
Chapter 1

Groups

In this chapter we introduce groups and prove some of the basic theorems in
group theory. One of these, the structure theorem for finitely generated abelian
groups, we do not prove here but instead derive it as a corollary of the more
general structure theorem for finitely generated modules over a PID (see Theorem
3.7.22).

1.1 Definitions and Examples

(1.1) Definition. A group is a set G together with a binary operation

· : G×G → G

satisfying the following three conditions:

(a) a · (b · c) = (a · b) · c for all a, b, c ∈ G. (Associativity)
(b) There exists an element e ∈ G such that a · e = e · a = a for all a ∈ G.

(Existence of an identity element)
(c) For each a ∈ G there exists a b ∈ G such that a·b = b·a = e. (Existence

of an inverse for each a ∈ G)

It is customary in working with binary operations to write a · b rather
than ·(a, b). Moreover, when the binary operation defines a group structure
on a set G then it is traditional to write the group operation as ab. One
exception to this convention occurs when the group G is abelian, i.e., if
ab = ba for all a, b ∈ G. If the group G is abelian then the group opera-
tion is commonly written additively, i.e., one writes a + b rather than ab.
This convention is not rigidly followed; for example, one does not suddenly
switch to additive notation when dealing with a group that is a subset of
a group written multiplicatively. However, when dealing specifically with
abelian groups the additive convention is common. Also, when dealing with
abelian groups the identity is commonly written e = 0, in conformity with
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the additive notation. In this chapter, we will write e for the identity of gen-
eral groups, i.e., those written multiplicatively, but when we study group
representation theory in Chapter 8, we will switch to 1 as the identity for
multiplicatively written groups.

To present some examples of groups we must give the set G and the
operation · : G×G → G and then check that this operation satisfies (a),
(b), and (c) of Definition 1.1. For most of the following examples, the fact
that the operation satisfies (a), (b), and (c) follows from properties of the
various number systems with which you should be quite familiar. Thus
details of the verification of the axioms are generally left to the reader.

(1.2) Examples.

(1) The set Z of integers with the operation being ordinary addition of
integers is a group with identity e = 0, and the inverse of m ∈ Z is
−m. Similarly, we obtain the additive group Q of rational numbers, R
of real numbers, and C of complex numbers.

(2) The set Q∗ of nonzero rational numbers with the operation of ordinary
multiplication is a group with identity e = 1, and the inverse of a ∈ Q∗

is 1/a. Q∗ is abelian, but this is one example of an abelian group that
is not normally written with additive notation. Similarly, there are the
abelian groups R∗ of nonzero real numbers and C∗ of nonzero complex
numbers.

(3) The set Zn = {0, 1, . . . , n−1} with the operation of addition modulo n
is a group with identity 0, and the inverse of x ∈ Zn is n−x. Recall that
addition modulo n is defined as follows. If x, y ∈ Zn, take x + y ∈ Z
and divide by n to get x + y = qn + r where 0 ≤ r < n. Then define
x + y (mod n) to be r.

(4) The set Un of complex nth roots of unity, i.e., Un = {exp((2kπi)/n) :
0 ≤ k ≤ n − 1} with the operation of multiplication of complex num-
bers is a group with the identity e = 1 = exp(0), and the inverse of
exp((2kπi)/n) is exp((2(n− k)πi)/n).

(5) Let Z∗n = {m : 1 ≤ m < n and m is relatively prime to n}. Under the
operation of multiplication modulo n, Z∗n is a group with identity 1.
Details of the verification are left as an exercise.

(6) If X is a set let SX be the set of all bijective functions f : X → X.
Recall that a function is bijective if it is one-to-one and onto. Functional
composition gives a binary operation on SX and with this operation
it becomes a group. SX is called the group of permutations of X or
the symmetric group on X. If X = {1, 2, . . . , n} then the symmetric
group on X is usually denoted Sn and an element α of Sn can be
conveniently indicated by a 2× n matrix

α =
(

1 2 · · · n
α(1) α(2) · · · α(n)

)
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where the entry in the second row under k is the image α(k) of k
under the function α. To conform with the conventions of functional
composition, the product αβ will be read from right to left, i.e., first
do β and then do α. For example,

(
1 2 3 4
3 2 4 1

)(
1 2 3 4
3 4 1 2

)
=

(
1 2 3 4
4 1 3 2

)
.

(7) Let GL(n, R) denote the set of n × n invertible matrices with real
entries. Then GL(n, R) is a group under matrix multiplication. Let
SL(n, R) = {T ∈ GL(n, R) : detT = 1}. Then SL(n,R) is a group
under matrix multiplication. (In this example, we are assuming famil-
iarity with basic properties of matrix multiplication and determinants.
See Chapter 4 for details.) GL(n, R) (respectively, SL(n, R)) is known
as the general linear group (respectively, special linear group) of degree
n over R.

(8) If X is a set let P(X) denote the power set of X, i.e., P(X) is the set
of all subsets of X. Define a product on P(X) by the formula A4B =
(A \ B) ∪ (B \ A). A4 B is called the symmetric difference of A and
B. It is a straightforward exercise to verify the associative law for the
symmetric difference. Also note that A4A = ∅ and ∅4A = A4∅ = A.
Thus P(X) with the symmetric difference operation is a group with ∅
as identity and every element as its own inverse. Note that P(X) is an
abelian group.

(9) Let C(R) be the set of continuous real-valued functions defined on R
and let D(R) be the set of differentiable real-valued functions defined
on R. Then C(R) and D(R) are groups under the operation of function
addition.

One way to explicitly describe a group with only finitely many elements
is to give a table listing the multiplications. For example the group {1,−1}
has the multiplcation table

· 1 −1
1 1 −1

−1 −1 1

whereas the following table
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· e a b c
e e a b c
a a e c b
b b c e a
c c b a e

is the table of a group called the Klein 4-group. Note that in these tables
each entry of the group appears exactly once in each row and column.
Also the multiplication is read from left to right; that is, the entry at the
intersection of the row headed by α and the column headed by β is the
product αβ. Such a table is called a Cayley diagram of the group. They
are sometimes useful for an explicit listing of the multiplication in small
groups.

The following result collects some elementary properties of a group:

(1.3) Proposition. Let G be a group.

(1) The identity e of G is unique.
(2) The inverse b of a ∈ G is unique. We denote it by a−1.
(3) (a−1)−1 = a for all a ∈ G and (ab)−1 = b−1a−1 for all a, b ∈ G.
(4) If a, b ∈ G the equations ax = b and ya = b each have unique solutions

in G.
(5) If a, b, c ∈ G then ab = ac implies that b = c and ab = cb implies that

a = c.

Proof. (1) Suppose e′ is also an identity. Then e′ = e′e = e.
(2) Suppose ab = ba = e and ab′ = b′a = e. Then b = eb = (b′a)b =

b′(ab) = b′e = b′, so inverses are unique.
(3) a(a−1) = (a−1)a = e, so (a−1)−1 = a. Also (ab)(b−1a−1) =

a(bb−1)a−1 = aa−1 = e and similarly (b−1a−1)(ab) = e. Thus (ab)−1 =
b−1a−1.

(4) x = a−1b solves ax = b and y = ba−1 solves ya = b, and any
solution must be the given one as one sees by multiplication on the left or
right by a−1.

(5) If ab = ac then b = a−1(ab) = a−1(ac) = c. ut

The results in part (5) of Proposition 1.3 are known as the cancellation
laws for a group.

The associative law for a group G shows that a product of the elements
a, b, c of G can be written unambiguously as abc. Since the multiplication
is binary, what this means is that any two ways of multiplying a, b, and c
(so that the order of occurrence in the product is the given order) produces
the same element of G. With three elements there are only two choices for
multiplication, that is, (ab)c and a(bc), and the law of associativity says
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that these are the same element of G. If there are n elements of G then
the law of associativity combined with induction shows that we can write
a1a2 · · · an unambiguously, i.e., it is not necessary to include parentheses
to indicate which sequence of binary multiplications occurred to arrive at
an element of G involving all of the ai. This is the content of the next
proposition.

(1.4) Proposition. Any two ways of multiplying the elements a1, a2, . . . , an

in a group G in the order given (i.e., removal of all parentheses produces
the juxtaposition a1a2 · · · an) produces the same element of G.

Proof. If n = 3 the result is clear from the associative law in G.
Let n > 3 and consider two elements g and h obtained as products

of a1, a2, . . . , an in the given order. Writing g and h in terms of the last
multiplications used to obtain them gives

g = (a1 · · · ai) · (ai+1 · · · an)
and

h = (a1 · · · aj) · (aj+1 · · · an).

Since i and j are less than n, the induction hypothesis implies that the
products a1 · · · ai, ai+1 · · · an, a1 · · · aj , and aj+1 · · · an are unambiguously
defined elements in G. Without loss of generality we may assume that i ≤ j.
If i = j then g = h and we are done. Thus assume that i < j. Then, by the
induction hypothesis, parentheses can be rearranged so that

g = (a1 · · · ai)((ai+1 · · · aj)(aj+1 · · · an))
and

h = ((a1 · · · ai)(ai+1 · · · aj))(aj+1 · · · an).

Letting A = (a1 · · · ai), B = (ai+1 · · · aj), and C = (aj+1 · · · an) the in-
duction hypothesis implies that A, B, and C are unambiguously defined
elements of G. Then

g = A(BC) = (AB)C = h

and the proposition follows by the principle of induction. ut

Since products of n elements of G are unambiguous once the order has
been specified, we will write a1a2 · · · an for such a product, without any
specification of parentheses. Note that the only property of a group used
in Proposition 1.4 is the associative property. Therefore, Proposition 1.4 is
valid for any associative binary operation. We will use this fact to be able to
write unambiguous multiplications of elements of a ring in later chapters. A
convenient notation for a1 · · · an is

∏n
i=1 ai. If ai = a for all i then

∏n
i=1 a is

denoted an and called the nth power of a. Negative powers of a are defined
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by a−n = (a−1)n where n > 0, and we set a0 = e. With these notations the
standard rules for exponents are valid.

(1.5) Proposition. If G is a group and a ∈ G then

(1) aman = am+n, and
(2) (am)n = amn for all integers m and n.

Proof. Part (1) follows from Proposition 1.4 while part (2) is an easy exercise
using induction. ut

1.2 Subgroups and Cosets

Let G be a group and let H ⊆ G be a subset. H is called a subgroup of G
if H together with the binary operation of G is a group. The first thing to
note is that this requires that H be closed under the multiplication of G,
that is, ab is in H whenever a and b are in H. This is no more than the
statement that the multiplication on G is defined on H. Furthermore, if H
is a subgroup of G then H has an identity e′ and G has an identity e. Then
e′e = e′ since e is the identity of G and e′e′ = e′ since e′ is the identity of
H. Thus e′e = e′e′ and left cancellation of e′ (in the group G) gives e = e′.
Therefore, the identity of G is also the identity of any subgroup H of G.
Also, if a ∈ H then the inverse of a as an element of H is the same as the
inverse of a as an element of G since the inverse of an element is the unique
solution to the equations ax = e = xa.

(2.1) Proposition. Let G be a group and let H be a nonempty subset of
G. Then H is a subgroup if and only if the following two conditions are
satisfied.

(1) If a, b ∈ H then ab ∈ H.
(2) If a ∈ H then a−1 ∈ H.

Proof. If H is a subgroup then (1) and (2) are satisfied as was observed in
the previous paragraph. If (1) and (2) are satisfied and a ∈ H then a−1 ∈ H
by (2) and e = aa−1 ∈ H by (1). Thus conditions (a), (b), and (c) in the
definition of a group are satisfied for H, and hence H is a subgroup of G.

ut

(2.2) Remarks. (1) Conditions (1) and (2) of Proposition 2.1 can be replaced
by the following single condition.

(1)′ If a, b ∈ H then ab−1 ∈ H.
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Indeed, if (1)′ is satisfied then whenever a ∈ H it follows that e =
aa−1 ∈ H and then a−1 = ea−1 ∈ H. Thus a ∈ H implies that a−1 ∈ H.
Also, if a, b ∈ H then b−1 ∈ H so that ab = a(b−1)−1 ∈ H. Therefore, (1)′

implies (1) and (2). The other implication is clear.
(2) If H is finite then only condition (1) of Proposition 2.1 is necessary

to ensure that H is a subgroup of G. To see this suppose that H is a finite
set and suppose that a, b ∈ H implies that ab ∈ H. We need to show that
a−1 ∈ H for every a ∈ H. Thus let a ∈ H and let Ta : H → H be defined by
Ta(b) = ab. Our hypothesis implies that Ta(H) ⊆ H. If Ta(b) = Ta(c) then
ab = ac and left cancellation in the group G (Proposition 1.3 (5)) shows
that b = c. Hence Ta is an injective map and, since H is assumed to be
finite, it follows that Ta is bijective, so the equation ax = c is solvable in
H for any choice of c ∈ H. Taking c = a shows that e ∈ H and then taking
c = e shows that a−1 ∈ H. Therefore, condition (2) of Proposition 2.1 is
satisfied and H is a subgroup of G.

(3) If G is an abelian group with the additive notation, then H ⊆ G is
a subgroup if and only if a− b ∈ H whenever a, b ∈ H.

(2.3) Proposition. Let I be an index set and let Hi be a subgroup of G for
each i ∈ I. Then H =

⋂
i∈I Hi is a subgroup of G.

Proof. If a, b ∈ H then a, b ∈ Hi for all i ∈ I. Thus ab−1 ∈ Hi for all i ∈ I.
Hence ab−1 ∈ H and H is a subgroup by Remark 2.2 (1). ut

(2.4) Definition. Let G and H be groups and let f : G → H be a function.
Then f is a group homomorphism if f(ab) = f(a)f(b) for all a, b ∈ G. A
group isomorphism is an invertible group homomorphism. If f is a group
homomorphism, let

Ker(f) = {a ∈ G : f(a) = e}

and
Im(f) = {h ∈ H : h = f(a) for some a ∈ G}.

Ker(f) is the kernel of the homomorphism f and Im(f) is the image of f .

It is easy to check that f is invertible as a group homomorphism if and
only if it is invertible as a function between sets, i.e., if and only if it is
bijective.

(2.5) Proposition. Let f : G → H be a group homomorphism. Then Ker(f)
and Im(f) are subgroups of G and H respectively.

Proof. First note that f(e) = f(ee) = f(e)f(e), so by cancellation in H
we conclude that f(e) = e. Then e = f(e) = f(aa−1) = f(a)f(a−1) for
all a ∈ G. Thus f(a−1) = f(a)−1 for all a ∈ G. Now let a, b ∈ Ker(f).
Then f(ab−1) = f(a)f(b−1) = f(a)f(b)−1 = ee−1 = e, so ab−1 ∈ Ker(f)
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and Ker(f) is a subgroup of G. Similarly, if f(a), f(b) ∈ Im(f) then
f(a)f(b)−1 = f(ab−1) ∈ Im(f), so Im(f) is a subgroup of H. ut

(2.6) Definition. Let S be a subset of a group G. Then 〈S〉 denotes the
intersection of all subgroups of G that contain S. The subgroup 〈S〉 is called
the subgroup generated by S. If S is finite and G = 〈S〉 we say that G is
finitely generated. If S = {a} has only one element and G = 〈S〉 then we
say that G is a cyclic group.

(2.7) Proposition. Let S be a nonempty subset of a group G. Then

〈S〉 = {a1a2 · · · an : n ∈ N and ai or a−1
i ∈ S for 1 ≤ i ≤ n}.

That is, 〈S〉 is the set of all finite products consisting of elements of S or
inverses of elements of S.

Proof. Let H denote the set of elements of G obtained as a finite product of
elements of S or S−1 = {a−1 : a ∈ S}. If a, b ∈ H then ab−1 is also a finite
product of elements from S∪S−1, so ab−1 ∈ H. Thus H is a subgroup of G
that contains S. Any subgroup K of G that contains S must be closed under
multiplication by elements of S ∪ S−1, so K must contain H. Therefore,
H = 〈S〉. ut

(2.8) Examples. You should provide proofs (where needed) for the claims
made in the following examples.

(1) The additive group Z is an infinite cyclic group generated by the num-
ber 1.

(2) The multiplicative group Q∗ is generated by the set S = {1/p : p is a
prime number}.

(3) The group Zn is cyclic with generator 1.
(4) The group Un is cyclic with generator exp(2πi/n).
(5) The even integers are a subgroup of Z. More generally, all the multiples

of a fixed integer n form a subgroup of Z and we will see shortly that
these are all the subgroups of Z.

(6) If α =
(

1
2

2
3

3
1

)
then H = {e, α, α2} is a subgroup of the symmetric

group S3. Also, S3 is generated by α and β =
(

1
2

2
1

3
3

)
.

(7) If β =
(

1
2

2
1

3
3

)
and γ =

(
1
3

2
2

3
1

)
then S3 = 〈β, γ〉.

(8) A matrix A = [aij ] is upper triangular if aij = 0 for i > j. The
subset T (n,R) ⊆ GL(n,R) of invertible upper triangular matrices is
a subgroup of GL(n,R).

(9) If G is a group let Z(G), called the center of G, be defined by

Z(G) = {a ∈ G : ab = ba for all b ∈ G}.

Then Z(G) is a subgroup of G.
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(10) If G is a group and x ∈ G, then the centralizer of x is the subset C(x)
of G defined by

C(x) = {a ∈ G : ax = xa}.
C(x) is a subgroup of G and C(x) = G if and only if x ∈ Z(G). Also
note that C(x) always contains the subgroup 〈x〉 generated by x.

(11) If G is a group and a, b ∈ G, then [a, b] = a−1b−1ab is called the com-
mutator of a and b. The subgroup G′ generated by all the commutators
of elements of G is called the commutator subgroup of G. Another
common notation for the commutator subgroup is [G, G]. See Exercise
22 for some properties of the commutator subgroup.

(12) A convenient way to describe some groups is by giving generators and
relations. Rather than giving formal definitions we shall be content to
illustrate the method with two examples of groups commonly expressed
by generators and relations. For the first, the quaternion group is a
group with 8 elements. There are two generators a and b subject to
the three relations (and no others):

a4 = e; b2 = a2; b−1ab = a−1.

We leave it for the reader to check that

Q = {e, a, a2, a3, b, ab, a2b, a3b}.
For a concrete description of Q as a subgroup of GL(2, C), see Exercise
24.

(13) As our second example of a group expressed by generators and rela-
tions, the dihedral group of order 2n, denoted D2n, is a group gener-
ated by two elements x and y subject to the three relations (and no
others):

xn = e; y2 = e; yxy−1 = x−1.

Again, we leave it as an exercise to check that

D2n = {e, x, x2, . . . , xn−1, y, yx, yx2, . . . , yxn−1}.
Thus, D2n has 2n elements. The dihedral group will be presented as
a group of symmetries in Section 1.6, and it will be studied in detail
from the point of view of representation theory in Chapter 8.

(2.9) Definition. The order of G, denoted |G|, is the cardinality of the set G.
The order of an element a ∈ G, denoted o(a) is the order of the subgroup
generated by a. (In general, |X| will denote the cardinality of the set X,
with |X| = ∞ used to indicate an infinite set.)

(2.10) Lemma. Let G be a group and a ∈ G. Then

(1) o(a) = ∞ if and only if an 6= e for any n > 0.
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(2) If o(a) < ∞, then o(a) is the smallest positive integer n such that
an = e.

(3) ak = e if and only if o(a) | k.

Proof. (1) If an 6= e for any n > 0, then ar 6= as for any r 6= s since ar = as

implies ar−s = e = as−r, and if r 6= s, then r− s > 0 or s− r > 0, which is
excluded by our hypothesis. Thus, if an 6= e for n > 0, then |〈a〉| = ∞, so
o(a) = ∞. If an = e then let am be any element of 〈a〉. Writing m = qn + r
where 0 ≤ r < n we see that am = anq+r = anqar = (an)qar = eqar = ar.
Thus 〈a〉 = {e, a, a2, . . . , an−1} and o(a) ≤ n < ∞.

(2) By part (1), if o(a) < ∞ then there is an n > 0 such that an = e and
for each such n the argument in (1) shows that 〈a〉 = {e, a, . . . , an−1}. If
we choose n as the smallest positive integer such that an = e then we claim
that the powers ai are all distinct for 0 ≤ i ≤ n− 1. Suppose that ai = aj

for 0 ≤ i < j ≤ n− 1. Then aj−i = e and 0 < j − i < n, contradicting the
choice of n. Thus o(a) = n = smallest positive integer such that an = e.

(3) Assume that ak = e, let n = o(a), and write k = nq + r where
0 ≤ r < n. Then e = ak = anq+r = anqar = ar. Part (2) shows that we
must have r = 0 so that k = nq. ut

We will now characterize all subgroups of cyclic groups. We start with
the group Z.

(2.11) Theorem. If H is a subgroup of Z then H consists of all the multiples
of a fixed integer m, i.e., H = 〈m〉.
Proof. If H = {0} we are done. Otherwise H contains a positive integer
since H contains both n and −n whenever it contains n. Let m be the
least positive integer in H. Then we claim that H = {km : k ∈ Z} = 〈m〉.
Indeed, let n ∈ H. Then write n = qm + r where 0 ≤ r < m. Since n ∈ H
and m ∈ H, it follows that r = n − qm ∈ H because H is a subgroup of
Z. But 0 ≤ r < m so the choice of m forces r = 0, otherwise r is a smaller
positive integer in H than m. Hence n = qm so that every element of H is
a multiple of m, as required. ut

We now determine all subgroups of a cyclic group G. Assume that G =
〈a〉 and let H be a subgroup of G such that H 6= {e}. If H contains a power
a−m with a negative exponent then it also contains the inverse am, which
is a positive power of a. Arguing as in Theorem 2.11, let m be the smallest
positive integer such that am ∈ H. Let as be an arbitrary element of H and
write s = qm + r where 0 ≤ r < m. Then ar = as−qm = as(am)−q ∈ H
since as and am are in H. Thus we must have r = 0 since r < m and
m is the smallest positive integer with am ∈ H. Therefore, s = qm and
as = (am)q so that all elements of H are powers of am.

If a is of finite order n so that an = e then n must be divisible by
m because e = an ∈ H so that n = qm for some q. In this case, H =
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{e, am, a2m, . . . , a(q−1)m}. Therefore, |H| = q = n/m. However, if the order
of a is infinite, then H = {e, a±m, a±2m, . . . } = 〈am〉 is also infinite cyclic.
Thus we have proved the following result.

(2.12) Theorem. Any subgroup H of a cyclic group G = 〈a〉 is cyclic. More-
over, either H = 〈e〉 or H = 〈am〉 where m is the smallest positive power of
a that is in H. If G is infinite then m is arbitrary and H is infinite cyclic.
If |G| = n then m | n and |H| = n/m. If m is any factor of n then there is
exactly one subgroup H of G of order n/m, namely, H = 〈am〉.

The above theorem gives a complete description of cyclic groups and
their subgroups. From this description, it is easy to see that any two cyclic
groups of order n are isomorphic, as well as any two infinite cyclic groups
are isomorphic. Indeed, if G = 〈a〉 and H = 〈b〉 where |G| = |H| = n then
define f : G → H by f(am) = bm for all m. One checks that f is a group
isomorphism. In particular, every cyclic group of order n is isomorphic to
the additive group Zn of integers modulo n (see Example 1.2 (3)), and any
infinite cyclic group is isomorphic to the additive group Z.

(2.13) Definition. Let G be a group and H a subgroup. For a fixed element
a ∈ G we define two subsets of G:

(1) The left coset of H in G determined by a is the set aH = {ah : h ∈ H}.
The element a is called a representative of the left coset aH.

(2) The right coset of H in G determined by a is the set Ha = {ha : h ∈
H}. The element a is called a representative of the right coset Ha.

Remark. Unfortunately, there is no unanimity on this definition in the math-
ematical world. Some authors define left and right cosets as we do; others
have the definitions reversed.

A given left or right coset of H can have many different representatives.
The following lemma gives a criterion for two elements to represent the same
coset.

(2.14) Lemma. Let H be a subgroup of G and let a, b ∈ G. Then

(1) aH = bH if and only if a−1b ∈ H, and
(2) Ha = Hb if and only if ab−1 ∈ H.

Proof. We give the proof of (1). Suppose a−1b ∈ H and let b = ah for some
h ∈ H. Then bh′ = a(hh′) for all h′ ∈ H and ah1 = (ah)(h−1h1) = b(h−1h1)
for all h1 ∈ H. Thus aH = bH. Conversely, suppose aH = bH. Then
b = be = ah for some h ∈ H. Therefore, a−1b = h ∈ H. ut
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(2.15) Theorem. Let H be a subgroup of G. Then the left cosets (right cosets)
of H form a partition of G.

Proof. Define a relation L on G by setting a ∼L b if and only if a−1b ∈ H.
Note that

(1) a ∼L a,
(2) a ∼L b implies b ∼L a (since a−1b ∈ H implies that b−1a = (a−1b)−1 ∈

H), and
(3) a ∼L b and b ∼L c implies a ∼L c.

Thus, L is an equivalence relation on G and the equivalence classes of L,
denoted [a]L, partition G. (See the appendix.) That is, the equivalence
classes [a]L and [b]L are identical or they do not intersect. But

[a]L = {b ∈ G : a ∼L b}
= {b ∈ G : a−1b ∈ H}
= {b ∈ G : b = ah for some h ∈ H}
= aH.

Thus, the left cosets of H partition G and similarly for the right cosets. ut

The function φa : H → aH defined by φa(h) = ah is bijective by
the left cancellation property. Thus, every left coset of H has the same
cardinality as H, i.e., |aH| = |H| for every a ∈ G. Similarly, by the right
cancellation law the function ψa(h) = ha from H to Ha is bijective so that
every right coset of H also has the same cardinality as H. In particular,
all right and left cosets of H have the same cardinality, namely, that of H
itself.

(2.16) Definition. If H is a subgroup of G we define the index of H in G,
denoted [G : H], to be the number of left cosets of H in G. The left cosets
of H in G are in one-to-one correspondence with the right cosets via the
correspondence aH ↔ Ha−1 = (aH)−1. Therefore, [G : H] is also the
number of right cosets of H in G.

(2.17) Theorem. (Lagrange) If H is a subgroup of a finite group G, then
[G : H] = |G|/|H|, and in particular, |H| divides |G|.
Proof. The left cosets of H partition G into [G : H] sets, each of which has
exactly |H| elements. Thus, |G| = [G : H]|H|. ut

(2.18) Corollary. If G is a finite group and a ∈ G then o(a) | |G|.
Proof. ut
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(2.19) Corollary. If |G| = n, then an = e for all a ∈ G.

Proof. ut

(2.20) Corollary. If |G| = p where p is prime, then G is a cyclic group.

Proof. Choose a ∈ G with a 6= e and consider the subgroup H = 〈a〉. Then
H 6= {e}, and since |H| | |G| = p, it follows that |H| = p, so H = G. ut

(2.21) Remark. The converse of Theorem 2.17 is false in the sense that if
m is an integer dividing |G|, then there need not exist a subgroup H of G
with |H| = m. A counterexample is given in Exercise 31. It is true, however,
when m is prime. This will be proved in Theorem 4.7.

(2.22) Definition. If G is any group, then the exponent of G is the smallest
natural number n such that an = e for all a ∈ G. If no such n exists, we
say that G has infinite exponent.

If |G| < ∞, then Corollaries 2.18 and 2.19 show that the exponent of
G divides the order of G.

There is a simple multiplication formula relating indices for a chain of
subgroups K ⊆ H ⊆ G.

(2.23) Proposition. Let G be a group and H, K subgroups with K ⊆ H. If
[G : K] < ∞ then

[G : K] = [G : H][H : K].

Proof. Choose one representative ai (1 ≤ i ≤ [G : H]) for each left coset of
H in G and one representative bj (1 ≤ j ≤ [H : K]) for each left coset of
K in H. Then we claim that the set

{aibj : 1 ≤ i ≤ [G : H], 1 ≤ j ≤ [H : K]}

consists of exactly one representative from each left coset of K in G. To
see this, let cK be a left coset of K in G. Then c ∈ aiH for a unique
ai so that c = aih. Then h ∈ bjK for a unique bj so that c = aibjk for
uniquely determined ai, bj k. Therefore, cK = aibjK for unique ai, bj , and
we conclude that the number of left cosets of K in G is [G : H][H : K]. ut

(2.24) Remark. If |G| < ∞ then Proposition 2.23 follows immediately
from Lagrange’s theorem. Indeed, in this case [G : K] = |G|/|K| =
(|G|/|H|)(|H|/|K|) = [G : H][H : K].

(2.25) Examples.

(1) If G = Z and H = 2Z is the subgroup of even integers, then the
cosets of H consist of the even integers and the odd integers. Thus,
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[Z : 2Z] = 2. Since Z is abelian, it is not necessary to distinguish
between left and right cosets.

(2) If G = Z and H = nZ, then [Z : nZ] = n where the coset m+H consists
of all integers that have the same remainder as m upon division by n.

(3) Let G = S3 = {e, α, α2, β, αβ, α2β} where α =
(

1
2

2
3

3
1

)
and β =(

1
2

2
1

3
3

)
. If H = 〈β〉, then the left cosets of H in G are

H = {e, β} αH = {α, αβ} α2H = {α2, α2β},
while the right cosets are

H = {e, β} Hα = {α, α2β} Hα2 = {α2, αβ}.
Note that, in this example, left cosets are not the same as right cosets.

(4) Let G = GL(2,R) and let H = SL(2,R). Then A, B ∈ GL(2,R) are
in the same left coset of H if and only if A−1B ∈ H, which means that
det(A−1B) = 1. This happens if and only if det A = det B. Similarly,
A and B are in the same right coset of H if and only if det A = det B.
Thus in this example, left cosets of H are also right cosets of H. A set
of coset representatives consists of the matrices

{[
a 0
0 1

]
: a ∈ R∗

}
.

Therefore, the set of cosets of H in G is in one-to-one correspondence
with the set of nonzero real numbers.

(5) Groups of order ≤ 5. Let G be a group with |G| ≤ 5. If |G| = 1, 2, 3, or
5 then Corollary 2.20 shows that G is cyclic. Suppose now that |G| = 4.
Then every element a 6= e ∈ G has order 2 or 4. If G has an element a
of order 4 then G = 〈a〉 and G is cyclic. If G does not have any element
of order 4 then G = {e, a, b, c} where a2 = b2 = c2 = e since each
nonidentity element must have order 2. Now consider the product ab. If
ab = e then ab = a2, so b = a by cancellation. But a and b are distinct
elements. Similarly, ab cannot be a or b, so we must have ab = c. A
similar argument shows that ba = c, ac = b = ca, bc = a = cb. Thus, G
has the Cayley diagram of the Klein 4-group. Therefore, we have shown
that there are exactly two nonisomorphic groups of order 4, namely,
the cyclic group of order 4 and the Klein 4-group.

The left cosets of a subgroup were seen (in the proof of Theorem 2.14)
to be a partition of G by describing an explicit equivalence relation on G.
There are other important equivalence relations that can be defined on a
group G. We will conclude this section by describing one such equivalence
relation.

(2.26) Definition. Let G be a group and let a, b ∈ G. Then a is conjugate to
b if there is a g ∈ G such that b = gag−1. It is easy to check that conjugacy
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is an equivalence relation on G. The equivalence classes are called conjugacy
classes. Let [a]C denote the conjugacy class of the element a ∈ G.

(2.27) Proposition. Let G be a group and let a ∈ G. Then

|[a]C | = [G : C(a)]

where C(a) is the centralizer of the element a.

Proof. Since

gag−1 = hah−1 ⇔ g−1h ∈ C(a)
⇔ gC(a) = hC(a),

there is a bijective function φ : [a]C → G/C(a) defined by φ(gag−1) =
gC(a), which gives the result. ut

(2.28) Corollary. (Class equation) Let G be a finite group. Then

|G| = |Z(G)|+
∑

[G : C(a)]

where the sum is over a complete set of nonconjugate a not in Z(G).

Proof. Since |[a]C | = 1 if and only if a ∈ Z(G), the above equation is noth-
ing more than the partition of G into equivalence classes under conjugation,
with the observation that all equivalence classes consisting of a single ele-
ment have been grouped into |Z(G)|. ut

1.3 Normal Subgroups, Isomorphism Theorems, and
Automorphism Groups

If G is a group, let P∗(G) denote the set of all nonempty subsets of G and
define a multiplication on P∗(G) by the formula

ST = {st : s ∈ S, t ∈ T}
where S, T ∈ P∗(G). Since the multiplication in G is associative it follows
that the multiplication in P∗(G) is associative, so that parentheses are not
necessary in multiplications such as STUV. If S = {s} then we will write
sT or Ts instead of {s}T or T{s}. In particular, if H is a subgroup of G
and a ∈ G then the left coset aH is just the product in P∗(G) of the subsets
{a} and H of G and there is no ambiguity in the notation aH. The subset
{e} ∈ P∗(G) satisfies eS = Se = S for all S ∈ P∗(G). Thus P∗(G) has an
identity element for its multiplication, namely, {e}, and hence P∗(G) forms
what is called a monoid (a set with an associative multiplication with an
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identity element), but it is not a group except in the trivial case G = {e}
since an inverse will not exist (using the multiplication on P∗(G)) for any
subset S of G with |S| > 1. If S ∈ P∗(G) let S−1 = {s−1 : s ∈ S}. Note,
however, that S−1 is not the inverse of S under the multiplication of P∗(G)
except when S contains only one element. If H is a subgroup of G, then
HH = H, and if |H| < ∞, then Remark 2.2 (2) implies that this equality
is equivalent to H being a subgroup of G. If H is a subgroup of G then
H−1 = H since subgroups are closed under inverses.

Now consider the following question. Suppose H, K ∈ P∗(G) are sub-
groups of G. Then under what conditions is HK a subgroup of G? The
following lemma gives one answer to this question; another answer will be
provided later in this section after the concept of normal subgroup has been
introduced.

(3.1) Lemma. If H and K are subgroups of G then HK is a subgroup if and
only if HK = KH.

Proof. If HK is a subgroup, then HK contains all inverses of elements of
HK. Thus, HK = (HK)−1 = K−1H−1 = KH.

Conversely, suppose that HK = KH. Then HK is closed under in-
verses since (HK)−1 = KH = HK, and it is closed under products since
(HK)(HK) = HKHK = HHKK = HK. Thus, HK is a subgroup by
Proposition 2.1. ut

The equality HK = KH is an equality of subsets of G; it should not
be confused with element by element commutativity. In terms of elements,
HK = KH means that any product hk (h ∈ H, k ∈ K) can also be written
k1h1 for some k1 ∈ K, h1 ∈ H. If G is abelian this is of course automatic.

We now consider the question of when the subset of P∗(G) consisting
of all the left cosets of a subgroup H is closed under the multiplication on
P∗(G).

(3.2) Definition. If H is a subgroup of G then G/H ⊆ P∗(G) will denote
the set of all left cosets of H in G. It is called the coset space of H in G.

Consider two left cosets of H, say aH and bH. If (aH)(bH) = cH,
then ab ∈ cH, and hence cH = abH. Therefore, to ask if G/H is closed
under multiplication is to ask if the equation (aH)(bH) = abH is true for
all a, b ∈ G.

(3.3) Lemma. If H is a subgroup of G, then (aH)(bH) = abH for all a, b ∈
G if and only if cHc−1 = H for all c ∈ G.

Proof. Suppose cHc−1 = H for all c ∈ G. Then cH = Hc for all c ∈ G, so

(aH)(bH) = a(Hb)H = a(bH)H = abHH = abH.
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Conversely, if (aH)(bH) = abH for all a, b ∈ G, then

cHc−1 ⊆ cHc−1H = cc−1H = H

for all c ∈ G. Replacing c by c−1 (since c−1 ∈ G) gives an inclusion c−1Hc ⊆
H and multiplying on the left by c and the right by c−1 gives H ⊆ cHc−1.
Hence, cHc−1 = H for all c ∈ G. ut

(3.4) Definition. A subgroup N of G is said to be normal, denoted N / G,
if aNa−1 = N for all a ∈ G.

(3.5) Remark. The argument in Lemma 3.3 shows that N is normal in G
if and only if aNa−1 ⊆ N for all a ∈ G. This is frequently easier to check
than the equality aNa−1 = N. Also note that Definition 3.4 is equivalent
to aN = Na for all a ∈ G.

(3.6) Proposition. If N / G, then the coset space G/N ⊆ P∗(G) forms a
group under the multiplication inherited from P∗(G).

Proof. By Lemma 3.3, G/N is closed under the multiplication on P∗(G).
Since the multiplication on P∗(G) is already associative, it is only necessary
to check the existence of an identity and inverses. But the coset N = eN
satisfies

(eN)(aN) = eaN = aN = aeN = (aN)(eN),

so N is an identity of G/N . Also

(aN)(a−1N) = aa−1N = eN = N = a−1aN = (a−1N)(aN)

so that a−1N is an inverse of aN . Therefore, the axioms for a group struc-
ture on G/N are satisfied. ut

(3.7) Definition. If N / G, then G/N is called the quotient group of G by
N .

(3.8) Remark. If N / G and |G| < ∞, then Lagrange’s theorem (Theorem
2.17) shows that |G/N | = [G : N ] = |G|/|N |.

(3.9) Examples.

(1) If G is abelian, then every subgroup of G is normal.
(2) SL(n,R) is a normal subgroup of GL(n,R). Indeed, if A ∈ GL(n,R)

and B ∈ SL(n,R) then

det(ABA−1) = (det A)(det B)(det A)−1 = 1
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so that ABA−1 ∈ SL(n,R) for all A ∈ GL(n,R) and B ∈ SL(n,R).
The quotient group GL(n,R)/ SL(n,R) is isomorphic to R∗, the mul-
tiplicative group of nonzero real numbers. This will follow from The-
orem 3.11 (to be proved shortly) by considering the homomorphism
det : GL(n,R) → R∗. The details are left as an exercise.

(3) The subgroup T (n,R) of upper triangular matrices is not a normal
subgroup of GL(n,R). For example, take n = 2 and let A =

[
1
1

0
1

]
and

B =
[
1
0

1
1

]
. Then ABA−1 =

[
0
−1

1
2

]
/∈ T (2,R). A similar example can

be constructed for any n > 1. Thus the set of cosets GL(n,R)/T (n,R)
does not form a group under the operation of coset multiplication.

(4) If α =
(

1
2

2
3

3
1

)
, then H = {e, α, α2} is a normal subgroup of the sym-

metric group S3 (check it). If β /∈ H then the cosets are H and βH.
(5) Let K = 〈β〉 ⊆ S3 where β =

(
1
2

2
1

3
3

)
. Then the left cosets of K in G

are
K = {e, α} αK = {α, αβ} α2K = {α2, α2β}

where α is the permutation defined in Example 3.9 (4). Then

K(αK) = {e, α}{α, αβ} = {α, αβ, α2, α2β} 6= αK.

Therefore, the product of two cosets of K is not a coset of K, and
in particular, K is not a normal subgroup of S3. A straightforward
calculation shows that αKα−1 6= K.

(3.10) Proposition. Let f : G → H be a group homomorphism. Then
Ker(f) / G.

Proof. Let a ∈ G and b ∈ Ker(f). Then

f(aba−1) = f(a)f(b)f(a−1) = f(a)ef(a)−1 = e

so aba−1 ∈ Ker(f) for all b ∈ Ker(f), a ∈ G and Ker(f) is normal by
Remark 3.5. ut

In fact, Proposition 3.10 describes all possible normal subgroups of a
group G. To see this let N / G and define a function π : G → G/N by the
formula π(a) = aN. By the definition of multiplication on G/N we see that

π(ab) = abN = (aN)(bN) = π(a)π(b).

Thus, π is a group homomorphism (called the natural projection or simply
natural map) from G to G/N . Note that Ker(π) = N and therefore N is
the kernel of a group homomorphism. Since N was an arbitrary normal
subgroup of G, it follows that the normal subgroups of G are precisely the
kernels of all possible group homomorphisms from G to some other group.

We now present some general results, which are commonly called the
noether isomorphism theorems. Similar results will also be seen in the
theory of rings and the theory of modules.
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(3.11) Theorem. (First isomorphism theorem) Let f : G → H be a group
homomorphism with kernel K. Then G/K ∼= Im(f) (∼= means is isomorphic
to).

Proof. Define a function f : G/K → Im(f) by the formula f(aK) = f(a).
The first thing that needs to be checked is that this is a well-defined function
since the coset aK may also be a coset bK. It is necessary to check that
f(a) = f(b) in this case. But aK = bK if and only if a−1b ∈ K, which
means that f(a−1b) = e or f(a) = f(b). Therefore, f is a well-defined
function on G/K. Also

f((aK)(bK)) = f(abK) = f(ab) = f(a)f(b) = f(aK)f(bK)

so that f is a homomorphism. f is clearly surjective and Ker(f) = K which
is the identity of G/K. Hence f is an isomorphism. ut

Recall from Lemma 3.1 that the product HK of two subgroups H, K
is a subgroup if and only if HK = KH. There is a simple criterion for this
commutativity.

(3.12) Lemma. Let H, K be subgroups of G. If either H or K is normal in
G, then HK is a subgroup of G.

Proof. Suppose K / G. Then aK = Ka for all a ∈ G. In particular, HK =
KH, so HK is a subgroup. ut

(3.13) Theorem. (Second isomorphism theorem) Let H and N be subgroups
of G with N / G. Then H/(H ∩N) ∼= HN/N.

Proof. Let π : G → G/N be the natural map and let π0 be the restriction
of π to H. Then π0 is a homomorphism with Ker(π0) = H ∩N. Thus,

H/(H ∩N) = H/ Ker(π0) ∼= Im(π0).

But the image of π0 is the set of all cosets of N having representatives in
H. Therefore, Im(π0) = HN/N. ut

(3.14) Theorem. (Third isomorphism theorem) Let N/G, H/G and assume
that N ⊆ H. Then

G/H ∼= (G/N)/(H/N).

Proof. Define a function f : G/N → G/H by the formula f(aN) = aH. It
is easy to check (do it) that this is a well-defined group homomorphism.
Then

Ker(f) = {aN : aH = H} = {aN : a ∈ H} = H/N.

The result then follows from the first isomorphism theorem. ut
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(3.15) Theorem. (Correspondence theorem) Let N / G and let π :
G → G/N be the natural map. Then the function H 7→ H/N defines a
one-to-one correspondence between the set of all subgroups of G containing
N and the set of all subgroups of G/N. This correspondence satisfies the
following properties.

(1) H1 ⊆ H2 if and only if H1/N ⊆ H2/N , and in this case

[H2 : H1] = [H2/N : H1/N ].

(2) H / G if and only if H/N / G/N.

Proof. Letting

S1 = {H : H is a subgroup of G containing N}
and

S2 = {subgroups of G/N},

define α : S1 → S2 by α(H) = H/N = Im(π|H). Suppose H1/N = H2/N
where H1, H2 ∈ S1. We claim that H1 = H2. Let h1 ∈ H1. Then h1N ∈
H2/N , so h1N = h2N where h2 ∈ H2. Therefore, H1 ⊆ H2 and a similar
argument shows that H2 ⊆ H1 so that H1 = H2. Thus α is one-to-one. If
K ∈ S2 then π−1(K) ∈ S1 and α(π−1(K)) = K so that α is surjective. We
conclude that α is a 1− 1 correspondence between S1 and S2.

Now consider properties (1) and (2). The fact that H1 ⊆ H2 if and
only if H1/N ⊆ H2/N is clear. To show that [H2 : H1] = [H2/N : H2/N ] it
is necessary to show that the set of cosets aH1 (for a ∈ H2) is in one-to-one
correspondence with the set of cosets aH1/N (for a ∈ H2/N). This is left
as an exercise.

Suppose H / G. Then H/N / G/N since

(aN)(H/N)(aN)−1 = (aHa−1)/N = H/N.

Conversely, let H/N be a normal subgroup of G/N . Then if π1 :
G/N → (G/N)/(H/N) is the natural map we see that Ker(π1 ◦ π) = H.
Thus, H / G. ut

The following result is a simple, but useful, criterion for normality of
a subgroup:

(3.16) Proposition. Let H be a subgroup of G with [G : H] = 2. Then H /G.

Proof. Let a ∈ G. If a ∈ H then certainly aHa−1 = H. If a /∈ H then
G = H ∪ aH (since [G : H] = 2), so the left coset of H containing a is
G \H. But also G = H ∪Ha (since [G : H] = 2), so the right coset of H
containing a is G \H. Hence, aH = Ha so that aHa−1 = H for all a ∈ G
and H / G. ut
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(3.17) Definition. If G is a group then an automorphism of G is a group
isomorphism φ : G → G. Aut(G) will denote the set of all automorphisms
of G. Under the operation of functional composition Aut(G) is a group; in
fact, it is a subgroup of the symmetric group SG on the set G (Example 1.2
(6)).

(3.18) Examples.

(1) Aut(Z) ∼= Z2. To see this let φ ∈ Aut(Z). Then if φ(1) = r it follows
that φ(m) = mr so that Z = Im (φ) = 〈r〉. Therefore, r must be a
generator of Z, i.e., r = ±1. Hence φ(m) = m or φ(m) = −m for all
m ∈ Z.

(2) Let G = {(a, b) : a, b ∈ Z}. Then Aut(G) is not abelian. Indeed,

Aut(G) ∼= GL(2,Z) =
{[

a b
c d

]
: a, b, c, d ∈ Z and ad− bc = ±1

}
.

(3) Let V be the Klein 4-group. Then Aut(V ) ∼= S3 (exercise).

(3.19) Definition. If a ∈ G define Ia : G → G by Ia(b) = aba−1. Then
Ia ∈ Aut(G). An automorphism of G of the form Ia for some a ∈ G is called
an inner automorphism or conjugation of G. All other automorphisms are
called outer automorphisms of G. Let Inn(G) denote the set of all inner
automorphisms of G. Define a function Φ : G → Aut(G) by Φ(a) = Ia.
Thus Im(Φ) = Inn(G).

(3.20) Proposition. Φ is a group homomorphism with Im(Φ) = Inn(G) and

Ker(Φ) = Z(G).

Recall (Example 2.8 (9)) that Z(G) denotes the center of G, i.e.,

Z(G) = {a ∈ G : ab = ba for all b ∈ G}.

Proof. Φ(ab)(c) = Iab(c) = (ab)c(ab)−1 = a(bcb−1)a−1 = Ia(Ib(c)) = Ia ◦
Ib(c). Thus Φ is a homomorphism, and the rest is clear. ut

(3.21) Corollary. Inn(G) ∼= G/Z(G).

Proof. ut

(3.22) Example.

(1) The group S3 has Z(S3) = {e} (check this). Thus Inn(S3) ∼= S3. Recall
that S3 = {e, α, α2, β, αβ, α2β} (see Example 2.8 (6)). Note that α and
β satisfy α3 = e = β2 and αβ = α2β. The elements α and α2 have
order 3 and β, αβ, and α2β all have order 2. Thus if φ ∈ Aut(S3)
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then φ(α) ∈ {α, α2} and φ(β) ∈ {β, αβ, α2β}. Since S3 is generated by
{α, β}, the automorphism φ is completely determined once φ(α) and
φ(β) are specified. Thus |Aut(S3)| ≤ 6 and we conclude that

Aut(S3) = Inn(S3) ∼= S3.

(2) If G is abelian then every nontrivial automorphism of G is an outer
automorphism.

In general it is difficult to compute Aut(G) for a given group G. There
is, however, one important special case where the computation is possible.

(3.23) Proposition. Aut(Zn) ∼= Z∗n.

Proof. Recall that Z∗n = {m : 1 ≤ m < n and (m,n) = 1} with the operation
of multiplication modulo n, and Zn = {m : 0 ≤ m < n} = 〈1〉 with the
operation of addition modulo n. Let φ ∈ Aut(Zn). Since 1 is a generator
of Zn, φ is completely determined by φ(1) = m. Since φ is an isomorphism
and o(1) = n, we must have o(m) = o(φ(1)) = n. Let d = (m, n), the
greatest common divisor of m and n. Then n | (n/d)m, so (n/d)m = 0 in
Zn. Since n is the smallest multiple of m that gives 0 ∈ Zn, we must have
d = 1, i.e., m ∈ Z∗n.

Also, any m ∈ Z∗n determines an element φm ∈ Aut(Zn) by the formula
φm(r) = rm. To see this we need to check that φm is an automorphism
of Zn. But if φm(r) = φm(s) then rm = sm in Zn, which implies that
(r − s)m = 0 ∈ Zn. But (m,n) = 1 implies that r − s is a multiple of n,
i.e., r = s in Zn.

Therefore, we have a one-to-one correspondence of sets

Aut(Zn) ←→ Z∗n

given by
φm ←→ m.

Furthermore, this is an isomorphism of groups since

φm1(φm2(r)) = φm1(m2r) = m1m2r = φm1m2(r).

ut

1.4 Permutation Representations
and the Sylow Theorems

If X is any set, then the set SX = {one-to-one correspondences f : X → X}
is a group under functional composition. SX is called the symmetric group
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on X or group of permutations of X. A permutation group is a subgroup
of SX for some set X. The following theorem, due to Cayley, shows that all
groups can be considered as permutation groups if the set X is appropriately
chosen:

(4.1) Theorem. (Cayley) Any group G is isomorphic to a subgroup of the
symmetric group SG.

Proof. Define Φ : G → SG by the formula Φ(a)(b) = ab. That is, Φ(a) is the
function on G that multiplies each b ∈ G by a on the left. By Proposition
1.3 (4) and (5) it follows that each Φ(a) is a bijective function on G so that
Φ(a) ∈ SG. Also Φ is a group homomorphism since

Φ(ab)(c) = (ab)c = a(bc) = Φ(a)(bc) = Φ(a)(Φ(b)(c)) = (Φ(a) ◦ Φ(b))(c).

Now
Ker(Φ) = {a ∈ G : ab = b for all b ∈ G} = {e}.

Thus, Φ is injective, so by the first isomorphism theorem G ∼= Im(Φ) ⊆ SG.
ut

(4.2) Remark. The homomorphism Φ is called the left regular representa-
tion of G. If |G| < ∞ then Φ is an isomorphism only when |G| ≤ 2 since if
|G| > 2 then |SG| = |G|! > |G|. This same observation shows that Theo-
rem 4.1 is primarily of interest in showing that nothing is lost if one chooses
to restrict consideration to permutation groups. As a practical matter, the
size of SG is so large compared to that of G that rarely is much insight
gained with the use of the left regular representation of G in SG. It does,
however, suggest the possibility of looking for smaller permutation groups
that might contain a copy of G. One possibility for this will be considered
now.

By a permutation representation of G we mean any homomorphism
φ : G → SX for some set X. The left regular representation is one such
example with X = G. Another important example, where |X| may be
substantially smaller than |G|, is obtained by taking X = G/H where H is
a subgroup of G. We are not assuming that H is normal in G, so the coset
space G/H is only a set, not necessarily a group. Define ΦH : G → SG/H

by the formula ΦH(a)(bH) = abH.

(4.3) Proposition. If H is a subgroup of G then ΦH : G → SG/H is a group
homomorphism and Ker (ΦH) is the largest normal subgroup of G contained
in H.

Proof. If abH = acH, then bH = cH, so ΦH(a) is a one-to-one function on
G/H and it is surjective since ΦH(a)(a−1bH) = bH. Thus, ΦH(a) ∈ SG/H .
The fact that ΦH is a group homomorphism is the same calculation as that
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used to show that Φ was a group homomorphism in the proof of Cayley’s
theorem. Thus, Ker(ΦH) / G and if a ∈ Ker(ΦH) then ΦH(a) acts as the
identity on G/H. Thus, aH = ΦH(a)(H) = H so that a ∈ H. Therefore,
Ker(ΦH) is a normal subgroup of G contained in H. Now suppose that
N /G and N ⊆ H. Let a ∈ N . Then ΦH(a)(bH) = abH = ba′H = bH since
b−1ab = a′ ∈ N ⊆ H. Therefore, N ⊆ Ker(ΦH) and Ker(ΦH) is the largest
normal subgroup of G contained in H. ut

As an example of the usefulness of Proposition 4.3, we will indicate
how to use this result to prove the existence of normal subgroups of certain
groups.

(4.4) Corollary. Let H be a subgroup of the finite group G and assume that
|G| does not divide [G : H]!. Then there is a subgroup N ⊆ H such that
N 6= {e} and N / G.

Proof. Let N be the kernel of the permutation representation ΦH . By Propo-
sition 4.3 N is the largest normal subgroup of G contained in H. To see
that N 6= {e}, note that G/N ∼= Im (ΦH), which is a subgroup of SG/H .
Thus,

|G|/|N | = | Im (ΦH)| |SG/H | = [G : H]!.

Since |G| does not divide [G : H]!, we must have that |N | > 1 so that
N 6= {e}. ut

(4.5) Corollary. Let H be a subgroup of the finite group G such that
(|H|, ([G : H]− 1)!

)
= 1.

Then H / G.

Proof. Let N = Ker(ΦH). Then N ⊆ H and G/N ∼= Im(ΦH) so that

(|G|/|N |) [G : H]! =
(|G|/|H|)!.

Therefore, (|G|/|H|) · (|H|/|N |) [G : H]!

so that
(|H|/|N |) | ([G : H] − 1)!. But |H| and ([G : H] − 1)! have no

common factors so that |H|/|N | must be 1, i.e., H = N. ut

(4.6) Corollary. Let p be the smallest prime dividing |G|. Then any subgroup
of G of index p is normal.

Proof. Let H be a subgroup of G with [G : H] = p and let r = |H| = |G|/p.
Then every prime divisor of r is ≥ p so that

(|H|, ([G : H]− 1)!
)

= (r, (p− 1)!) = 1.
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By Corollary 4.5, H / G. ut

The following result is a partial converse of Lagrange’s theorem:

(4.7) Theorem. (Cauchy) Let G be a finite group and let p be a prime
dividing |G|. Then G has a subgroup of order p.

Proof. If we can find an element a of order p, then 〈a〉 is the desired sub-
group. To do this consider the set

X = {a = (a0, a1, . . . , ap−1) : ai ∈ G and a0a1 · · · ap−1 = e}.

Then we have a permutation representation of the group Zp on X where
the homomorphism φ : Zp → SX is given by

φ(i)(a) = φ(i)(a0, . . . , ap−1) = (ai, ai+1, . . . , ap, a0, . . . , ai−1).

Note that (ai · · · ap) = (a0 · · · ai−1)−1 so that φ(i)(a) ∈ X.
We may define an equivalence relation on X by a ∼ b if φ(i)(a) = b

for some i. Then X is partitioned into equivalence classes, and it is easy to
see that each equivalence class consists of either exactly one or exactly p
elements of X. If n1 and np denote the number of equivalence classes with
1 and p elements respectively, then

|X| = n1 · 1 + np · p.

Now X has |G|p−1 elements (since we may choose a0, . . . , ap−2 arbi-
trarily, and then ap−1 = (a0 · · · ap−2)−1), and this number is a multiple of
p. Thus we see that n1 must be divisible by p as well. Now n1 ≥ 1 since
there is an equivalence class {(e, . . . , e)}. Therefore, there must be other
equivalence classes with exactly one element. All of these are of the form
{(a, . . . , a)} and by the definition of X, such an element of X gives a ∈ G
with ap = e. ut

(4.8) Remark. Note that Corollary 4.6 is a generalization of Proposition
3.15. Proposition 4.3 and its corollaries are useful in beginning a study of the
structural theory of finite groups. One use of permutation representations
in the structure theory of finite groups is the proof of Cauchy’s theorem
presented above. The next is in proving the Sylow theorems, which are
substantial generalizations of Cauchy’s theorem. We begin our presentation
of the Sylow theorems by indicating what we mean by an action of a group
on a set.

(4.9) Definition. Let G be a group and let X be a set. By an action of G
on X we mean a permutation representation Φ : G → SX . In general, we
shall write gx for Φ(g)(x). The fact that Φ is a homomorphism means that
g(hx) = (gh)x for all g, h ∈ G and x ∈ X, while ex = x where e ∈ G is
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the identity. Associated to x ∈ X there is a subset Gx of X and a subgroup
G(x) of G defined as follows:

(1) Gx = {gx : g ∈ G} is called the orbit of x.
(2) G(x) = {g ∈ G : gx = x} is called the stabilizer of x.

(4.10) Lemma. Let the group G act on a finite set X. Then

|Gx| = [G : G(x)]

for each x ∈ G.

Proof. Since

gx = hx ⇔ g−1h ∈ G(x)
⇔ gG(x) = hG(x),

there is a bijective function φ : Gx → G/G(x) defined by φ(gx) = gG(x),
which gives the result. ut

(4.11) Lemma. Let the group G act on a finite set X. Then

|X| =
∑

[G : G(x)]

where the sum is over a set consisting of one representative of each orbit of
G.

Proof. The orbits of G form a partition X, and hence |X| = ∑ |Gx| where
the sum is over a set consisting of one representative of each orbit of G.
The result then follows from Lemma 4.10. ut

(4.12) Remark. Note that Lemma 4.11 generalizes the class equation (Corol-
lary 2.28), which is the special case of Lemma 4.11 when X = G and G
acts on X by conjugation.

(4.13) Definition. (1) If p is a prime, a finite group G is a p-group if |G| =
pn for some n ≥ 1.
(2) H is a p-subgroup of a group G if H is a subgroup of G and H is a

p-group.
(3) Let G be an arbitrary finite group, p a prime, and pn the highest power

of p dividing |G| (i.e., pn divides |G|, but pn+1 does not). H is a p-
Sylow subgroup of G if H is a subgroup of G and |H| = pn.

The three parts of the following theorem are often known as the three
Sylow theorems:

(4.14) Theorem. (Sylow) Let G be a finite group and let p be a prime dividing
|G|.
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(1) G has a p-Sylow subgroup, and furthermore, every p-subgroup of G is
contained in some p-Sylow subgroup.

(2) The p-Sylow subgroups of G are all mutually conjugate.
(3) The number of p-Sylow subgroups of G is congruent to 1 modulo p and

divides |G|.

Proof. Let m = |G| and write m = pnk where k is not divisible by p and
n ≥ 1. We will first prove that G has a p-Sylow subgroup by induction on
m. If m = p then G itself is a p-Sylow subgroup. Thus, suppose that m > p
and consider the class equation of G (Corollary 2.28):

(4.1) |G| = |Z(G)|+
∑

[G : C(a)]

where the sum is over a complete set of nonconjugate a not in Z(G). There
are two possibilities to consider:

(1) For some a, [G : C(a)] is not divisible by p. In that case, |C(a)| =
|G|/[G : C(a)] = pnk′ for some k′ dividing k. Then p divides |C(a)|
and |C(a)| < |G|, so by induction C(a) has a subgroup H of order pn,
which is then also a p-Sylow subgroup of G.

(2) [G : C(a)] is divisible by p for all a /∈ Z(G). Then, since |G| is divisible
by p, we see from Equation (4.1) that p divides |Z(G)|. By Cauchy’s
theorem (Theorem 4.7), there is an x ∈ Z(G) of order p. Let N = 〈x〉.
If n = 1 (i.e., p divides |G|, but p2 does not) then N itself is a p-Sylow
subgroup of G. Otherwise, note that since N ⊆ Z(G), it follows that
N / G (Exercise 21). Consider the projection map π : G → G/N . Now
|G/N | = pn−1k < |G|, so by induction, G/N has a subgroup H with
|H| = pn−1, and then π−1(H) is a p-Sylow subgroup of G.

Thus, we have established that G has a p-Sylow subgroup P . Let X
be the set of all subgroups of G conjugate to P . (Of course, any subgroup
conjugate to P has the same order as P , so it is also a p-Sylow subgroup
of G.) The group G acts on X by conjugation, and since all elements of
X are conjugate to P , there is only one orbit. By Lemma 4.11, we have
|X| = [G : G(P )]. But P ⊆ G(P ), so [G : G(P )] divides k and, in particular,
is not divisible by p. Thus, |X| is relatively prime to p.

Now let H be an arbitrary p-subgroup of G, and consider the action
of H on X by conjugation. Again by Lemma 4.11,

(4.2) |X| =
∑

[H : H(x)].

Since |X| is not divisible by p, some term on the right-hand side of Equation
(4.2) must not be divisible by p; since H is a p-group, that can only happen
if it is equal to one. Thus, there is some p-Sylow subgroup P ′ of G, conjugate
to P , with hP ′h−1 = P ′ for all h ∈ H, i.e., with HP ′ = P ′H. But then
Lemma 3.1 implies that HP ′ is a subgroup of G. Since
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|HP ′| = |H||P ′|/|H ∩ P ′|

(see Exercise 17), it follows that HP ′ is also a p-subgroup of G. Since P ′

is a p-Sylow subgroup, this can only happen if HP ′ = P ′, i.e., if H ⊆ P ′.
Thus part (1) of the theorem is proved.

To see that (2) is true, let H itself be any p-Sylow subgroup of G. Then
H ⊆ P ′ for some conjugate P ′ of P , and since |H| = |P ′|, we must have
H = P ′ so that H is conjugate to P . This gives that X consists of all the
p-Sylow subgroups of G, and hence, |X| = [G : G(P )] divides |G|. Now take
H = P . Equation (4.2) becomes

(4.3) |X| =
∑

[P : P (x)].

Then, for x = P , [P : P (x)] = 1, while if x is a representative of any other
orbit, [P : P (x)] is divisible by p, showing that |X| is congruent to 1 modulo
p. Thus part (3) is verified. ut

The Sylow theorems are a major tool in analyzing the structure of
finite groups. In Section 1.7, as an application of these theorems, we will
classify all finite groups of order ≤ 15.

1.5 The Symmetric Group and Symmetry Groups

Recall that if X = {1, 2, . . . , n} then we denote SX by Sn and we can write
a typical element α ∈ Sn as a two-rowed array

α =
(

1 2 · · · n
α(1) α(2) · · · α(n)

)
.

This notation is somewhat cumbersome so we introduce a simpler notation
which is frequently more useful.

(5.1) Definition. An element i ∈ X = {1, 2, . . . , n} is fixed by α ∈ Sn if
α(i) = i. α ∈ Sn is an r-cycle or cycle of length r if there are r integers
i1, i2, . . . , ir ∈ X such that

α(i1) = i2, α(i2) = i3, . . . , α(ir−1) = ir, α(ir) = i1

and such that α fixes all other i ∈ X. The r-cycle α is denoted (i1 i2 · · · ir).
If α is an r-cycle, note that o(α) = r. A 2-cycle is called a transposition.
Two cycles α = (i1 · · · ir) and β = (j1 · · · js) are disjoint if

{i1, . . . , ir} ∩ {j1, . . . , js} = ∅.

That is, every element moved by α is fixed by β.
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As an example of the increased clarity of the cycle notation over the
2-rowed notation, consider the following permutation in S9.

α =
(

1 2 3 4 5 6 7 8 9
3 9 7 4 2 1 6 8 5

)
.

α is not a cycle, but it is a product of disjoint cycles, namely,

α = (1 3 7 6)(9 5 2)(4)(8).

Since 1-cycles represent the identity function, it is customary to omit them
and write α = (1 3 7 6)(9 5 2). This expression for α generally gives more
information and is much cleaner than the 2-rowed notation. There are,
however, two things worth pointing out concerning the cycle notation. First
the cycle notation is not unique. For an r-cycle (i1 · · · ir) there are r different
cycle notations for the same r-cycle:

(i1 · · · ir) = (i2 i3 · · · ir i1) = · · · = (ir i1 · · · ir−1).

The second observation is that the cycle notation does not make it clear
which symmetric group Sn the cycle belongs to. For example, the transpo-
sition (1 2) has the same notation as an element of every Sn for n ≥ 2.

In practice, this ambiguity is not a problem. We now prove a factor-
ization theorem for permutations.

(5.2) Lemma. Disjoint cycles commute.

Proof. Suppose α and β are disjoint cycles in Sn, and let i ∈ X =
{1, 2, . . . , n}. If i is fixed by both α and β then αβ(i) = i = βα(i). If
α moves i, then α also moves α(i), and thus, β fixes both of these el-
ements. Therefore, αβ(i) = α(i) = βα(i). Similarly, if β moves i then
αβ(i) = β(i) = βα(i). ut

(5.3) Theorem. Every α ∈ Sn with α 6= e can be written uniquely (except
for order) as a product of disjoint cycles of length ≥ 2.

Proof. We first describe an algorithm for producing the factorization. Let k1

be the smallest integer in X = {1, 2, . . . , n} that is not fixed by α (k1 exists
since α 6= e) and then choose the smallest positive r1 with αr1(k1) = k1

(such an r1 exists since o(α) < ∞). Then let α1 be the r1-cycle

α1 = (k1 α(k1) α2(k1) · · · αr1−1(k1)).

Now let X1 = X \ {k1, α(k1), . . . , αr1−1}.
If every k ∈ X1 is fixed by α then α = α1 and we are finished. Otherwise

let k2 be the smallest integer in X1 not fixed by α and then let r2 be the
smallest positive integer with αr2(k2) = k2. Then let α2 be the r2-cycle

α2 = (k2 α(k2) α2(k2) · · · αr2−1(k2)).
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It is clear from the construction that α1 and α2 are disjoint cycles. Contin-
uing in this manner we eventually arrive at a factorization

α = α1α2 · · ·αs

of α into a product of disjoint cycles.
We now consider the question of uniqueness of the factorization. Sup-

pose that
α = α1α2 · · ·αs = β1β2 · · ·βt

where each of these is a factorization of α into disjoint cycles of length
≥ 2. We must show that s = t and αi = βφ(i) for some φ ∈ Ss. Let
m = max{s, t}. If m = 1 then α = α1 = β1 and uniqueness is clear. We
proceed by induction on m. Suppose that m > 1 and let k be an element
of X that is moved by α. Then some αi and βj must also move k. Since
disjoint cycles commute, we can, without loss of generality, suppose that
α1 and β1 move k. Since none of the other αi or βj move k, it follows that

α`
1(k) = α`(k) = β`

1(k) for all `.

Thus, o(α1) = o(β1) = r = smallest r with αr(k) = k. Hence,

α1 = (k α(k) · · · αr−1(k)) = β1.

Multiplying by α−1
1 gives a factorization

α−1
1 α = α2 · · ·αs = β2 · · ·βt,

and the proof is completed by induction on m. ut

(5.4) Corollary. Every α ∈ Sn is a product of transpositions.

Proof. By Theorem 5.3, it is sufficient to factor any cycle as a product of
transpositions. But

(i1 i2 · · · ir) = (i1 ir)(i1 ir−1) · · · (i1 i2)

is such a factorization. ut

In contrast to the uniqueness of the factorization of a permutation into
disjoint cycles, writing a permutation as a product of transpositions is not
very well behaved. First, the transpositions may not commute. For example,
(1 3)(1 2) = (1 2 3) 6= (1 3 2) = (1 2)(1 3). Second, the factorization is not
uniquely determined, e.g., (1 2 3) = (1 3)(1 2) = (1 3)(1 2)(2 3)(2 3). There
is, however, one observation that can be made concerning this factorization;
namely, the number of transpositions occurring in both factorizations is
even. While we have shown only one example, this is in fact a result that is
true in general. Specifically, the number of transpositions occurring in any
factorization of a permutation as a product of transpositions is always odd
or always even. This will be verified now.
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If α = (i1 · · · ir) then α = (i1 ir) · · · (i1 i2) so that an r-cycle α can
be written as a product of (o(α)− 1) transpositions. Hence, if α 6= e ∈ Sn

is written in its cycle decomposition α = α1 · · ·αs then α is the product of
f(α) =

∑s
i=1(o(αi)− 1) transpositions. We also set f(e) = 0. Now suppose

that
α = (a1 b1)(a2 b2) · · · (at bt)

is written as an arbitrary product of transpositions. We claim that f(α)− t
is even. To see this note that

(a i1 i2 · · · ir b j1 · · · js)(a b) = (a j1 · · · js)(b i1 · · · ir)

and (since (a b)2 = e)

(a j1 · · · js)(b i1 · · · ir)(a b) = (a i1 i2 · · · ir b j1 · · · js)

where it is possible that no ik or jk is present. Hence, if a and b both
occur in the same cycle in the cycle decomposition of α it follows that
f(α · (a b)) = f(α) − 1, while if they occur in different cycles or are both
not moved by α then f(α · (a b)) = f(α) + 1. In any case

f(α · (a b))− f(α) ≡ 1 (mod 2).

Continuing this process gives

0 = f(e) = f(α · (a1 b1) · · · (at bt)) ≡ f(α) + t (mod 2).

We conclude that any factorization of α into a product of t transpositions
has both f(α) and t even or both odd, which is what we wished to verify.
Because of this fact we can make the following definition.

(5.5) Definition. A permutation α ∈ Sn is even if α can be written as a
product of an even number of transpositions. α is odd if α can be written as
a product of an odd number of transpositions. Define the sign of α, denoted
sgn(α), by

sgn(α) =
{

1 if α is even,
−1 if α is odd.

The argument in the previous paragraph shows that a permutation cannot
be both even and odd. Thus sgn : Sn → {1,−1} is a well-defined function,
and moreover, it is a group homomorphism. The kernel of sgn, i.e., the
set of even permutations, is a normal subgroup of Sn called the alternating
group and denoted An.

(5.6) Remark. Note that the above argument gives a method for computing
sgn(α). Namely, decompose α = α1 · · · αs into a product of cycles and
compute f(α) =

∑s
i=1(o(αi) − 1). Then sgn(α) = 1 if f(α) is even and

sgn(α) = −1 if f(α) is odd.



32 Chapter 1. Groups

There is an alternative method that does not require that α be first
decomposed into a product of cycles. We have defined α as a bijection of
{1, . . . , n}. Let

f̃(α) = |{(i, j) : 1 ≤ i < j ≤ n and α(j) < α(i)}|.
Then sgn(α) = 1 if f̃(α) is even and sgn(α) = −1 if f̃(α) is odd. We leave
the proof of this as an exercise for the reader.

(5.7) Proposition. |An| = n! /2.

Proof. Since sgn : Sn → {1, −1} is a group homomorphism, the first iso-
morphism theorem gives

Sn/An
∼= Im(sgn) = {1, −1}.

Thus, n! = |Sn| = 2|An|. ut

(5.8) Proposition. If n > 2 then An is generated by all the 3-cycles in Sn.

Proof. An element of An is a product of terms of the form (i j)(k l) or
(i j)(i k) where i, j, k, l are distinct. (If n = 3, only the latter product is
possible.) But

(i j)(i k) = (i k j)

and
(i j)(k l) = (i k j)(i k l)

so that every element of An is a product of 3-cycles. ut

If G is a group recall (Definition 2.26) that two elements a, b ∈ G are
conjugate if b = cac−1 for some c ∈ G. In general, it is not easy to determine
if two elements of G are conjugate, but for the group Sn there is a simple
criterion for conjugacy based on the cycle decomposition (factorization) of
α, β ∈ Sn. We will say that α and β have the same cycle structure if their
factorizations into disjoint cycles produce the same number of r-cycles for
each r.

(5.9) Proposition. (1) If α ∈ Sn and β = (i1 · · · ir) is an r-cycle, then
αβα−1 is the r-cycle (α(i1) · · · α(ir)).

(2) Any two r-cycles in Sn are conjugate.

Proof. (1) If j /∈ {α(i1), . . . , α(ir)} then α−1(j) is fixed by β so that
αβα−1(j) = j. Also

αβα−1(α(i1)) = α(i2)
...

αβα−1(α(ir−1)) = α(ir)
αβα−1(α(ir)) = α(i1)
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so that αβα−1 = (α(i1) · · · α(ir)).
(2) Let β = (i1 · · · ir) and γ = (j1 · · · jr) be any two r-cycles in Sn.

Define α ∈ Sn by α(ik) = jk for 1 ≤ k ≤ r and extend α to a permutation
in any manner. Then by part (1) αβα−1 = γ. ut

(5.10) Corollary. Two permutations α, β ∈ Sn are conjugate if and only if
they have the same cycle structure.

Proof. Suppose that γαγ−1 = β. Then if α = α1 · · · αs is the cycle decom-
position of α, it follows from Proposition 5.9 (1) that

β = γαγ−1 = (γα1γ
−1)(γα2γ

−1) · · · (γαsγ
−1)

is the cycle decomposition of β. Thus, α and β have the same cycle struc-
ture.

The converse is analogous to the proof of Proposition 5.9 (2); it is left
to the reader. ut

(5.11) Example. Let H = {e, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)} ⊆ S4. Then H
is a subgroup of S4 isomorphic with the Klein 4-group, and since H consists
of all permutations in S4 with cycle type (a b)(c d) (where a, b, c, d are all
distinct), it follows from Corollary 5.10 that H /S4. Let K = {e, (1 2)(3 4)}.
Then K is a normal subgroup of H (since H is abelian), but K is not normal
in S4 since any other permutation of cycle type (a b)(c d) can be obtained
from (1 2)(3 4) by conjugation in S4. Therefore, normality is not a transitive
property on the set of all subgroups of a group G.

Let X ⊂ Rn. By a symmetry of X we mean a function f : X → X such
that f preserves distances, i.e., ‖x − y‖ = ‖f(x) − f(y)‖ for all x, y ∈ X.
The set of all symmetries of X under functional composition forms a group,
called the symmetry group of X. If X = Pn ⊆ R2 is a regular polygon with
n vertices then a symmetry is completely determined by the action on the
vertices (since it is easy to see from the triangle inequality that lines must
go to lines and adjacent vertices must go to adjacent vertices) so that we get
a permutation representation of the symmetry group of Pn, denoted D2n,
as a subgroup of Sn. D2n is called the dihedral group of order 2n. If Pn is
taken on the unit circle centered at (0, 0) with one vertex at (1, 0) then the
symmetries of Pn are the rotations through an angle of θk = 2kπ/n around
(0, 0) for 0 ≤ k < n and the reflections through the lines from each vertex
and from the midpoint of each side to the center of the circle. (There are
always n such distinct lines.) Thus |D2n| = 2n where there are n rotations
and n reflections. If we let α be the rotation through the angle θ1 and β
the reflection through the x-axis, then

D2n = {αiβj : 0 ≤ i < n, j = 0, 1}.
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It is easy to check that o(α) = n and that βαβ = α−1. If the vertices of
Pn are numbered n, 1, 2, . . . , n−1 counterclockwise starting at (1, 0), then
D2n is identified as a subgroup of Sn by

α ←→ (1 2 · · · n)

β ←→
{

(1n− 1)(2 n− 2) · · · ((n− 1)/2 (n + 1)/2) when n is odd,
(1n− 1)(2 n− 2) · · · (n/2− 1 (n/2) + 1) when n is even.

Thus, we have arrived at a concrete representation of the dihedral group
that was described by means of generators and relations in Example 2.8
(13).

(5.12) Examples.

(1) If X is the rectangle in R2 with vertices (0, 1), (0, 0), (2, 0), and (2, 1)
labelled from 1 to 4 in the given order, then the symmetry group of X
is the subgroup

H = {e, (1 3)(2 4), (1 2)(3 4), (1 4)(2 3)}
of S4, which is isomorphic to the Klein 4-group.

(2) D6
∼= S3 since D3 is generated as a subgroup of S3 by the permutations

α = (1 2 3) and β = (2 3).
(3) D8 is a (nonnormal) subgroup of S4 of order 8. If α = (1 2 3 4) and

β = (1 3) then

D8 = {e, α, α2, α3, β, αβ, α2β, α3β}.
There are two other subgroups of S4 conjugate to D8 (exercise).

1.6 Direct and Semidirect Products

(6.1) Definition. If N and H are groups the (external) direct product of
N and H, denoted N × H, is the cartesian product set N × H with the
multiplication defined componentwise, i.e.,

(n, h)(n′, h′) = (nn′, hh′).

It is easy to check that N × H is a group with this multiplication.
Associated to N ×H there are some natural homomorphisms

πN : N ×H → N ((n, h) 7→ n)
πH : N ×H → H ((n, h) 7→ h)
ιN : N → N ×H (n 7→ (n, e))
ιH : H → N ×H (h 7→ (e, h)) .
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The homomorphisms πN and πH are called the natural projections while
ιN and ιH are known as the natural injections. The word canonical is used
interchangeably with natural when referring to projections or injections.
Note the following relationships among these homomorphisms

Ker(πH) = Im(ιN )
Ker(πN ) = Im(ιH)
πH ◦ ιH = 1H

πN ◦ ιN = 1N

(1G refers to the identity homomorphism of the group G). In particular,
N ×H contains a normal subgroup

Ñ = Im(ιN ) = Ker(πN ) ∼= N

and a normal subgroup

H̃ = Im(ιH) = Ker(πN ) ∼= H

such that Ñ ∩ H̃ = {(e, e)} is the identity in N × H and N × H = ÑH̃.
Having made this observation, we make the following definition.

(6.2) Definition. Let G be a group with subgroups N and H such that

N ∩H = {e} and NH = G.

(1) If N and H are both normal, then we say that G is the internal direct
product of N and H.

(2) If N is normal (but not necessarily H), then we say that G is the
semidirect product of N and H.

The relationship between internal and external direct products is given
by the following result. We have already observed that N×H is the internal
direct product of Ñ and H̃, which are subgroups of N ×H isomorphic to
N and H respectively.

(6.3) Proposition. If G is the internal direct product of subgroups N and
H, then G ∼= N ×H.

Proof. Let a ∈ G. Then a = nh for some n ∈ N, h ∈ H. Suppose we may
also write a = n1h1 for some n1 ∈ N, h1 ∈ H. Then nh = n1h1 so that
n−1n1 = hh−1

1 ∈ N ∩H = {e}. Therefore, n = n1 and h = h1 so that the
factorization a = nh is unique.

Define f : G → N×H by f(a) = (n, h) where a = nh. This function is
well defined by the previous paragraph, which also shows that f is a one-to-
one correspondence. It remains to check that f is a group homomorphism.
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Suppose that a = nh and b = n1h1. Then ab = nhn1h1. We claim that
hn1 = n1h for all n1 ∈ N and h ∈ H. Indeed, (hn1h

−1)n−1
1 ∈ N since N is

normal in G and h(n1h
−1n−1

1 ) ∈ H since H is normal. But N ∩H = {e},
so hn1h

−1n−1
1 ∈ N ∩H = {e}, and thus, hn1 = n1h. Therefore,

f(ab) = f(nhn1h1) = f(nn1hh1) = (nn1, hh1) = (n, h)(n1, h1) = f(a)f(b)

so that f is a group homomorphism, and, hence, a group isomorphism since
it is a one-to-one correspondence. ut

(6.4) Examples.

(1) Recall that if G is a group then the center of G, denoted Z(G), is the
set of elements that commute with all elements of G. It is a normal
subgroup of G. Now, if N and H are groups, then it is an easy exercise
(do it) to show that Z(N × H) = Z(N) × Z(H). As a consequence,
one obtains the fact that the product of abelian groups is abelian.

(2) The group Z2 × Z2 is isomorphic to the Klein 4-group. Therefore, the
two nonisomorphic groups of order 4 are Z4 and Z2 × Z2.

(3) All the hypotheses in the definition of internal direct product are nec-
essary for the validity of Proposition 6.3. For example, let G = S3,
N = A3, and H = 〈(1 2)〉. Then N /G but H is not a normal subgroup
of G. It is true that G = NH and N ∩H = {e}, but G 6∼= N ×H since
G is not abelian, but N ×H is abelian.

(4) In the previous example S3 is the semidirect product of N = A3 and
H = 〈(1 2)〉.

(6.5) Lemma. If G is the semidirect product of N and H then every a ∈ G
can be written uniquely as a = nh where n ∈ N and h ∈ H.

Proof. By hypothesis, G = NH, so existence of the factorization is clear.
Suppose a = n1h1 = n2h2. Then n−1

2 n1 = h2h
−1
1 ∈ N∩H = {e}. Therefore,

n1 = n2 and h1 = h2. ut

According to this lemma, G is set theoretically the cartesian product
set N ×H, but the group structures are different.

If G is the semidirect product of N and H, then the second isomor-
phism theorem (Theorem 3.12) shows that

H = H/(H ∩N) ∼= (HN)/N = (NH)/N = G/N.

Thus, H is determined once we have N . A natural question is then, given
groups N and H, identify all groups G such that G is the semidirect product
of subgroups Ñ and H̃ where Ñ ∼= N and H̃ ∼= H. As one answer to
this problem, we will present a construction showing how to produce all
semidirect products. We start with the following definition:
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(6.6) Definition. Let N and H be groups. An extension of N by H is a
group G such that

(1) G contains N as a normal subgroup.
(2) G/N ∼= H.

The first isomorphism theorem shows that for G to be an extension
of N by H means that there is an exact sequence of groups and group
homomorphisms

1 −→ N
θ−→ G

π−→ H −→ 1.

In this sequence, 1 = {e} and exactness means that π is surjective, θ is
injective, and Ker(π) = Im(θ).

The extension G of N by H is a split extension if there is a homomor-
phism α : H → G such that π ◦ α = 1H . In this case we say that the above
sequence is a split exact sequence.

The relationship between semidirect products and extensions is given
by the following result:

(6.7) Proposition. G is a semidirect product of N and H if and only if G
is a split extension of N by H.

Proof. Suppose G is a semidirect product of N and H with N / G. Define
π : G → H by π(a) = h where a = nh. Lemma 6.5 shows that π is well
defined. To see that π is a homomorphism, note that h1n2h

−1
1 = n′2 ∈ N

whenever h1, n2 ∈ N (because N / G). Thus,

π(n1h1n2h2) = π(n1n
′
2h1h2) = h1h2 = π(n1h1)π(n2h2),

so π is a homomorphism. It is clear that Im(π) = H and Ker(π) = N . Let
α : H → G be the inclusion map, i.e., α(h) = h. Then π ◦ α(h) = h for all
h ∈ H, so the extension determined by π is split.

Conversely, assume that G is a split extension of N by H with
π : G → H and α : H → G the homomorphisms given by the definition
of split extension. Then N = Ker(π) / G and H̃ = Im(α) is a subgroup of
G. Suppose that a ∈ N ∩ H̃. Then π(a) = e and a = α(h) for some h ∈ H
so that h = π(α(h)) = π(a) = e. Therefore, a = α(e) = e, and we conclude
that N ∩ H̃ = {e}. Now let a ∈ G and write

a = (a · α(π(a))−1) · α(π(a)) = nh.

Clearly, h ∈ H̃ and

π(n) = π(a · α(π(a))−1) = π(a)π(α(π(a))−1) = π(a)π(a)−1 = e,

so n ∈ N . Therefore, G is a semidirect product of N and H̃ ∼= H. ut
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(6.8) Remark. Comparing the definitions of semidirect product and direct
product, we see that if G is the semidirect product of N and H with H
normal (in addition to N), then G is in fact the (internal) direct product of
these subgroups. Of course, in an abelian group every subgroup is normal,
so for abelian groups the notion of semidirect product reduces to that of
direct product. In particular, we see from Proposition 6.7 that given a split
exact sequence of abelian groups

1 −→ N
θ−→ G

π−→ H −→ 1

we have that G ∼= N ×H.

We now consider a way to construct split extensions of N by H, which
according to Proposition 6.7 is equivalent to constructing semidirect prod-
ucts. Let N and H be groups and let φ : H → Aut(N) be a group ho-
momorphism. We will write φh ∈ Aut(N) instead of φ(h). Then define
G = N ×φ H = N × H to be the set N × H with the multiplication
defined by

(n1, h1)(n2, h2) = (n1φh1(n2), h1h2).

We identify N and H with the subsets N × {e} and {e} ×H, respectively.

(6.9) Theorem. With the above notation,

(1) G = N ×φ H is a group,
(2) H is a subgroup of G and N / G,
(3) G is a split extension of N by H, and
(4) hnh−1 = φh(n) for all h ∈ H ⊆ G and n ∈ N ⊆ G.

Proof. (1) (e, e) is easily seen to be the identity of G. For inverses, note that

(φh−1(n−1), h−1)(n, h) = (φh−1(n−1) · φh−1(n), h−1h)
= (φh−1(e), e) = (e, e)

and
(n, h)(φh−1(n−1), h−1) = (nφh(φh−1(n−1), hh−1)

= (nφe(n−1), e) = (nn−1, e) = (e, e).

Thus, (n, h)−1 = (φh−1(n−1), h−1).
To check associativity, note that

((n1, h1)(n2, h2))(n3, h3) = (n1φh1(n2), h1h2)(n3, h3)
= (n1φh1(n2)φh1h2(n3), h1h2h3)
= (n1φh1(n2)φh1(φh2(n3)), h1h2h3)
= (n1φh1(n2φh2(n3)), h1h2h3)
= (n1, h1)(n2φh2(n3), h2h3)
= (n1, h1)((n2, h2)(n3, h3)).
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(2) It is clear from the definition that N and H are subgroups of G.
Let π : N ×φ H → H be defined by φ(n, h) = h. Then π is a group
homomorphism since π((n1, h1)(n2, h2)) = π(n1φh1(n2), h1h2) = h1h2 =
π(n1, h1)π(n2, h2) and N = Ker(π), so N / G.

(3) Let α : H → G be defined by α(h) = (e, h). Then α is a homomor-
phism and π ◦ α = 1H .

(4)

(e, h)(n, e)(e, h)−1 = (e, h)(n, e)(e, h−1)
= (φh(n), h)(e, h−1)
= (φh(n)φh(e), hh−1)
= (φh(n), e).

ut

(6.10) Examples.

(1) Let φ : H → Aut(N) be defined by φ(h) = 1N for all h ∈ H. Then
N ×φ H is just the direct product of N and H.

(2) If φ : Z2 → Aut(Zn) is defined by 1 7→ φ1(a) = −a where Z2 = {0, 1},
then Zn ×φ Z2

∼= Dn.
(3) The construction in Example (2) works for any abelian group A in

place of Zn and gives a group A ×φ Z2. Note that A ×φ Z2 6∼= A×Z2

unless a2 = e for all a ∈ A.
(4) Zp2 is a nonsplit extension of Zp by Zp. Indeed, define π : Zp2 → Zp by

π(r) = r (mod p). Then Ker(π) is the unique subgroup of Zp2 of order
p, i.e., Ker(π) = 〈p〉 ⊆ Zp2 . But then any nonzero homomorphism
α : Zp → Zp2 must have | Im(α)| = p and, since there is only one
subgroup of Zp2 of order p, it follows that Im(α) = Ker(π). Therefore,
π ◦ α = 0 6= 1Zp so that the extension is nonsplit.

(6.11) Remark. Note that all semidirect products arise via the construction
of Theorem 6.9 as follows. Suppose G = NH is a semidirect product. Define
φ : H → Aut(N) by φh(n) = hnh−1. Then the map Φ : G → N ×φ H,
defined by Φ(nh) = (n, h), is easily seen to be an isomorphism. Note that
Φ is well defined by Lemma 6.5 and is a homomorphism by Theorem 6.9
(4).

1.7 Groups of Low Order

This section will illustrate the group theoretic techniques introduced in this
chapter by producing a list (up to isomorphism) of all groups of order at
most 15. The basic approach will be to consider the prime factorization of
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|G| and study groups with particularly simple prime factorizations for their
order. First note that groups of prime order are cyclic (Corollary 2.20) so
that every group of order 2, 3, 5, 7, 11, or 13 is cyclic. Next we consider
groups of order p2 and pq where p and q are distinct primes.

(7.1) Proposition. If p is a prime and G is a group of order p2, then G ∼= Zp2

or G ∼= Zp × Zp.

Proof. If G has an element of order p2, then G ∼= Zp2 . Assume not. Let
e 6= a ∈ G. Then o(a) = p. Set N = 〈a〉. Let b ∈ G with b /∈ N , and set
H = 〈b〉. Then N ∼= Zp and H ∼= Zp, and by Corollary 4.6, N / G and
H / G; so

G ∼= N ×H ∼= Zp × Zp

by Proposition 6.3. ut

(7.2) Proposition. Let p and q be primes such that p > q and let G be a
group of order pq.

(1) If q does not divide p− 1, then G ∼= Zpq.
(2) If q | p− 1, then G ∼= Zpq or G ∼= Zp ×φ Zq where

φ : Zq → Aut(Zp) ∼= Z∗p

is a nontrivial homomorphism. All nontrivial homomorphisms produce
isomorphic groups.

Proof. By Cauchy’s theorem (Theorem 4.7) G has a subgroup N of order
p and a subgroup H of order p, both of which are necessarily cyclic. Then
N / G since [G : N ] = q and q is the smallest prime dividing |G| (Corollary
4.6). Since it is clear that N ∩H = 〈e〉 and NH = G, it follows that G is
the semidirect product of N and H.

The map φ : H → Aut(N) given by φh(n) = hnh−1 is a group homo-
morphism, so if q does not divide |Aut(N)| = |Aut(Zp)| = |Z∗p| = p − 1,
then φ is the trivial homomorphism. Hence φh = 1N for all h ∈ H, i.e.,
nh = hn for all h ∈ H, n ∈ N . Hence H / G and G ∼= Zp × Zq

∼= Zpq (see
Exercise 11). If q | p− 1 then there are nontrivial homomorphisms

φ : Zq → Aut(N) ∼= Z∗p

and for some homomorphism φ,

G ∼= Zp ×φ Zq.

Therefore, if N = 〈a〉 and H = 〈b〉, then G = 〈a, b〉, subject to the relations

ap = e, bq = e, b−1ab = ar

where rq ≡ 1 (mod p). If r = 1 then φ is trivial, H is normal, and G ∼=
Zp × Zq. Otherwise, G is nonabelian. We leave it as an exercise to verify
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that all choices of r 6= 1 produce isomorphic groups. Thus, if q | p− 1, then
there are exactly two nonisomorphic groups of order pq. ut

(7.3) Corollary. If |G| = 2p, where p is an odd prime, then G ∼= Z2p or
G ∼= D2p.

Proof. The only nontrivial homomorphism φ : Z2 → Aut(Zp) = Z∗p is the
homomorphism 1 7→ φ1 with φ1(a) = −a. Apply Example 6.10 (2). ut

(7.4) Remark. The results obtained so far completely describe all groups of
order ≤ 15, except for groups of order 8 and 12. We shall analyze each of
these two cases separately.

Groups of Order 8

We will consider first the case of abelian groups of order 8.

(7.5) Proposition. If G is an abelian group of order 8, then G is isomorphic
to exactly one of the following groups:

(1) Z8,
(2) Z4 × Z2, or
(3) Z2 × Z2 × Z2.

Proof. Case 1: Suppose that G has an element of order 8. Then G is cyclic
and, hence, isomorphic to Z8.

Case 2: Suppose every element of G has order 2. Let {a, b, c} ⊆ G\{e}
with c 6= ab. Then H = 〈a, b〉 is a subgroup of G isomorphic to Z2 × Z2.
Furthermore, H ∩ 〈c〉 = 〈e〉 and H〈c〉 = G so that

G ∼= H × 〈c〉 ∼= Z2 × Z2 × Z2.

Case 3: If G does not come under Case 1 or Case 2, then G is not cyclic
and not every element has order 2. Therefore, G has an element a of order
4. We claim that there is an element b /∈ 〈a〉 such that b2 = e. To see this,
let c be any element not in 〈a〉. If c2 = e, take b = c. Otherwise, we must
have o(c) = 4. Since |G/〈a〉| = 2, it follows that c2 ∈ 〈a〉. Since a2 is the
only element of 〈a〉 of order 2, it follows that c2 = a2. Let b = ac. Then

b2 = a2c2 = a4 = e.

Proposition 6.3 then shows that

G ∼= 〈a〉 × 〈b〉 ∼= Z4 × Z2.

Since every abelian group of order 8 is covered by Case 1, Case 2, or
Case 3, the proof is complete. ut
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Now consider the case of nonabelian groups of order 8.

(7.6) Proposition. If G is a nonabelian group of order 8, then G is isomor-
phic to exactly one of the following two groups:

(1) Q = the quaternion group, or
(2) D8 = the dihedral group of order 8.

Proof. Since G is not abelian, it is not cyclic so G does not have an element
of order 8. Similarly, if a2 = e for all a ∈ G, then G is abelian (Exercise 8);
therefore, there is an element a ∈ G of order 4. Let b be an element of G
not in 〈a〉. Since [G : 〈a〉] = 2, the subgroup 〈a〉 / G. But |G/〈a〉| = 2 so
that b2 ∈ 〈a〉. Since o(b) is 2 or 4, we must have b2 = e or b2 = a2. Since
〈a〉 / G, b−1ab is in 〈a〉 and has order 4. Since G is not abelian, it follows
that b−1ab = a3. Therefore, G has two generators a and b subject to one of
the following sets of relations:

(1) a4 = e, b2 = e, b−1ab = a3;
(2) a4 = e, b2 = a2, b−1ab = a3.

In case (1), G is isomorphic to D8, while in case (2) G is isomorphic to
Q. We leave it as an exercise to check that Q and D8 are not isomorphic.

ut

(7.7) Remarks. (1) Propositions 7.5 and 7.6 together show that there are
precisely 5 distinct isomorphism classes of groups of order 8; 3 are abelian
and 2 are nonabelian.

(2) D8 is a semidirect product of Z4 and Z2 as was observed in Example
6.10 (2). However, Q is a nonsplit extension of Z2 by Z2 ×Z2. In fact Q is
not a semidirect product of proper subgroups.

Groups of Order 12

To classify groups of order 12, we start with the following result.

(7.8) Proposition. Let G be a group of order p2q where p and q are distinct
primes. Then G is the semidirect product of a p-Sylow subgroup H and a
q-Sylow subgroup K.

Proof. If p > q then H / G by Corollary 4.6.
If q > p then 1 + kq | p2 for some k ≥ 0. Since q > p, this can

only occur if k = 0 or 1 + kq = p2. The latter case forces q to divide
p2−1 = (p+1)(p−1). Since q > p, we must have q = p+1. This can happen
only if p = 2 and q = 3. Therefore, in the case q > p, the q-Sylow subgroup
K is a normal subgroup of G, except possibly when |G| = 22 · 3 = 12.
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To analyze this case, let K be a 3-Sylow subgroup of a group G of
order 12. If K is not normal in G, then the number of 3-Sylow subgroups
of G is 4. Let these 3-Sylow subgroups be K1, K2, K3, and K4. Then
K1 ∪K2 ∪K3 ∪K4 accounts for 9 distinct elements of G.

The remaining elements, together with the identity e, must form the
2-Sylow subgroup H of G. Hence, we must have H / G.

Therefore, we have shown that at least one of H (a p-Sylow subgroup
of G) or K (a q-Sylow subgroup of G) is normal in G. Since it is clear that
H ∩K = 〈e〉 and HK = G, it follows that G is a semidirect product of H
and K. ut

(7.9) Proposition. A nonabelian group G of order 12 is isomorphic to exactly
one of the following groups:

(1) A4,
(2) D12, or
(3) T = Z3 ×φ Z4 where φ : Z4 → Aut(Z3) ∼= Z2 is the nontrivial

homomorphism.

Proof. Let H be a 2-Sylow subgroup and K a 3-Sylow subgroup of G. By
Proposition 7.8 and the fact that G is nonabelian, exactly one of H and K
is normal in G.

Case 1: Suppose H /G. Then K is not normal in G. Since [G : K] = 4,
there is a permutation representation ΦK : G → S4. By Proposition 4.3,
Ker(ΦK) is the largest normal subgroup of G contained in K. Since K has
prime order and is not normal, it follows that G is injective so that

G ∼= Im(ΦK) ⊆ S4.

It is an easy exercise to show that A4 is the only subgroup of S4 of order
12; therefore, G ∼= A4 if the 2-Sylow subgroup is normal in G.

Case 2: Suppose K / G and H ∼= Z4. In this case

G ∼= Z3 ×φ Z4

where φ : Z4 → Aut(K) is a nontrivial homomorphism, but the only non-
trivial automorphism of Z3 is a 7→ a−1 where K = 〈a〉. In this case G ∼= T .

Case 3: Suppose K / G and H ∼= Z2 × Z2. Let K = 〈a〉 and let

φ : H → Aut(K) ∼= Z2

be the conjugation homomorphism. Then H ∼= (Ker(φ)) × Z2, so let
Ker(φ) = 〈c〉 and let d ∈ H with φ(d) 6= 1K . Then c−1ac = a and
d−1ad = a−1 = a2. Let b = ac. Then o(b) = 6, d /∈ 〈b〉, and

d−1bd = d−1acd = d−1adc = a2c = (ac)−1 = b−1.

Thus, G ∼= D12. ut
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It remains to consider the case of abelian groups of order 12.

(7.10) Proposition. If G is an abelian group of order 12, then G is isomor-
phic to exactly one of the following groups:

(1) Z12, or
(2) Z2 × Z6.

Proof. Exercise. ut

By combining the results of this section we arrive at the following table
of distinct groups of order at most 15. That is, every group of order ≤ 15
is isomorphic to exactly one group in this table.

Table 7.1. Groups of order ≤ 15

Abelian Nonabelian Total
Order Groups Groups Number

1 {e} 1
2 Z2 1
3 Z3 1
4 Z4 2

Z2 × Z2

5 Z5 1
6 Z6 S3 2
7 Z7 1
8 Z8 Q 5

Z4 × Z2 D8

Z2 × Z2 × Z2

9 Z9 2
Z3 × Z3

10 Z10 D10 2
11 Z11 1
12 Z12 A4 5

Z2 × Z6 D12

Z3 ×φ Z4

13 Z13 1
14 Z14 D14 2
15 Z15 1
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1.8 Exercises

1. Prove that Z∗n is a group. (See Example 1.2 (5).)

2. Prove that P(X) (Example 1.2 (8)) with the symmetric difference operation
is a group.

3. Write the Cayley diagram for the group S3.

4. Write the Cayley diagram for the group Z∗12.
5. Let G be a group, g ∈ G, and define a new multiplication · on G by the

formula a · b = agb for all a, b ∈ G. Prove that G with the multiplication · is
a group. What is the identity of G under ·? If a ∈ G what is the inverse of
a under ·?

6. Suppose that G is a set and · is an associative binary operation on G such
that there is an element e ∈ G with e · a = a for all a ∈ G and such that for
each a ∈ G there is an element b ∈ G with b · a = e. Prove that (G, ·) is a
group. The point of this exercise is that it is sufficient to assume associativity,
a left identity, and left inverses in order to have a group. Similarly, left can
be replaced with right in the hypotheses.

7. Prove that R∗ ×R is a group under the multiplication defined by

(a, b)(c, d) = (ac, ad + b).

Is this group abelian?

8. Prove that if a2 = e for all a in a group G, then G is abelian.

9. Let V ⊆ GL(2,R) be the set

V =
{[

1 0
0 1

]
,

[−1 0
0 1

]
,

[
1 0
0 −1

]
,

[−1 0
0 −1

] }
.

Prove that V is a subgroup of GL(2,R) that is isomorphic to the Klein
4-group.

10. For fixed positive integers b0, m0, and n0 consider the subset S ⊂ GL(3,Z)
defined by

S =

{[
1 m n
0 1 b
0 0 1

]
: m0 | m, n0 | n, b0 | b

}
.

When is S a subgroup? The notation a | b for integers a and b means that a
divides b.

11. Let G be a group and let a, b ∈ G be elements such that ab = ba.
(a) Prove that o(ab) | o(a)o(b).
(b) If ab = ba and 〈a〉 ∩ 〈b〉 = 〈e〉, show that

o(ab) = lcm{o(a), o(b)}.
(lcm{n, m} refers to the least common multiple of the integers n and
m.)

(c) If ab = ba and o(a) and o(b) are relatively prime, then o(ab) = o(a)o(b).
(d) Give a counterexample to show that these results are false if we do not

assume commutativity of a and b.

12. If σ : G → H is a group homomorphism then o(σ(a)) | o(a) for all a ∈ G
with o(a) < ∞. If σ is an isomorphism then o(σ(a)) = o(a).

13. (a) A group G is abelian if and only if the function f : G → G defined by
f(a) = a−1 is a group homomorphism.
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(b) A group G is abelian if and only if the function g : G → G defined by
g(a) = a2 is a group homomorphism.

14. Let G be the multiplicative group of positive real numbers and let H be
the additive group of all reals. Prove that G ∼= H. (Hint: Remember the
properties of the logarithm function.)

15. Write all the subgroups of S3.

16. Let G be a group and let H1, H2 be subgroups of G. Prove that H1 ∪H2 is
a subgroup of G if and only if H1 ⊆ H2 or H2 ⊆ H1. Is the analogous result
true for three subgroups H1, H2, H3?

17. If G is a finite group and H and K are subgroups, prove that

|H||K| = |H ∩K||HK|.
18. Prove that the intersection of two subgroups of finite index is a subgroup of

finite index. Prove that the intersection of finitely many subgroups of finite
index is a subgroup of finite index.

19. Let X be a finite set and let Y ⊆ X. Let G be the symmetric group SX and
define H and K by

H = {f ∈ G : f(y) = y for all y ∈ Y }
K = {f ∈ G : f(y) ∈ Y for all y ∈ Y }.

If |X| = n and |Y | = m compute [G : H], [G : K], and [K : H].

20. If G is a group let Z(G) = {a ∈ G : ab = ba for all b ∈ G}. Then prove
that Z(G) is an abelian subgroup of G. Z(G) is called the center of G. If
G = GL(n,R) show that

Z(G) = {aIn : a ∈ R∗}.

21. Let G be a group and let H ⊆ Z(G) be a subgroup of the center of G. Prove
that H / G.

22. (a) If G is a group, prove that the commutator subgroup G′ is a normal
subgroup of G, and show that G/G′ is abelian.

(b) If H is any normal subgroup of G such that G/H is abelian, show that
G′ ⊆ H.

23. If G is a group of order 2n show that the number of elements of G of order
2 is odd.

24. Let Q be the multiplicative subgroup of GL(2, C) generated by

A =
[

0 i
i 0

]
and B =

[
0 1
−1 0

]
.

(a) Show that A and B satisfy the relations A4 = I, A2 = B2, B−1AB =
A−1. (Thus, Q is a concrete representation of the quaternion group.)

(b) Prove that |Q| = 8 and list all the elements of Q in terms of A and B.
(c) Compute Z(Q) and prove that Q/Z(Q) is abelian.
(d) Prove that every subgroup of Q is normal.

25. Let n be a fixed positive integer. Suppose a group G has exactly one subgroup
H of order n. Prove that H / G.

26. Let H/G and assume that G/H is abelian. Show that every subgroup K ⊆ G
containing H is normal.

27. Let Gn be the multiplicative subgroup of GL(2, C) generated by

A =
[

ζ 0
0 ζ−1

]
and B =

[
0 1
1 0

]
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where ζ = exp(2πi/n). Verify that Gn is isomorphic to the dihedral group
D2n. (See Example 2.8 (13).)

28. Let G be a group of order n. If G is generated by two elements of order 2,
show that G ∼= Z2 × Z2 if n = 4 and G ∼= Dn if n > 4.

29. Let G be a nonabelian group of order 6. Prove that G ∼= S3.

30. (a) If H / G and [G : H] = n, then show that an ∈ H for all a ∈ G.
(b) Show that the result in part (a) is false if H is not normal in G.

31. Show that the alternating group A4 of order 12 does not have a subgroup
of order 6. (Hint: Find at least 8 elements of A4 that are squares, and apply
Exercise 30.)

32. Recall (Definition 4.13) that a group G is called a p-group if |G| = pn for
some integer n ≥ 1.
(a) If G is a p-group, show that Z(G) 6= 〈e〉. (Hint: Use the class equation

(Corollary 2.28).)
(b) If |G| = pn, show that G has a subgroup of order pm for every 0 ≤ m ≤ n.

33. Let G =
{[

a
0

b
1

]
∈ GL(2,R)

}
. Prove that G is a subgroup of GL(2,R) and

that G is isomorphic to the group R∗ ×R with the multiplication defined
in Exercise 7.

34. (a) Find all homomorphisms φ : Z → Zn.
(b) Find all homomorphisms φ : Z7 → Z16.
(c) What is a condition on finite cyclic groups G and H that ensures there

is a homomorphism φ : G → H other than the zero homomorphism?

35. Let Hom(Zn, Zm) be the set of all group homomorphisms from Zn to Zm. Let
d be the greatest common divisor of m and n. Show that |Hom(Zn, Zm)| = d.

36. If n is odd, show that D4n
∼= D2n × Z2.

37. Write the class equations (Corollary 2.28) for the quaternion group Q and
the dihedral group D8.

38. Verify that the alternating group A5 has no nontrivial normal subgroups.
(Hint: The class equation.) (The trivial subgroups of a group G are {e} and
G.) A group with no nontrivial normal subgroups is called simple. It is
known that An is simple for all n 6= 4.

39. Suppose that G is an abelian group of order n. If m | n show that G has a
subgroup of order m. Compare this result with Exercise 31.

40. (a) Write each of the following permutations as a product of disjoint cycles:

α =
(

1 2 3 4 5 6
6 5 4 1 2 3

)

β =
(

1 2 3 4 5 6 7 8
8 1 3 6 5 7 4 2

)

γ =
(

1 2 3 4 5 6 7 8 9
2 3 4 5 6 7 8 9 1

)

δ =
(

1 2 3 4 5 6 7 8 9
5 8 9 2 1 4 3 6 7

)
.

(b) Let σ ∈ S10 be the permutation

σ =
(

1 2 3 4 5 6 7 8 9 10
3 5 4 1 7 10 2 6 9 8

)
.

Compute o(σ) and calculate σ100.

41. Let H ⊆ Sn be defined by H = {f ∈ Sn : f(1) = 1}. Prove that H is a
subgroup of Sn that is isomorphic to Sn−1. Is H / Sn?

42. (a) Prove that an r−cycle is even (odd) if and only if r is odd (even).
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(b) Prove that a permutation σ is even if and only if there are an even
number of even order cycles in the cycle decomposition of σ.

43. Show that if a subgroup G of Sn contains an odd permutation then G has a
normal subgroup H with [G : H] = 2.

44. For α ∈ Sn, let

f̃(α) = |{(i, j) : 1 ≤ i < j and α(j) < α(i)}|.
(For example, if

α =
(

1 2 3 4 5
2 5 1 4 3

)
∈ S5,

then f̃(α) = 5.) Show that sgn(α) = 1 if f̃(α) is even and sgn(α) = −1 if

f̃(α) is odd. Thus, f̃ provides a method of determining if a permutation is
even or odd without the factorization into disjoint cycles.

45. (a) Prove that Sn is generated by the transpositions (1 2), (1 3), . . ., (1 n).
(b) Prove that Sn is generated by (1 2) and (1 2 · · · n).

46. In the group S4 compute the number of permutations conjugate to each of
the following permutations: e = (1), α = (1 2), β = (1 2 3), γ = (1 2 3 4), and
δ = (1 2)(3 4).

47. (a) Find all the subgroups of the dihedral group D8.
(b) Show that D8 is not isomorphic to the quaternion group Q. Note, how-

ever, that both groups are nonabelian groups of order 8. (Hint: Count
the number of elements of order 2 in each group.)

48. Construct two nonisomorphic nonabelian groups of order p3 where p is an
odd prime.

49. Show that any group of order 312 has a nontrivial normal subgroup.

50. Show that any group of order 56 has a nontrivial normal subgroup.

51. Show Aut(Z2 × Z2) ∼= S3.

52. How many elements are there of order 7 in a simple group of order 168? (See
Exercise 38 for the definition of simple.)

53. Classify all groups (up to isomorphism) of order 18.

54. Classify all groups (up to isomorphism) of order 20.


