P45 #30

1. Suppose that H is a normal in G and suppose that [G : H] = n. We see that the quotient group G/H has order n. In particular we must have $\overline{a}^n = e$ for any $\overline{a} \in G/H$ (i.e. $a^n \in H$).

2. Take a subgroup generated by a transposition in S_3 .

P45 #31

Done in class.

P45 #32

Let G be a p-group (i.e. $|G| = p^n$).

1. We know that $|G| = |Z(G)| + \sum_{i=1}^{n} [G:C(a)]$ and it is easy to see that p divides [G:C(a)] for any $a \notin Z(G)$. In particular p divides $|G| - \sum_{i=1}^{n} [G:C(a)]$ and therefore divides |Z(G)|.

2. Suppose that $|G| = p^n$ and choose $a \in Z(G)$ such that $a \neq e$. Since $\langle a \rangle$ is a subgroup of Z(G), we see that $o(a) = p^k$ for some $k \neq 0$. In particular the order of $x = a^{p^{k-1}}$ must be p; hence $\langle x \rangle$ is a normal subgroup of G of order p. In this framework, $G/\langle x \rangle$ is a group of cardinal p^{n-1} and we can conclude by induction.

EXERCISE 1

(1) $\sigma = (1\ 3\ 7\ 5)(2\ 6\ 10\ 4\ 8); \ o(\sigma) = 20; \ \sigma \text{ is odd.}$ (2) $\tau = (1\ 3\ 7)(2\ 5\ 4)(6\ 9)(8\ 10); \ o(\tau) = 6; \ \tau \text{ is even.}$ (3) $\sigma^2 = (1\ 7)(3\ 5)(2\ 10\ 8\ 6\ 4); \ o(\tau) = 10; \ \sigma \text{ is even.}$ (4) $\sigma\tau = (1\ 7\ 3\ 5\ 8\ 4\ 6\ 9\ 10\ 2); \ o(\sigma\tau) = 10; \ \sigma \text{ is odd.}$ (5) $\tau\sigma = (1\ 7\ 4\ 10\ 2\ 9\ 6\ 8\ 5\ 3); \ o(\tau\sigma) = 10; \ \sigma \text{ is odd.}$ (6) $\sigma^2\tau = (1\ 5\ 2\ 3)(4\ 10\ 6\ 9); \ o(\tau\sigma) = 4; \ \sigma \text{ is even.}$ (7) $\sigma\tau\sigma^{-1} = (1\ 8\ 6)(2\ 4)(3\ 7\ 5)(9\ 10); \ o(\tau\sigma) = 6; \ \sigma \text{ is even.}$

EXERCISE 2

 σ and τ are conjugate by (3 4 5 7).

EXERCISE 3

1. Consider a set S with n elements. It is well known that the number of ordered subset of S of r elements is

$$P_r^n = \frac{n!}{(n-r)!}$$

But a r-cycle may be written by r different ways and therefore the number of r-cycles is

$$\frac{n!}{r(n-r)!} = \frac{1}{r}[(n)(n-1)\cdots(n-r+1)]$$

2.

cycle structure	number
(a)	1
(a b)	10
$(a \ b \ c)$	20
$(a \ b \ c \ d)$	30
$(a \ b \ c \ d \ e)$	24
(a b)(c d)	15
$(a \ b \ c)(d \ e)$	20

EXERCISE 4

(1) How many permutations in S_5 commute with (1 2 3), and how many *even* permutations commute with (1 2 3)? [*Hint:* Proposition (2.27) may be useful.]

Solution. Letting $G = S_5$ and $\sigma = (1, 2, 3)$, we see that

$$[G: C_G(\sigma)]$$
 = the number of conjugates of σ

= the number of permutations with cycle structure (12, 3)= 20 (from the table in Exercise 3(b)).

Since $[G: C_G(\sigma)] = |G| / |C_G(\sigma)| = 20$ we conclude that $|C_G(\sigma)| = 120/20 = 6$. Thus there are 6 permutations in S_5 that commute with $\sigma = (1, 2, 3)$. Since the powers of σ and any permutation that is disjoint with σ commutes with σ , we can list these six explicitly:

(1), (1, 2, 3), (1, 3, 2), (4, 5), (1, 2, 3)(4, 5), (1, 3, 2)(4, 5)

The first three of these are even and the last three are odd.

(2) Same question for $(1\ 2)(3\ 4)$.

Solution. Letting $G = S_5$ and $\sigma = (1, 2)(3, 4)$, we see that

 $[G: C_G(\sigma)] = \text{the number of conjugates of } \sigma$ = the number of permutations with cycle structure (12)(3, 4) = 15 (from the table in Exercise 3(b)).

 $\mathbf{2}$

Since $[G: C_G(\sigma)] = |G| / |C_G(\sigma)| = 15$ we conclude that $|C_G(\sigma)| = 120/15 = 8$. Thus there are 8 permutations in S_5 that commute with $\sigma = (1, 2)(3, 4)$. If $H = A_5$, then $C_H(\sigma) = H \cap C_G(\sigma)$ so that $C_H(\sigma) = C_G(\sigma)$ or if $C_H(\sigma) \neq C_G(\sigma)$ then there is an odd permutation $\alpha \in C_G(\sigma)$ and the multiplication map $\beta \mapsto \alpha\beta$ pairs up the even and odd elements of $C_G(\sigma)$. Hence, in this case exactly half of the elements of $C_G(\sigma)$ are even and half are odd. Since $\alpha = (1, 2)$ is odd and is in $C_G(\sigma)$, it follows that there are 4 even permutations that commute with σ .