Math 7200 Make-up Midterm Examination October 19, 1999

- 1. Let $G = \langle a \rangle$ be a cyclic group of order 24.
 - (a) Let $b = a^6$, $c = a^4$, $H = \langle b \rangle$, and $K = \langle c \rangle$. What is |H| and |K|? Prove that your answers are correct.
 - (b) Determine generators for each of the subgroups $H \cap K$ and HK, and determine the orders of each of these subgroups.
 - (c) Is G the internal direct product of H and K? Justify your answer.
- 2. Let V be a finite dimensional vector space over a field F and let W be a subspace. The codimension of W, denoted codim W, is defined by the formula

$$\operatorname{codim} W = \dim V - \dim W.$$

If W_1 and W_2 are subspaces of V, prove that

$$\operatorname{codim}(W_1 \cap W_2) \leq \operatorname{codim} W_1 + \operatorname{codim} W_2.$$

3. Let V be a vector space of dimension 3 over C, let $\mathcal{B} = (v_1, v_2, v_3)$ be an ordered basis for V and let $T \in L(V)$ be the linear operator defined by

$$T(v_1) = 0$$
, $T(v_2) = -v_1$, $T(v_3) = 5v_1 + v_2$.

- (a) Compute the matrix $[T]_{\mathcal{B}}$.
- (b) Show that T is nilpotent, i.e., $T^k = 0$ for some k.
- (c) Determine a basis $C = (w_1, w_2, w_3)$ of V so that the matrix $[T]_C$ is in Jordan canonical form.
- 4. Let T be a linear operator on the complex vector space V. Assume that you are given the following data concerning T:
 - (a) $c_T(X) = (X-1)^4(X-2)^5(X-3)$
 - (b) $\nu_{\text{geom.}}(1) = 2$ and $\nu_{\text{geom.}}(2) = 1$. Find all Jordan forms for T consistent with these data, and for each possible Jordan form, give the minimal polynomial.