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Let 0 : H — G be a homomorphism and let ¢ € H with o(a) < co. One can
restrict o to < a >= K and call ¢ this restriction. Then it is well known that

(0.1) Im(o) = K/ker (o)

The result follows by taking cardinals.
If now ¢ is an isomorphism from H to G, then & is an isomorphism from K to
Im(7). In particular in 0.1 one has ker(7) = 1; that allows to conclude.

P46 #23
Let G be a group of order 2n. Write G as the disjoint union

U {z,27'} = U {z, 27"} | U ( U {x,x1}>

zeG z€GixF£r—1 z€Giz=r—1

It is clear that the first union on the right hand side of the equality above has an
even number of elements; hence, so does the second union (since |G| is even). So,
there is an even number of elements of G such that = x~!. These elements are
those of order 2 and the identity.
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(1) We have A = (? (Z) ; A2 = —Id; A3 = —A and A* = Id. We also have
B = 0 1 , B2 = —Id; B> = —B and B* = Id. From this it is clear
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that A2 = B2. Also a short computation gives the last identity.

(2) Some computations show that Q = {Id, A, A%, A3, B, AB, A2B, A3B}.

(3) In order to find Z(Q) one should write a table and check what are the
elements commuting with everything. Doing these computations one finds
Z(Q) = {Id, A%}. Since Q/Z(Q) has order 4 it is either a cyclic group or
the klein group and therefore is abelian. Note that Q/Z(Q) is in fact the
klein group.

(4) Tt is clear that Z(Q) is normal in @ and that Z(Q) is the only subgroup
of order 2 in ). Also it is clear that @ and {Id} are both normal in Q.
Finally for the subgroup of order 4 (i.e. of index 2) corollary (4.6) of the
book allows to conclude.

EXERCISE 1

T y :LJ y/
(1) Tt is clear that G is non empty. Let g = (O 1) and ¢’ = ( 1) be in

0
G, then
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To conclude, one needs to notice that & > 0 as long as = > 0,2’ > 0.
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Similarly H is not empty. For h = (g (1)) and b/ = <96 (1)> be in G,
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Again, % > 0 as long as z > 0,2" > 0.
(2) H is not a normal subgroup of G. Indeed
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(3) sorry I don’t know how to insert pics in Tex :)

we have

EXERCISE 2

(1) One can define ¢ : Z — G by ¢(n) = a™.

(2) In order to be able to factor ¢ through nZ, it is necessary and sufficient to
have nZ C ker(y). In other words , one wants a” = 1 (i.e. the order of a
must divide n).

(3) Here we use the additive notation. The morphism from Z — Z/6Z are the
one sending

(a) n—0
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fy n—5-n
And amongst the morphism above, the only one factoring through 2Z are
(a) and (d).

(4) The morphism from Z — Z/8Z are the one defined by
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n+——~6-
n—7-n
amongst the morphism above, the only one factoring through 2Z are

(a), (¢), (e) and (g).
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EXERCISE 3

(1) A morphism exists if o(g)|7.

(2) A morphism exists if o(g)|15.

(3) We use the notation of the previous exercise. The morphism is injective as
long as ker(y) = 15Z (i.e. o(g) = 15).

(4) The morphism is surjective as long as Im(p) = G (i.e. G =< g >; hence
G is cyclic).



EXERCISE 4

Let G be a group and Z(G) be its center.

(1) Let a,b € Z(G), then by the very definition of Z(G) we have ab = ba; hence
Z(@G) is abelian.

(2) Let H < Z(G). Let a € G and let h € H. Then ah = ha (since h € Z(G)),
which rewrites as aha™! = h. Thus aHa™ ' = H.

(3) Let G = GLy(R). It is clear that {als : a € R*} C Z(G). Let

M= (CCL Z) € 72(@)

We see that M must commute with <(1) }

a a+b\ (a+c b+d
c c+d) c d

That gives ¢ =0 and a = d. Also M must commute with (1 O). Thus

1 1
a+b b\ f(a b
a al] \a a+0d

> . Thus

that gives b = 0.



