the symmetric group S_3 .

► Solution.
$$H = \langle (1 \ 2 \ 3) \rangle$$
 and $K = \langle (1 \ 2) \rangle$.

(d) An element σ of order 12 in the alternating group A_{10} .

► Solution.
$$\sigma = (1 \ 2 \ 3 \ 4)(5 \ 6 \ 7 \ 8 \ 9 \ 10)$$
 or $\sigma = (1 \ 2 \ 3 \ 4)(5 \ 6 \ 7)(8 \ 9)$

(e) An element b of order 5 in the cyclic group $G = \langle a \rangle$ of order 20.

Solution.
$$b = a^4$$
.

2. Let G be the group of invertible 2 \times 2 upper triangular matrices with entries in $\mathbb R.$ That is,

$$G = \left\{ \begin{bmatrix} a & b \\ 0 & d \end{bmatrix} : a, b, d \in \mathbb{R}, \text{ with } ad \neq 0 \right\}.$$

Let

$$D = \left\{ \begin{bmatrix} a & 0 \\ 0 & d \end{bmatrix} : ad \neq 0 \right\} \subseteq G$$

be the subgroup of invertible diagonal matrices and let $U \subseteq G$ be the subgroup of matrices of the form $\begin{bmatrix} 1 & b \\ 0 & 1 \end{bmatrix}$ where $b \in \mathbb{R}$ is arbitrary. For this exercise, you may assume without proof that G, D, and U are groups under the operation of matrix multiplication.

(a) Define a function $\varphi: G \to G$ by $\varphi\left(\begin{bmatrix} a & b \\ 0 & d \end{bmatrix}\right) = \begin{bmatrix} a & 0 \\ 0 & d \end{bmatrix}$. Show that φ is a group homomorphism.

► Solution.
$$\varphi\left(\begin{bmatrix}a_1 & b_1\\ 0 & d_1\end{bmatrix}\begin{bmatrix}a_2 & b_2\\ 0 & d_2\end{bmatrix}\right) = \varphi\left(\begin{bmatrix}a_1a_2 & a_1b_2 + b_1d_2\\ 0 & d_1d_2\end{bmatrix}\right) = \begin{bmatrix}a_1a_2 & 0\\ 0 & d_1d_2\end{bmatrix} = \begin{bmatrix}a_1 & 0\\ 0 & d_1d_2\end{bmatrix} = \varphi\left(\begin{bmatrix}a_1 & b_1\\ 0 & d_1\end{bmatrix}\right) \varphi\left(\begin{bmatrix}a_2 & b_2\\ 0 & d_2\end{bmatrix}\right).$$
 Thus φ is a group homomorphism.

(b) Show that U is a normal subgroup of G and that G/U is isomorphic to D.

▶ Solution. Since $\begin{bmatrix} a & b \\ 0 & d \end{bmatrix} \in \operatorname{Ker}(\varphi)$ if and only if a = d = 1, it follows that $U = \operatorname{Ker}(\varphi)$. Since kernels of homomorphisms are normal subgroups, it follows that U is a normal subgroup of G. Moreover, $D = \operatorname{Im}(\varphi)$, so by the first isomorphism theorem,

$$G/U = G/\operatorname{Ker}(\varphi) \cong \operatorname{Im}(\varphi) = D.$$

(c) **True** or **False** (with justification): G is the internal direct product of U and D.

► Solution. The criterion for G to be the internal direct product of U and D (Definition 6.3) requires that both U and D are normal subgroups of G. But $A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \in D, \text{ and } B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \in G, \text{ but}$ $BAB^{-1} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix} \notin D,$

so D is not normal in G. Therefore, G is **not** the internal direct product of U and D.

3. Let G be a group of order $2006 = 2 \times 17 \times 59$. Can a group of this order be simple? Prove that your answer is correct. (Recall that a group G is simple if the only *normal* subgroups of G are $\{e\}$ and G.)

▶ Solution. Let $n_{59}(G)$ be the number of 59-Sylow subgroups of G. According the Sylow's theorem, $n_{59}(G) \equiv 1 \pmod{59}$ and $n_{59}(G)|34 = 2006/59$. Thus, $n_{59}(G) = 1$ so there is exactly one subgroup of G of order 59. Let H be this subgroup of order 59. Since conjugating a subgroup of order 59 produces another subgroup of order 59, it follows that $gHg^{-1} = H$ for all $g \in G$, so H is normal in G. Thus G is not simple.

4. (a) Let G be a group and $a \in G$. State (without proof) the formula that relates the size of the conjugacy class $[a]_C$ of a and the size of the centralizer C(a) of a.

▶ Solution. $|[a]_C| = [G : C(a)] = |G| / |C(a)|$, assuming that $|G| < \infty$ (Page 15).

(b) If $\sigma = (1 \ 2)(3 \ 4) \in S_4$, compute the number of elements of S_4 that are conjugate to σ and the number of elements of S_4 that commute with σ .

► Solution. The permutations that are conjugate to σ are all of those with the same cyclic type. Since σ is a product of two disjoint 2-cycles in S_4 , there are

$$\frac{1}{2}\left(\frac{4\cdot 3}{2} \times \frac{2\cdot 1}{2}\right) = 3$$

elements in the conjugacy class $[\sigma]_C$. The elements of S_4 that commute with σ are the members of the centralizer $C(\sigma)$, and by the formula in part (a),

$$|C(\sigma)| = \frac{|S_4|}{|[\sigma]_C|} = \frac{24}{3} = 8.$$

It was not part of the question, but it is easy to list the 8 permutations that commute with σ : (1), (1 2)(3 4), (1 2), (3 4), (1 3)(2 4), (1 4)(2 3), (1 3 2 4), (1 4 2 3). To see where these come from, note that the first, second, third, and fourth elements form a subgroup of S_4 of order 4, and hence all elements commute. The same is true of the first, second, fifth and sixth elements, and the first, second, seventh and eighth elements.