Math 7200 Final Examination December 13, 1995

- (8) 1. Determine (with proof) whether there is a **Z**-module homomorphism ϕ : $\mathbf{Z}^3 \to \mathbf{Z}^3$ with $\phi(1,0,1) = (1,1,-1), \phi(0,1,-1) = (2,-1,1), \text{ and } \phi(2,1,1) = (4,1,1).$
- (12) 2. (a) Give an example (with justification) of a short exact sequence of finite rank Z-modules

$$(*) \qquad \qquad 0 \longrightarrow K \longrightarrow M \longrightarrow N \longrightarrow 0$$

with M not isomorphic to $N \oplus K$.

- (b) If we request, instead, that the short exact sequence (*) be a sequence of finite rank C-modules, explain (using the appropriate theorems) why $M \cong N \oplus K$.
- (20) 3. Let $K \subseteq \mathbb{Z}^3$ be the Z-submodule generated by $v_1 = (1, 0, -1)$ and $v_2 = (5, 6, 7)$.
 - (a) Find a basis $\{x_1, x_2, x_3\}$ of \mathbb{Z}^3 and integers s_1 and s_2 , with $s_1 \mid s_2$, so that $\{s_1x_1, s_2x_2\}$ is a basis of K.
 - (b) Determine the structure of \mathbf{Z}^3/K .
 - (c) What is $\mu(\mathbf{Z}^3/K)$?
- (20) 4. Let $V = \mathbf{Q}^2$ and define $T \in \operatorname{End}_{\mathbf{Q}}(V)$ by

$$T(u_1, u_2) = (2u_1 - u_2, u_1 + 4u_2).$$

- Let $\mathcal{B} = \{e_1, e_2\}$ be the standard basis on V.
- (a) Compute the matrix $A = [T]_{\mathcal{B}}$.
- (b) Let V_T be the vector space V made into a $\mathbf{Q}[X]$ -module by T. Compute $X \cdot e_1$, $(X-3) \cdot e_1$, and $(X-3)^2 \cdot e_1$.
- (c) Determine $\operatorname{Ann}(V_T)$.
- (d) Show that e_1 is a generator for the $\mathbf{Q}[X]$ -module V_T .
- (e) If $\mathcal{B}' = \{e_1, X \cdot e_1\}$, compute the matrix $[T]_{\mathcal{B}'}$.

$$(20)$$
 5. Let

$$A = \begin{bmatrix} 5 & 0 & 0 & 0 \\ 1 & 5 & 0 & 0 \\ -1 & 0 & 5 & 0 \\ 0 & 1 & 0 & 5 \end{bmatrix} \in M_4(\mathbf{Q})$$

Find the Jordan form J of A and an invertible matrix P such that $P^{-1}AP = J$.

(20) 6. Let F be a field and let $T \in \text{End}_F(V)$ where V is a vector space over F. Assume the following facts about T:

$$c_T(X) = (X-2)^6 (X-4)^4 (X+3)^2$$

$$m_T(X) = (X-2)^3 (X-4)^3 (X+3)$$

$$\nu_{\text{geom}}(2) = 3.$$

Compute the Jordan canonical form of T, $\mu(V_T)$, the invariant factors of T, and the geometric multiplicities of the eigenvalues 4 and -3.