Math 7200

From the text (pages 45 - 48): 49, 50, 52.

- 1. Let G act on a set X. Assume that y = gx where $g \in G$ and $x, y \in X$. Prove that the stabilizers G(x) and G(y) are conjugate subgroups of G.
 - ▶ Solution. Since $G(z) = \{a \in G : az = z\}$ we have that

$$\begin{array}{lll} G(y) &=& \left\{ a \in G : ay = y \right\} \\ &=& \left\{ a \in G : a(gx) = gx \right\} \\ &=& \left\{ a \in G : (ag)x = gx \right\} \\ &=& \left\{ a \in G : g^{-1}((ag)x) = g^{-1}(gx) \right\} \\ &=& \left\{ a \in G : (g^{-1}ag)x = g^{-1}((ag)x) = g^{-1}(gx) = (g^{-1}g)x = ex = x \right\}. \end{array}$$

Thus, $a \in G(y) \iff g^{-1}ag \in G(x)$. Hence, $g^{-1}G(y)g = G(x)$, so G(x) and G(y) are conjugate subgroups of G.

2. Let G be a p-group with $|G| = p^n$. Show that any subgroup of G of order p^{n-1} must be normal in G.

▶ Solution. Since $|G| = p^n$, it follows that p is the only prime dividing |G|, and hence it is the smallest prime dividing |G|. According to Corollary 4.6, Page 24, any subgroup H of G of index p must be normal in G. Since $[G : H] = p \iff |H| = p^{n-1}$, it follows that any subgroup H of G of order p^{n-1} must be normal.

3. Suppose that $n \ge 3$. Is S_n isomorphic to a direct product $A_n \times G$ where G is a group of order 2? Naturally, a proof of your claim is required.

▶ Solution. Suppose that $\varphi : A_n \times G \to S_n$, where |G| = 2, is a group isomorphism. Then $H = \varphi(e_{A_n} \times G)$ is a normal subgroup of S_n of order 2, since $e_{A_n} \times G$ is a normal subgroup of $A_n \times G$ of order |G| = 2 (see the discussion at the top of page 35). But a subgroup H of S_n of order 2 is just $H = \{(1), \sigma\}$ where σ is a permutation of order 2. Since the order of a permutation is the least common multiple of the orders of the disjoint cycles in the disjoint cycle decomposition, it follows that σ must be a product of k disjoint 2-cycles, for some $k \ge 1$. Any two products of k disjoint 2-cycles in S_n are conjugate (Corollary 5.10, Page 33). Since $n \ge 3$, if $\sigma = (i_1 \ j_1) \cdots (i_k \ j_k)$ and $m \notin \{i_1, j_1\}$, then $\tau = (j_1 \ m)\sigma(j_1 \ m) = (i_1 \ m)\cdots \neq \sigma$. Hence $H = \{(1), \sigma\}$ is not closed under conjugation so H is not normal in S_n . Since we have shown that there is no normal subgroup of S_n of order 2, it is impossible to have an isomorphism $S_n \cong A_n \times G$.

4. List all 3-Sylow subgroups of A_4 and list all 3-Sylow subgroups of S_4 .

▶ Solution. Since $|S_4| = 24 = 3 \times 8$ and $|A_4| = 12$, it follows that a 3-Sylow subgroup of either A_4 or S_4 consists of a subgroup of order 3, which must then be cyclic since 3 is prime. The elements of order 3 in S_4 consist of a 3-cycle, and all such elements are also in A_4 . Thus there are 4 3-Sylow subgroups of A_4 and S_4 :

$$\begin{array}{rcl} H_1 &=& \langle (1\ 2\ 3) \rangle = \{(1),\ (1\ 2\ 3),\ (1\ 3\ 2) \} \\ H_2 &=& \langle (1\ 2\ 4) \rangle = \{(1),\ (1\ 2\ 4),\ (1\ 4\ 2) \} \\ H_3 &=& \langle (1\ 3\ 4) \rangle = \{(1),\ (1\ 3\ 4),\ (1\ 4\ 3) \} \\ H_4 &=& \langle (2\ 3\ 4) \rangle = \{(1),\ (2\ 3\ 4),\ (2\ 4\ 3) \} \end{array}$$

5. List all 2-Sylow subgroups of S_4 and find elements of S_4 which conjugate one of these into each of the others.

▶ Solution. Since $|S_4| = 24 = 8 \times 3$, it follows that a 2-Sylow subgroup of S_4 is a subgroup of order 8. The number of such 2-Sylow subgroups must be an odd number that divides 3, so there are 1 or 3 subgroups of S_4 of order 8. We claim that there are in fact 3 subgroups of S_4 of order 8. For an easy way to describe these subgroups, start with a square in the plane, for example with vertices at (1, 1), (-1, 1), (-1, -1), and (1, -1). Label these vertices as 1, 2, 3, and 4 in the order given. The group H of symmetries of this square (rotations by 90°, 180°, 270°, 360°; reflections through the two diagonals and through the x and y-axes), identified by the effect on the vertices, gives a subgroup of S_4 of order 8 (which is of course isomorphic to the dihedral group D_8 . With these identifications we get a subgroup of S_4

$$H_1 = \{(1), (1 \ 2 \ 3 \ 4), (1 \ 3)(2 \ 4), (1 \ 4 \ 3 \ 2), (1 \ 3), (2 \ 4), (1 \ 2)(3 \ 4), (1 \ 4)(2 \ 3)\}$$

of order 8. If we now conjugate H_1 by each of the transpositions (2 3) and (3 4), we find that (2 3) $H_1(2 3)$ contains the two elements of order 4:

while $(3 \ 4)H_1(3 \ 4)$ contains the two elements of order 4:

$$(1 2 4 3) = (3 4)(1 2 3 4)(3 4) (1 3 4 2) = (3 4)(1 4 3 2)(3 4).$$

Thus, H_1 , $H_2 = (2 \ 3)H_1(2 \ 3)$, and $H_3 = (3 \ 4)H_1(3 \ 4)$ are three different subgroups of S_4 of order 8 (since each of them contains 2 of the six 4-cycles of S_4). Thus H_1 , H_2 and H_3 are the 3 distinct 2-Sylow subgroups of S_4 , and each of them is already described explicitly as a conjugate of H_1 .

49. Show that any group of order 312 has a nontrivial normal subgroup.

▶ Solution. Let *G* be a group of order 312. Since $312 = 8 \times 3 \times 13$, there is a 13-Sylow subgroup *P* of *G* which has order 13. Moreover, the number of such 13-Sylow subgroups is congruent to 1 mod 13 and divides 24, so there is exactly 1 such subgroup. Since there is only one subgroup of order 13, it is normal because any conjugate of a group of order 13 must be another group of order 13.

50. Show that any group of order 56 has a nontrivial normal subgroup.

▶ Solution. Let *G* be a group of order $56 = 8 \times 7$. By Sylow's theorem there will be either 1 or 8 7-Sylow subgroups of *G* (since the number of such subgroups must be congruent to 1 mod 7 and divide 8). If there is only one subgroup of order 7, then it must be normal since any conjugate of a subgroup of order 7 must be another subgroup of order 7. If there are 8 distinct subgroups of order 7, then since 7 is prime, any two of these subgroups of order 7 can intersect only in the identity. Thus these 8 subgroups account for 49 of the 56 elements of *G*; namely the $8 \times 6 = 48$ elements of order 7 (6 in each of the 8 subgroups) plus the identity. Then remaining 7 elements plus the identity must then constitute the 2-Sylow subgroup of *G*, which has order 8. Thus there is a unique 2-Sylow subgroup of *G*, which must then be normal, in case there are more than one 7-Sylow subgroups. Hence, *G* has either a normal 7-Sylow subgroup or a normal 2-Sylow subgroup.

52. How many elements are there of order 7 in a simple group of order 168?

▶ Solution. Let *G* be a simple group of order $168 = 7 \times 24$. Since *G* is not simple, there must be more than one 7-Sylow subgroup. As in the previous exercise, the number of 7-Sylow subgroups must be 8 and these 8 subgroups account for $8 \times 6 = 48$ elements of order 7.