From the text (pages 98 - 106): 9, 14, 18

1. Recall that if R is a ring, then R^* denotes the group of units of R. Also, if n is a natural number, then the Euler phi function is defined as

 $\varphi(n) = \left| \mathbb{Z}_n^* \right| = \left| \left\{ m: 1 \le m < n \text{ with } \gcd(n, m) = 1 \right\} \right|.$

- (a) If R and S are rings, show that $(R \times S)^* \cong R^* \times S^*$.
- (b) Verify that φ is a multiplicative function. That is, show that $\varphi(nm) = \varphi(n)\varphi(m)$ if *n* and *m* are relatively prime. (*Hint:* Part (a) may be useful.)
- (c) If p is a prime, show that $\varphi(p^k) = p^k p^{k-1}$.
- (d) Prove the following formula for $\varphi(n)$:

$$\varphi(n) = n\left(1 - \frac{1}{p_1}\right)\cdots\left(1 - \frac{1}{p_s}\right),$$

where p_1, \ldots, p_k are the distinct prime divisors of n.

- 2. Let $\varphi: R \to S$ be a homomorphism of commutative rings. Recall that if $A \subseteq S$, then $\varphi^{-1}(A) = \{r \in R : \varphi(r) \in A\}$
 - (a) Prove that if P is a prime ideal of S, then $\varphi^{-1}(P)$ is a prime ideal of R. Apply this to the special case where R is a subring of S and φ is the inclusion homomorphism to conclude that if P is a prime ideal of S, then $P \cap R$ is a prime ideal of R.
 - (b) Prove that if M is a maximal ideal of S and φ is surjective, then $\varphi^{-1}(M)$ is a maximal ideal of R. Give an example to show that this need not be the case if φ is not surjective.
- 3. Assume that R is commutative and let $f(X) \in R[X]$ be a monic polynomial of degree $n \ge 1$. Let $S = R[X]/\langle f(X) \rangle$ be the quotient ring. Thus, a typical element of <u>S</u> is a coset $p(X) + \langle f(X) \rangle$, which we will denote more succinctly by the bar notation $\overline{p(X)}$.
 - (a) Show that every element of S is of the form $\overline{p(X)}$ for some polynomial $p(X) \in R[X]$ of degree less than n. That is,

$$R[X]/\langle f(X)\rangle = \left\{\overline{a_0 + a_1X + \dots + a_{n-1}X^{n-1}} : a_0, a_1, \dots, a_{n-1} \in R\right\}.$$

- (b) Prove that if p(X) and q(X) are distinct polynomials in R[X] which are both of degree less than n, then $\overline{p(X)} \neq \overline{q(X)}$. Thus, the representation of elements of $R[X]/\langle f(X) \rangle$ given in part (a) is unique.
- (c) If f(X) = a(X)b(X) where a(X) and b(X) have degree less than n, prove that $\overline{a(X)}$ is a zero divisor in $R[X]\langle f(X)\rangle$.
- 4. Let $f(X) = X^2 + X + 1 \in \mathbb{Z}_2[X]$, and use the bar notation introduced in the previous exercise to denote passage to the quotient ring $S = \mathbb{Z}_2[X]/\langle f(X) \rangle$.

- (a) Show that S has 4 elements: $\overline{0}$, $\overline{1}$, \overline{X} , and $\overline{X+1}$.
- (b) Write out the addition table for S and deduce that the additive group of S is isomorphic to the abelian group $\mathbb{Z}_2 \times \mathbb{Z}_2$.
- (c) Write out the multiplication table for S and prove that S^* is isomorphic to the cyclic group of order 3. Deduce that S is a field.
- 5. Let $f(X) = X^3 2X + 1 \in \mathbb{Z}[X]$, and use bar notation to denote passage to the quotient ring $S = \mathbb{Z}[X]/\langle f(X) \rangle$. Let $p(X) = 2x^7 7X^5 + 4X^3 9X + 1$ and let $q(X) = (X-1)^4$.
 - (a) Express each of the following elements of S in the form $\overline{g(X)}$ for some polynomial g(X) of degree ≤ 2 : $\overline{p(X)}, \overline{q(X)}, \overline{p(X) + q(X)}, \overline{p(X)q(X)}.$
 - (b) Prove that S is not an integral domain.
 - (c) Prove that \overline{X} is a unit in S.