- 1. The group \mathbb{Z}_n^* is the group of congruence classes $[a]_n$ of integers modulo n for which a and n are relatively prime. The group operation is multiplication of congruence classes. Write out multiplication tables for each of the groups \mathbb{Z}_9^* and \mathbb{Z}_{15}^* .
- 2. On the set $G = \mathbb{Q}^*$ of nonzero rational numbers, define a new multiplication by $a * b = \frac{ab}{2}$, for all a and b in G. Prove that G is a group under the operation *. Recall that this means that you must prove that * is an associative binary operation on G, that there is an identity element $e \in G$, and for each $a \in G$, there is a $b \in G$ for which ab = ba = e. Note that you must explicitly identify e, verify that it is an identity, and for each $a \in G$ you must explicitly identify the inverse element b and verify that it is in fact the inverse of a.
- 3. Let G be a group and let a and b be any elements of G. Show that $(ab)^2 = a^2b^2$ if and only if ab = ba. Explain why this shows that G is abelian if and only if the squaring map $\varphi: G \to G$ defined by $\varphi(a) = a^2$ is a group homomorphism.
- 4. Let G be a group and let a and b be any elements of G. Give a careful argument using induction to show that $(aba^{-1})^n = ab^na^{-1}$ for all positive integers n.

Do the following exercises from Chapter 1 of the text (pages 45 – 48): 7, 11