- 1. Let R be an integral domain and let M be an R-module. Give the definition of each of the following terms:
 - (a) M is a *free* R-module.
 - (b) M is a *cyclic* R-module.

Now determine if each of the following statements about R-modules is true or false. Give a proof or counterexample, as appropriate.

- (a) A submodule of a free module is free.
- (b) A submodule of a cyclic module is cyclic.
- (c) A quotient module of a free module is free.
- (d) A quotient module of a cyclic module is cyclic.
- 2. List without repetition all of the abelian groups of order $72 = 3^2 2^3$. Identify which group on your list is isomorphic to each of the following groups.
 - (a) \mathbb{Z}_{72}

(b)
$$\mathbb{Z}_4 \times \mathbb{Z}_{18}$$

- (c) $\mathbb{Z}_3 \times \mathbb{Z}_4 \times \mathbb{Z}_6$
- 3. Let $K \subseteq \mathbb{Z}^3$ be the \mathbb{Z} -submodule generated by $v_1 = (1, 0, -1)$ and $v_2 = (5, 6, 7)$.
 - (a) Find a basis $\{x_1, x_2, x_3\}$ of \mathbb{Z}^3 and integers s_1 and s_2 , with $s_1|s_2$, so that $\{s_1x_1, s_2x_2\}$ is a basis of K.
 - (b) What is the order of each of the elements $x_i + K$ in the quotient group \mathbb{Z}^3/K ?
 - (c) Determine the structure of \mathbb{Z}^3/K as a direct sum of cyclic submodules.
- 4. Let V be a vector space over the real numbers \mathbb{R} and let $T : V \to V$ be a linear transformation. Describe how V can be made into an $\mathbb{R}[X]$ -module (denoted V_T) via T.

Suppose that V has a basis $\mathcal{B} = \{e_1, e_2, e_3\}$ and T is the linear transformation defined by $T(e_1) = 2e_1$, $T(e_2) = -4e_2 - 4e_3$, and $T(e_3) = 9e_2 + 8e_3$.

- (a) Compute the matrix representation $[T]_{\mathcal{B}}$.
- (b) Calculate $(X-2)e_1$ and $(X-2)^2e_2$.
- (c) Show that $V_T = \mathbb{R}[X]e_1 \oplus \mathbb{R}[X]e_2$.
- (d) What are the invariant factors of T?
- (e) Find the Jordan canonical form J of T and a basis C for V such that $[T]_{\mathcal{C}} = J$.
- 5. Let $A \in M_n(\mathbb{R})$ be a real matrix such that $A^2 = I_n$. Describe all possible Jordan canonical forms for the matrix A.