1. Let G be the abelian group with generators x, y, and z subject to the relations

$$5x + 9y + 5z = 02x + 4y + 2z = 0x + y - 3z = 0.$$

Determine the elementary divisors of G and write G as a direct sum of cyclic groups.

- 2. (a) Let R be a UFD (Unique Factorization Domain) and let I ≠ 0 be a non-zero prime ideal. Show that there is a principal prime ideal ⟨a⟩ of R such that ⟨0⟩ ≠ ⟨a⟩ ⊆ I. (*Hint:* Factor a non-zero element of I.)
 - (b) Suppose that J is an ideal of \mathbb{Z} with $J \neq \mathbb{Z}$, and suppose that J is not prime. Show that J does not contain a non-zero principal prime ideal.
- 3. Assume that the minimal polynomial $m_A(X)$ and the characteristic polynomial $c_A(X)$ are as given in the three cases below. Describe or write down all possible Jordan canonical forms for A.
 - (a) $c_A(X) = (X-3)^4 (X-2)^3$ and $m_A(X) = (X-3)^3 (X-2)$.
 - (b) $c_A(X) = (X-2)^5$ and $m_A(X) = (X-2)^3$.
 - (c) $c_A(X) = (X \lambda_1)^{e_1} (X \lambda_2)^{e_2} \cdots (X \lambda_m)^{e_m}$ and $m_A(X) = (X - \lambda_1)^{e_1 - 1} (X - \lambda_2)^{e_2 - 1} \cdots (X - \lambda_m)^{e_m - 1}$ for integers $e_1 \ge 2, \dots, e_m \ge 2$.
- 4. Let A and $B \in M_4(\mathbb{Q})$ be the following matrices:

	[1	1	1	1			[1	2	4	8]	
A =	0	1	0	-1	and	B =	0	1	0	16	
	0	0	1	1			0	0	1	k	
	0	0	0	1			0	0	0	1	

There is exactly one value of $k \in \mathbb{Q}$ for which A and B are similar. What is it?

- 5. (a) Let R be a ring and M an R-module. What does it mean for M to be a *free* R-module?
 - (b) Let p be a prime and let $\mathbb{Z}\begin{bmatrix} \frac{1}{p} \end{bmatrix}$ denote the subring of \mathbb{Q} generated by \mathbb{Z} and $\frac{1}{p}$. Give an explicit description of all rational numbers $\frac{a}{b}$ which are in $\mathbb{Z}\begin{bmatrix} \frac{1}{p} \end{bmatrix}$ and prove that $\mathbb{Z}\begin{bmatrix} \frac{1}{p} \end{bmatrix}$ is not a free \mathbb{Z} -module.
- 6. Let V be a finite dimensional vector space over a field \mathbb{F} and let U and W be subspaces. Prove that if dim $U + \dim W > \dim V$, then $U \cap W \neq \{0\}$.