
Exercise Set 4 Solutions Math 7200 Due: September 22, 2006

From the text (pages 45 – 48): 49, 50, 52.

1. Let G act on a set X. Assume that y = gx where g ∈ G and x, y ∈ X. Prove that the
stabilizers G(x) and G(y) are conjugate subgroups of G.

I Solution. Since G(z) = {a ∈ G : az = z} we have that

G(y) = {a ∈ G : ay = y}
= {a ∈ G : a(gx) = gx}
= {a ∈ G : (ag)x = gx}
=

{
a ∈ G : g−1((ag)x) = g−1(gx)

}

=
{
a ∈ G : (g−1ag)x = g−1((ag)x) = g−1(gx) = (g−1g)x = ex = x

}
.

Thus, a ∈ G(y) ⇐⇒ g−1ag ∈ G(x). Hence, g−1G(y)g = G(x), so G(x) and G(y) are
conjugate subgroups of G. J

2. Let G be a p-group with |G| = pn. Show that any subgroup of G of order pn−1 must
be normal in G.

I Solution. Since |G| = pn, it follows that p is the only prime dividing |G|, and
hence it is the smallest prime dividing |G|. According to Corollary 4.6, Page 24, any
subgroup H of G of index p must be normal in G. Since [G : H] = p ⇐⇒ |H| = pn−1,
it follows that any subgroup H of G of order pn−1 must be normal. J

3. Suppose that n ≥ 3. Is Sn isomorphic to a direct product An ×G where G is a group
of order 2? Naturally, a proof of your claim is required.

I Solution. Suppose that ϕ : An ×G → Sn, where |G| = 2, is a group isomorphism.
Then H = ϕ(eAn × G) is a normal subgroup of Sn of order 2, since eAn × G is a
normal subgroup of An×G of order |G| = 2 (see the discussion at the top of page 35).
But a subgroup H of Sn of order 2 is just H = {(1), σ} where σ is a permutation of
order 2. Since the order of a permutation is the least common multiple of the orders
of the disjoint cycles in the disjoint cycle decomposition, it follows that σ must be a
product of k disjoint 2-cycles, for some k ≥ 1. Any two products of k disjoint 2-cycles
in Sn are conjugate (Corollary 5.10, Page 33). Since n ≥ 3, if σ = (i1 j1) · · · (ik jk)
and m /∈ {i1, j1}, then τ = (j1 m)σ(j1 m) = (i1 m) · · · 6= σ. Hence H = {(1), σ}
is not closed under conjugation so H is not normal in Sn. Since we have shown that
there is no normal subgroup of Sn of order 2, it is impossible to have an isomorphism
Sn
∼= An ×G. J

4. List all 3-Sylow subgroups of A4 and list all 3-Sylow subgroups of S4.
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I Solution. Since |S4| = 24 = 3×8 and |A4| = 12, it follows that a 3-Sylow subgroup
of either A4 or S4 consists of a subgroup of order 3, which must then be cyclic since 3
is prime. The elements of order 3 in S4 consist of a 3-cycle, and all such elements are
also in A4. Thus there are 4 3-Sylow subgroups of A4 and S4:

H1 = 〈(1 2 3)〉 = {(1), (1 2 3), (1 3 2)}
H2 = 〈(1 2 4)〉 = {(1), (1 2 4), (1 4 2)}
H3 = 〈(1 3 4)〉 = {(1), (1 3 4), (1 4 3)}
H4 = 〈(2 3 4)〉 = {(1), (2 3 4), (2 4 3)}

J

5. List all 2-Sylow subgroups of S4 and find elements of S4 which conjugate one of these
into each of the others.

I Solution. Since |S4| = 24 = 8 × 3, it follows that a 2-Sylow subgroup of S4 is a
subgroup of order 8. The number of such 2-Sylow subgroups must be an odd number
that divides 3, so there are 1 or 3 subgroups of S4 of order 8. We claim that there
are in fact 3 subgroups of S4 of order 8. For an easy way to describe these subgroups,
start with a square in the plane, for example with vertices at (1, 1), (−1, 1), (−1, −1),
and (1, −1). Label these vertices as 1, 2, 3, and 4 in the order given. The group H of
symmetries of this square (rotations by 90◦, 180◦, 270◦, 360◦; reflections through the
two diagonals and through the x and y-axes), identified by the effect on the vertices,
gives a subgroup of S4 of order 8 (which is of course isomorphic to the dihedral group
D8. With these identifications we get a subgroup of S4

H1 = {(1), (1 2 3 4), (1 3)(2 4), (1 4 3 2), (1 3), (2 4), (1 2)(3 4), (1 4)(2 3)}

of order 8. If we now conjugate H1 by each of the transpositions (2 3) and (3 4), we
find that (2 3)H1(2 3) contains the two elements of order 4:

(1 3 2 4) = (2 3)(1 2 3 4)(2 3)

(1 4 2 3) = (2 3)(1 4 3 2)(2 3),

while (3 4)H1(3 4) contains the two elements of order 4:

(1 2 4 3) = (3 4)(1 2 3 4)(3 4)

(1 3 4 2) = (3 4)(1 4 3 2)(3 4).

Thus, H1, H2 = (2 3)H1(2 3), and H3 = (3 4)H1(3 4) are three different subgroups of
S4 of order 8 (since each of them contains 2 of the six 4-cycles of S4). Thus H1, H2 and
H3 are the 3 distinct 2-Sylow subgroups of S4, and each of them is already described
explicitly as a conjugate of H1. J

49. Show that any group of order 312 has a nontrivial normal subgroup.
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I Solution. Let G be a group of order 312. Since 312 = 8 × 3 × 13, there is a 13-
Sylow subgroup P of G which has order 13. Moreover, the number of such 13-Sylow
subgroups is congruent to 1 mod 13 and divides 24, so there is exactly 1 such subgroup.
Since there is only one subgroup of order 13, it is normal because any conjugate of a
group of order 13 must be another group of order 13. J

50. Show that any group of order 56 has a nontrivial normal subgroup.

I Solution. Let G be a group of order 56 = 8 × 7. By Sylow’s theorem there will
be either 1 or 8 7-Sylow subgroups of G (since the number of such subgroups must be
congruent to 1 mod 7 and divide 8). If there is only one subgroup of order 7, then it
must be normal since any conjugate of a subgroup of order 7 must be another subgroup
of order 7. If there are 8 distinct subgroups of order 7, then since 7 is prime, any two
of these subgroups of order 7 can intersect only in the identity. Thus these 8 subgroups
account for 49 of the 56 elements of G; namely the 8 × 6 = 48 elements of order 7
(6 in each of the 8 subgroups) plus the identity. Then remaining 7 elements plus the
identity must then constitute the 2-Sylow subgroup of G, which has order 8. Thus
there is a unique 2-Sylow subgroup of G, which must then be normal, in case there are
more than one 7-Sylow subgroups. Hence, G has either a normal 7-Sylow subgroup or
a normal 2-Sylow subgroup. J

52. How many elements are there of order 7 in a simple group of order 168?

I Solution. Let G be a simple group of order 168 = 7 × 24. Since G is not simple,
there must be more than one 7-Sylow subgroup. As in the previous exercise, the
number of 7-Sylow subgroups must be 8 and these 8 subgroups account for 8× 6 = 48
elements of order 7. J

3


