EXERCISE 1

We have $\mathbb{Z}_9^* = \{1, 2, 4, 5, 7, 8\}$ and $\mathbb{Z}_{15}^* = \{1, 2, 4, 7, 8, 11, 13, 14\}$. We get the following tables:

							×	1	2	4	7	8	11	13	14
×	1	2	4	5	7	8	1	1	2	4	7	8	11	13	14
1	1	2	4	5	7	8	2	2	4	8	14	1	7	11	13
2	2	4	8	1	5	7	4	4	8	1	13	2	14	7	11
4	4	8	7	2	1	5	7	7	14	13	4	11	2	1	8
5	5	1	2	7	8	4	8	8	1	2	11	4	13	14	7
7	7	5	1	8	4	2	11	11	7	14	2	13	1	8	4
8	8	7	5	4	2	1	13	13	11	7	1	14	8	4	2
							14	14	13	11	8	7	4	2	1

EXERCISE 2

We prove that $G = (\mathbb{Q}^*, *)$ is a group.

(1) associativity: for
$$a, b, c \in \mathbb{Q}^*$$
 we have
 $a * (b * c) = a * \frac{bc}{2} = \frac{a\frac{bc}{2}}{2} = \frac{abc}{4}$
 $(a * b) * c = \frac{ab}{2} * c = \frac{\frac{ab}{2}c}{2} = \frac{abc}{4}$
(2) The identity is 2 since $a * 2 = \frac{2a}{2} = a = 2 * a$
(3) If $a \in \mathbb{Q}^*$ then $a^{-1} = \frac{4}{a}$.

EXERCISE 3

(1) We prove that
$$(ab)^2 = a^2b^2$$
 if and only if $ab = ba$.

- (a) Sufficiency. Suppose that $(ab)^2 = a^2b^2$, it means that abab = aabb. Multiply both sides by a^{-1} on the left and by b^{-1} on the right.
- (b) Necessity. If now ab = ba then $(ab)^2 = (ab)(ab) = a(ba)b = a(ab)b = aabb$.
- (2) To answer the second question one just need to notice that $\varphi : a \mapsto a^2$ is a morphism if and only if $\varphi(ab) = \varphi(a)\varphi(b)$ (i.e. $(ab)^2 = a^2b^2$).

EXERCISE 3

- (1) for n = 1 we have $aba^{-1} = ab^1a^{-1}$.
- (2) If now $(aba^{-1})^n = ab^n a^{-1}$ the we have

 $(aba^{-1})^{n+1} = (aba^{-1})^n (aba^{-1}) = (ab^n a^{-1})(aba^{-1}) = (ab^n (a^{-1}a)ba^{-1}) = ab^{n+1}a^{-1}$

EXERCISE 4

We prove that $G = \mathbb{R}^* \times \mathbb{R}$ is a group under the multiplication defined by

$$(a,b)(c,d) = (ac,ad+b)$$

- (1) It is easy though tedious to check associativity.
- (2) The identity is given by (1,0)
- (3) If $(a,b) \in G$ then $(a,b)^{-1} = (\frac{1}{a}, -\frac{b}{a})$.

This group is not commutative. For instance we have (1,2)(2,1) = (2,3) and (2,1)(1,2) = (2,5).

EXERCISE 5

Let G be a group and $a, b \in G$ with ab = ba.

- (1) Let n = o(a) and k = o(b). Then $(ab)^{nk} = a^{nk}b^{nk} = (a^n)^k (b^k)^n = 1$, hence o(ab)|o(a)o(b). By using the very same argument, it is easy to see that under the same hypotheses we have o(ab)|lcm(o(a), o(b)).
- (2) Using the previous question, we know that m = o(ab)|lcm(o(a), o(b)). By definition of the order, we have $(ab)^m = e$ which leads to $a^m = b^{-m}$. But $\langle a \rangle \cap \langle b \rangle = e$ and thus it follows that $a^m = b^m = e$. Hence lcm(o(a), o(b))|o(ab).
- (3) Assume that ab = ba and that o(a) and o(b) are coprime. If $\langle a \rangle \cap \langle b \rangle = c \neq e$, we see that o(c)|o(a) and o(c)|o(b) which contradicts the hypothesis.

Hence $\langle a \rangle \cap \langle b \rangle = e$ and the previous question enables to conclude. (4) think of a symmetric group.