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Let σ : H → G be a homomorphism and let a ∈ H with o(a) < ∞. One can
restrict σ to < a >= K and call σ this restriction. Then it is well known that

(0.1) Im(σ) ∼= K/ker(σ)

The result follows by taking cardinals.
If now σ is an isomorphism from H to G, then σ is an isomorphism from K to

Im(σ). In particular in 0.1 one has ker(σ) = 1; that allows to conclude.
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Let G be a group of order 2n. Write G as the disjoint union

⋃

x∈G

{x, x−1} =


 ⋃

x∈G:x6=x−1

{x, x−1}

 ∪

( ⋃

x∈G:x=x−1

{x, x−1}
)

It is clear that the first union on the right hand side of the equality above has an
even number of elements; hence, so does the second union (since |G| is even). So,
there is an even number of elements of G such that x = x−1. These elements are
those of order 2 and the identity.
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(1) We have A =
(

0 i
i 0

)
; A2 = −Id; A3 = −A and A4 = Id. We also have

B =
(

0 1
−1 0

)
, B2 = −Id; B3 = −B and B4 = Id. From this it is clear

that A2 = B2. Also a short computation gives the last identity.
(2) Some computations show that Q = {Id, A, A2, A3, B,AB,A2B,A3B}.
(3) In order to find Z(Q) one should write a table and check what are the

elements commuting with everything. Doing these computations one finds
Z(Q) = {Id,A2}. Since Q/Z(Q) has order 4 it is either a cyclic group or
the klein group and therefore is abelian. Note that Q/Z(Q) is in fact the
klein group.

(4) It is clear that Z(Q) is normal in Q and that Z(Q) is the only subgroup
of order 2 in Q. Also it is clear that Q and {Id} are both normal in Q.
Finally for the subgroup of order 4 (i.e. of index 2) corollary (4.6) of the
book allows to conclude.

exercise 1

(1) It is clear that G is non empty. Let g =
(

x y
0 1

)
and g′ =

(
x′ y′

0 1

)
be in

G, then

gg′−1 =
(

x
x′ y − xy′

x′
0 1

)

To conclude, one needs to notice that x
x′ > 0 as long as x > 0, x′ > 0.
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Similarly H is not empty. For h =
(

x 0
0 1

)
and h′ =

(
x′ 0
0 1

)
be in G,

we have

hh′−1 =
(

x
x′
0 1

)

Again, x
x′ > 0 as long as x > 0, x′ > 0.

(2) H is not a normal subgroup of G. Indeed
(

1 1
0 1

)(
2 0
0 1

)(
1 1
0 1

)−1

=
(

2 −1
0 1

)
6∈ H

(3) sorry I don’t know how to insert pics in Tex :)

exercise 2

(1) One can define ϕ : Z→ G by φ(n) = an.
(2) In order to be able to factor ϕ through nZ, it is necessary and sufficient to

have nZ ⊂ ker(ϕ). In other words , one wants an = 1 (i.e. the order of a
must divide n).

(3) Here we use the additive notation. The morphism from Z→ Z/6Z are the
one sending
(a) n 7−→ 0
(b) n 7−→ 1 · n
(c) n 7−→ 2 · n
(d) n 7−→ 3 · n
(e) n 7−→ 4 · n
(f) n 7−→ 5 · n

And amongst the morphism above, the only one factoring through 2Z are
(a) and (d).

(4) The morphism from Z→ Z/8Z are the one defined by
(a) n 7−→ 0
(b) n 7−→ 1 · n
(c) n 7−→ 2 · n
(d) n 7−→ 3 · n
(e) n 7−→ 4 · n
(f) n 7−→ 5 · n
(g) n 7−→ 6 · n
(h) n 7−→ 7 · n
And amongst the morphism above, the only one factoring through 2Z are
(a), (c), (e) and (g).

exercise 3

(1) A morphism exists if o(g)|7.
(2) A morphism exists if o(g)|15.
(3) We use the notation of the previous exercise. The morphism is injective as

long as ker(ϕ) = 15Z (i.e. o(g) = 15).
(4) The morphism is surjective as long as Im(ϕ) = G (i.e. G =< g >; hence

G is cyclic).



3

exercise 4

Let G be a group and Z(G) be its center.
(1) Let a, b ∈ Z(G), then by the very definition of Z(G) we have ab = ba; hence

Z(G) is abelian.
(2) Let H ≤ Z(G). Let a ∈ G and let h ∈ H. Then ah = ha (since h ∈ Z(G)),

which rewrites as aha−1 = h. Thus aHa−1 = H.
(3) Let G = GL2(R). It is clear that {aI2 : a ∈ R∗} ⊂ Z(G). Let

M =
(

a b
c d

)
∈ Z(G)

We see that M must commute with
(

1 1
0 1

)
. Thus

(
a a + b
c c + d

)
=

(
a + c b + d

c d

)

That gives c = 0 and a = d. Also M must commute with
(

1 0
1 1

)
. Thus

(
a + b b

a a

)
=

(
a b
a a + b

)

that gives b = 0.


