Exercise Set 5 Math 7200 Due: October 13, 2006

From the text (pages 98 — 106): 9, 14, 18

1. Recall that if R is a ring, then R* denotes the group of units of R. Also, if n is a
natural number, then the Euler phi function is defined as

(a)

on)=1Z;] = |{m:1 <m < n with ged(n, m) = 1}|.
If R and S are rings, show that (R x S)* = R* x S*.

» Solution. Since (7, s)(t, v) = (rt, sv) = (1, 1) ifand only if rt = 1 and sv = 1,
it follows that (r, s) € (RxS)*if and only if r € R* and s € S*. Thus, the identity
map [ : R xS — R x S takes (R x S)* bijectively to R* x S*, and the identity
map is multiplicative, so it is a group isomorphism. <

Verify that ¢ is a multiplicative function. That is, show that ¢(nm) = ¢(n)p(m)
if n and m are relatively prime. (Hint: Part (a) may be useful.)

» Solution. According to the Chinese Remainder Theorem (see Corollary 2.25,
Page 66), if m and n are relatively prime, there is an isomorphism of rings:

Loy = Loy X oy
Then using part (a) and the definition of ¢ given above:

p(mn) = |Zyy| = |(Zm X Ln)*| = |Zy, X Lp| = |2, | |Z] = p(m)p(n).

If p is a prime, show that go(pk) = pk — pF1L,

» Solution. To compute p(p¥), it is necessary to find the number of integers
between 1 and p* that are not divisible by p (since ged(p*, m) = 1 if and only if
p1m), that is, if and only if m is not a multiple of p. But the multiples of p less
than or equal to p* are the integers pr where 1 < r < p*~1, a total of p*~! integers.

Hence there are p¥ — p*~! integers between 1 and p* that are not multiples of p.

Hence p(p*) = p* — p*~ L. <

Prove the following formula for ¢(n):

ea(i-2)-1-3).

where pq, ..., pi are the distinct prime divisors of n.

» Solution. Write n in its prime factorization

71 T2 Tk
n=p;pPy P>




Exercise Set 5 Math 7200 Due: October 13, 2006

where each exponent r; > 1. Then using parts (b) and (c) gives

p(n) = o@i'py - )
= (1) e(rh ) o(py")

= (' ”11) py ) (oh = PR 1)1

) )
1

e () ()

<

2. Let p: R — S be a homomorphism of commutative rings. Recall that if A C S, then
¢ (A)={reR:p(r) € A}

(a)

Prove that if P is a prime ideal of S, then ¢ ~1(P) is a prime ideal of R. Apply this
to the special case where R is a subring of S and ¢ is the inclusion homomorphism
to conclude that if P is a prime ideal of S, then P N R is a prime ideal of R.

» Solution. First observe that if 7 C S is any ideal, then (1) is an ideal of
R. To see this, note that if ¢ and b are in ¢ ~!(I) and r € R, then ¢(a) € I and
©o(b) € I, while p(r) € S. Since ¢ is a ring homomorphism and [ is an ideal of
S, it follows that ¢(a —b) = ¢(a) — p(b) € I, and p(ra) = ¢(r)p(a) € I. Hence
a — b and ra are in ¢ *(I). Now suppose that ab € ¢*(P). This means that
@(ab) € P. But p(ab) = p(a)p(b). Since P is prime, it follows that ¢(a) or ¢(b)
is in P, which means that a or b is in p~'(P). Hence o~ !(P) is prime once we
have observed that ¢~ !'(P) # R. But ¢(lg) = 1g ¢ P (since P is a prime ideal
of S) so that 1z ¢ p '(P).

If R is a subring of S, then let ¢ be the inclusion map ¢(r) = r. Then ¢~1(P) =
PN R in this situation, so PN R is a prime idea of R whenever P is a prime ideal
of S. <

Prove that if M is a maximal ideal of S and ¢ is surjective, then ¢ (M) is a
maximal ideal of R. Give an example to show that this need not be the case if ¢
is not surjective.

» Solution. Let 7w : S — S/M be the canonical projection map onto the quotient
ring, and let ¢y = m o ¢ so that ) : R — S/M by means of the formula ¢ (r) =
@(r) + M. Thus, Ker(¢) = {r € R: ¢(r) € M} = o= }(M). Since ¢ is surjective
it follows that v is surjective (if s+ M € S/M and ¢(r) = s then ¢(r) = s+ M).
Thus,

Rf™ (M) = R/ Ker($) = Tm() = /M,
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and since M is a maximal ideal of S, S/M is a field. Hence, R/~ (M) is a field
and p~!(M) is a maximal ideal of R.
For an example where the result fails if ¢ is not surjective, let ¢ : Z — Q be the

inclusion homomorphism ¢(n) = n. Then M = {0} is a maximal ideal of the field
Q, but o= 1(M) = {0} is not a maximal ideal of Z. |

3. Assume that R is commutative and let f(X) € R[X] be a monic polynomial of degree
n > 1. Let S = R[X]/{f(X)) be the quotient ring. Thus, a typical element of S is a
coset p(X) + (f(X)), which we will denote more succinctly by the bar notation p(X).

(a)

Show that every element of S is of the form p(X) for some polynomial p(X) €
R[X] of degree less than n. That is,

RIX]/((X)) = {a + e X+ F a1 X7 s ao, ar, oo 4y € R}

» Solution. Let g(X) € R[X] be arbitrary. By the division algorithm, we can
write g(X) = f(X)q¢(X) + p(X) where p(X) is 0 or degp(X) < n. Applying
the bar notation is a ring homomorphism (it is just the projection map h(X) —
h(X) + (f(X))). Thus

9(X) = f(X)q(X) + p(X) = p(X).

Since deg p(X) < n — 1, p(X) has the requested form. <

Prove that if p(X) and ¢(X) are distinct polynomials in R[X] which are both of
degree less than n, then p(X) # ¢(X). Thus, the representation of elements of
R[X]/{f(X)) given in part (a) is unique.

» Solution. p(X) = ¢(X) if and only if f(X) divides p(X) — ¢(X). Since
deg f(X) = n and deg(p(X) — ¢(X)) < n unless p(X) — ¢(X) = 0, the only way
that f(X) can divide p(X) — ¢(X) is if p(X) — ¢(X) = 0. That is, p(X) = q(X)
if and only if p(X) = ¢(X). <

If f(X) = a(X)b(X) where a(X) and b(X) have degree less than n, prove that
a(X) is a zero divisor in R[X]/(f(X)).

» Solution. It is only necessary to observe that 0 = f(X) = a(X)b(X) and by
the previous part a(X) # 0 and b(X) # 0. <

4. Let f(X) = X%+ X + 1 € Zy[X], and use the bar notation introduced in the previous
exercise to denote passage to the quotient ring S = Zo[ X|/{f(X)).

(a)

Show that S has 4 elements: 0, I, X, and X + 1.

» Solution. Since Z, has two elements, namely, 0 and 1, there are 4 polynomials
of degree < 2: 0, 1, X, and X + 1. By part (a) of the previous exercise, S has
the 4 elements that are the bars of these 4 polynomials. <
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(b) Write out the addition table for S and deduce that the additive group of S is
isomorphic to the abelian group Zs X Z,.

» Solution. _ _ o
- 0 1 X X+1
0 0 1 X X+1
1 1 0 X+1 X
X X X+1 0 1
X+1|X+1 X 1 0

This group of order 4 has every element of order 2 (look at all the elements 0 on
the diagonal). Thus, it is isomorphic to Zg X Zs. <

(c) Write out the multiplication table for S and prove that S* is isomorphic to the
cyclic group of order 3. Deduce that S is a field.

» Solution. _ _ o
. 0 1 X  X+1
0 |0 0 0 0
1 |0 1 X X+1
X |0 X X+1 1
X+1/0 X+1 1 X
= { X+ 1} is a cyclic group of order 3 generated by X since X =X+1
dX = T Since S* is a group, S is a field. <

5. Let f(X) = X? —2X + 1 € Z[X], and use bar notation to denote passage to the
quotient ring S = Z[X]/(f(X)). Let p(X) = 22" — 7X° + 4X? — 9X + 1 and let
g(X) = (X - D"

(a) Express each of the following elements of S in the form g(X) for some polynomial

9(X) of degree < 2: p(X), ¢(X), p(X) + ¢(X), p(X)q(X).

» Solution. Applying the division algorithm:

p(X) = (X*-2X+1)(2X* -3X? —2X —2) 4+ (- X? - 11X + 3)
= f(X)h(X)+ (—X*—11X +3), and

¢(X) = X' —4X34+6X?—4X +1
= (X?—2X +1)(X —4) + (8X* - 13X +5)
= f(X)ho(X) + (8X* — 13X +5).

Thus, p(X) = —X2 — 11X 4 3 and ¢(X) = 8X? — 13X + 5. Since the bar oper-

ation is a ring homomorphism, it follows that

p(X)+q(X)=7X2—-24X +38,
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while

p(X)g(X) = (—X2—11X +3)(8X2 — 13X +5)
= —8XT-75X%+162X2 — 94X + 15
= —8XT-T75X?%+162X2 — 94X + 15
= —8(2X2 - X) —75(2X — 1) + 162X% — 94X + 15
146X — 236X + 90.

Note that we have used the reductions 73 = 92X —1 and X% = 2X2 — X which
follow from the fact that X3 —2X +1=01in S. <

(b) Prove that S is not an integral domain.

» Solution. Since f(X) = X*—-2X +1 = (X*4+ X — 1)(X — 1) we conclude
that

I=fX) =X+ X-D(X -1

and since X2 + X; and X — 1 are both nonzero in S, we conclude that both of
these elements are zero divisors, so that S is not an integral domain. <

(¢) Prove that X is a unit in S.

» Solution. Note that X (2 — X2) = 1 since X(2 — X?) — 1 = —f(X). Thus X

is a unit with inverse 2 — X2. <

Text Exercises:

9.

14.

» Solution. Ideals of Zgy: Since Zgy = Z/{60), the ideals of Zgy are all ideals of the
form I+ (60) = (n) where I = (n) is an ideal of Z containing (60). Thus, the ideals of
Zgo are the ideals (n) where n is a divisor of 60. Thus, n =1, 2, 4, 3, 5, 6, 10, 12, 15,
20, 30, or 60. The prime ideals and the maximal ideals are those ideals in the above
list where n is prime, i.e., n = 2, 3, or 5.

The nilpotent elements of Zg, are the elements of the ideal (30), since an integer a
satisfies ™ = 0 (mod 60) if and only if 60|a™ for some m € N if and only if a is
divisible by each of the prime divisors of 60, that is 2, 3, and 5. Hence, a™ = 0 €
Ly <— 30|a |

» Solution. Define a ring homomorphism ¢ : Z — Z[i|/(3 + i) by the formula
o(n) =n+ (3+1).

The required isomorphism is derived from the first isomorphism theorem if we can
show that ¢ is surjective and that Ker(¢) = (10).
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18.

¢ is surjective: To see this, we need to show that every coset (k 4+ mi) + (3 + i) in
the quotient ring Z[i]/(3 + i) contains an ordinary integer n. But in Z[i]/(3 + ), the
element 3+ is set to 0, so that, in this quotient ring, 3 = —i. This suggests that there
is an equality of cosets

(k+mi)+ (3+1) = (k—3m)+ (3+1),
which we can check formally to be true by observing that
(k+mi) — (k—3m) =m(3+1) € (3+1).

Thus, ¢(k —3m) = (k —3m) + (34 1) = (k+mi) + (3 + 1), so @ is surjective.

Ker(p) = (10): Suppose ¢(n) = 0 = 0+ (3+1i). Thus, we are assuming that n € (3+1),
which means that n = (r + si)(3 + i) = (3r — s) + (3s + r)i. Since n € Z this means
that the imaginary part 3s +r = 0 so r = —3s, which means n = 3r — s = —10s so
10|n, and Ker(y) C (10). Since 10 = (3 +)(3 — i), we have that 10 € Ker(y). Hence,
Ker(yp) = (10).

Now by the isomorphism theorem: Z,o = Z/ Ker(p) = Im(p) = Z[i] /(3 + 7). <

(a) Given the complex number z = 1 + 4, let ¢ : R[X] — C be the substitution
homomorphism determined by z. Compute Ker(¢).

» Solution. If f(X) € R[X], then ¢(f(X)) = f(2) = f(1 +1). If f(X) €
Ker(¢) then f(1+44) = 0. For any w € C, since complex conjugation is a ring
homomorphism, it follows that f(w) = f(w). Thus, f(1 —i) = 0 whenever
f(X) € R[X] and f(1+ i) =0. Thus, by the remainder theorem (Corollary 4.5,
Page 75), if f(X) € Ker(¢), then (X — (14 4)) and (X — (1 — 7)) both divide
f(X) in C[X], so that X? —2X +2 = (X — (144))(X — (1 — 1)) divides f(X) in
C[X]. This suggests that Ker(¢) = (X? — 2X + 2). To see it formally, note that
X?2—2X+4+2=(X—(1+1))(X —(1—1)), so certainly X?—2X +2 € Ker(¢). Now
let f(X) € R[X] be any polynomial in Ker(¢). Now divide f(X) by X? —2X +2
in R[X] to get

f(X) = (X?*-2X +2)¢(X) +aX +b.
Since f(X) € Ker(¢), it follows that

0=f(1+i¢) =al+i)+b=(a+b)+ ai.

Since a and b are real, it follows that a = b = 0, so (X? — 2X + 2) divides f(X).
Hence, we conclude that Ker(¢) = (X? — 2X + 2), as required. <

(b) The substitution homomorphism ¢ : R[X| — C given by ¢(f(X)) = f(1+4) (from
part (a)) is a surjective homomorphism with Ker(¢) = (X? — 2X + 2). Thus, ¢
induces a isomorphism ¢ : R[X]/(X? — 2X + 2) — C. This is given explicitly by
daX + b+ (X2 —2X +2)) =a(l +1) +b.




