
Exercise Set 5 Math 7200 Due: October 13, 2006

From the text (pages 98 – 106): 9, 14, 18

1. Recall that if R is a ring, then R∗ denotes the group of units of R. Also, if n is a
natural number, then the Euler phi function is defined as

ϕ(n) = |Z∗n| = |{m : 1 ≤ m < n with gcd(n, m) = 1}| .

(a) If R and S are rings, show that (R× S)∗ ∼= R∗ × S∗.

I Solution. Since (r, s)(t, v) = (rt, sv) = (1, 1) if and only if rt = 1 and sv = 1,
it follows that (r, s) ∈ (R×S)∗ if and only if r ∈ R∗ and s ∈ S∗. Thus, the identity
map I : R × S → R × S takes (R × S)∗ bijectively to R∗ × S∗, and the identity
map is multiplicative, so it is a group isomorphism. J

(b) Verify that ϕ is a multiplicative function. That is, show that ϕ(nm) = ϕ(n)ϕ(m)
if n and m are relatively prime. (Hint: Part (a) may be useful.)

I Solution. According to the Chinese Remainder Theorem (see Corollary 2.25,
Page 66), if m and n are relatively prime, there is an isomorphism of rings :

Zmn
∼= Zm × Zn.

Then using part (a) and the definition of ϕ given above:

ϕ(mn) = |Z∗mn| = |(Zm × Zn)∗| = |Z∗m × Z∗n| = |Z∗m| |Z∗n| = ϕ(m)ϕ(n).

J

(c) If p is a prime, show that ϕ(pk) = pk − pk−1.

I Solution. To compute ϕ(pk), it is necessary to find the number of integers
between 1 and pk that are not divisible by p (since gcd(pk, m) = 1 if and only if
p - m), that is, if and only if m is not a multiple of p. But the multiples of p less
than or equal to pk are the integers pr where 1 ≤ r ≤ pk−1, a total of pk−1 integers.
Hence there are pk − pk−1 integers between 1 and pk that are not multiples of p.
Hence ϕ(pk) = pk − pk−1. J

(d) Prove the following formula for ϕ(n):

ϕ(n) = n

(
1− 1

p1

)
· · ·

(
1− 1

pk

)
,

where p1, . . ., pk are the distinct prime divisors of n.

I Solution. Write n in its prime factorization

n = pr1
1 pr2

2 · · · prk
k ,
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where each exponent ri ≥ 1. Then using parts (b) and (c) gives

ϕ(n) = ϕ(pr1
1 pr2

2 · · · prk
k )

= ϕ(pr1
1 )ϕ(pr2

2 ) · · ·ϕ(prk
k )

= (pr1
1 − pr1−1

1 )(pr2
2 − pr2−1

2 ) · · · (prk
k − prk−1

k )

= pr1
1

(
1− 1

p1

)
pr2

2

(
1− 1

p2

)
· · · prk

k

(
1− 1

pk

)

= pr1
1 pr2

2 · · · prk
k

(
1− 1

p1

)
· · ·

(
1− 1

pk

)

= n

(
1− 1

p1

)
· · ·

(
1− 1

pk

)
.

J

2. Let ϕ : R → S be a homomorphism of commutative rings. Recall that if A ⊆ S, then
ϕ−1(A) = {r ∈ R : ϕ(r) ∈ A}
(a) Prove that if P is a prime ideal of S, then ϕ−1(P ) is a prime ideal of R. Apply this

to the special case where R is a subring of S and ϕ is the inclusion homomorphism
to conclude that if P is a prime ideal of S, then P ∩R is a prime ideal of R.

I Solution. First observe that if I ⊆ S is any ideal, then ϕ−1(I) is an ideal of
R. To see this, note that if a and b are in ϕ−1(I) and r ∈ R, then ϕ(a) ∈ I and
ϕ(b) ∈ I, while ϕ(r) ∈ S. Since ϕ is a ring homomorphism and I is an ideal of
S, it follows that ϕ(a− b) = ϕ(a)− ϕ(b) ∈ I, and ϕ(ra) = ϕ(r)ϕ(a) ∈ I. Hence
a − b and ra are in ϕ−1(I). Now suppose that ab ∈ ϕ−1(P ). This means that
ϕ(ab) ∈ P . But ϕ(ab) = ϕ(a)ϕ(b). Since P is prime, it follows that ϕ(a) or ϕ(b)
is in P , which means that a or b is in ϕ−1(P ). Hence ϕ−1(P ) is prime once we
have observed that ϕ−1(P ) 6= R. But ϕ(1R) = 1S /∈ P (since P is a prime ideal
of S) so that 1R /∈ ϕ−1(P ).

If R is a subring of S, then let ϕ be the inclusion map ϕ(r) = r. Then ϕ−1(P ) =
P ∩R in this situation, so P ∩R is a prime idea of R whenever P is a prime ideal
of S. J

(b) Prove that if M is a maximal ideal of S and ϕ is surjective, then ϕ−1(M) is a
maximal ideal of R. Give an example to show that this need not be the case if ϕ
is not surjective.

I Solution. Let π : S → S/M be the canonical projection map onto the quotient
ring, and let ψ = π ◦ ϕ so that ψ : R → S/M by means of the formula ψ(r) =
ϕ(r) + M . Thus, Ker(ψ) = {r ∈ R : ϕ(r) ∈ M} = ϕ−1(M). Since ϕ is surjective
it follows that ψ is surjective (if s + M ∈ S/M and ϕ(r) = s then ψ(r) = s + M).
Thus,

R/ϕ−1(M) = R/ Ker(ψ) ∼= Im(ψ) = S/M,
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and since M is a maximal ideal of S, S/M is a field. Hence, R/ϕ−1(M) is a field
and ϕ−1(M) is a maximal ideal of R.

For an example where the result fails if ϕ is not surjective, let ϕ : Z→ Q be the
inclusion homomorphism ϕ(n) = n. Then M = {0} is a maximal ideal of the field
Q, but ϕ−1(M) = {0} is not a maximal ideal of Z. J

3. Assume that R is commutative and let f(X) ∈ R[X] be a monic polynomial of degree
n ≥ 1. Let S = R[X]/〈f(X)〉 be the quotient ring. Thus, a typical element of S is a
coset p(X) + 〈f(X)〉, which we will denote more succinctly by the bar notation p(X).

(a) Show that every element of S is of the form p(X) for some polynomial p(X) ∈
R[X] of degree less than n. That is,

R[X]/〈f(X)〉 =
{

a0 + a1X + · · ·+ an−1Xn−1 : a0, a1, . . . , an−1 ∈ R
}

.

I Solution. Let g(X) ∈ R[X] be arbitrary. By the division algorithm, we can
write g(X) = f(X)q(X) + p(X) where p(X) is 0 or deg p(X) < n. Applying
the bar notation is a ring homomorphism (it is just the projection map h(X) 7→
h(X) + 〈f(X)〉). Thus

g(X) = f(X)q(X) + p(X) = p(X).

Since deg p(X) ≤ n− 1, p(X) has the requested form. J

(b) Prove that if p(X) and q(X) are distinct polynomials in R[X] which are both of
degree less than n, then p(X) 6= q(X). Thus, the representation of elements of
R[X]/〈f(X)〉 given in part (a) is unique.

I Solution. p(X) = q(X) if and only if f(X) divides p(X) − q(X). Since
deg f(X) = n and deg(p(X)− q(X)) < n unless p(X)− q(X) = 0, the only way
that f(X) can divide p(X)− q(X) is if p(X)− q(X) = 0. That is, p(X) = q(X)
if and only if p(X) = q(X). J

(c) If f(X) = a(X)b(X) where a(X) and b(X) have degree less than n, prove that
a(X) is a zero divisor in R[X]/〈f(X)〉.

I Solution. It is only necessary to observe that 0 = f(X) = a(X)b(X) and by
the previous part a(X) 6= 0 and b(X) 6= 0. J

4. Let f(X) = X2 + X + 1 ∈ Z2[X], and use the bar notation introduced in the previous
exercise to denote passage to the quotient ring S = Z2[X]/〈f(X)〉.
(a) Show that S has 4 elements: 0, 1, X, and X + 1.

I Solution. Since Z2 has two elements, namely, 0 and 1, there are 4 polynomials
of degree < 2: 0, 1, X, and X + 1. By part (a) of the previous exercise, S has
the 4 elements that are the bars of these 4 polynomials. J
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(b) Write out the addition table for S and deduce that the additive group of S is
isomorphic to the abelian group Z2 × Z2.

I Solution.
+ 0 1 X X + 1

0 0 1 X X + 1
1 1 0 X + 1 X
X X X + 1 0 1

X + 1 X + 1 X 1 0

This group of order 4 has every element of order 2 (look at all the elements 0 on
the diagonal). Thus, it is isomorphic to Z2 × Z2. J

(c) Write out the multiplication table for S and prove that S∗ is isomorphic to the
cyclic group of order 3. Deduce that S is a field.

I Solution.
· 0 1 X X + 1
0 0 0 0 0
1 0 1 X X + 1
X 0 X X + 1 1

X + 1 0 X + 1 1 X

S∗ =
{
1, X, X + 1

}
is a cyclic group of order 3 generated by X since X

2
= X + 1

and X
3

= 1. Since S∗ is a group, S is a field. J

5. Let f(X) = X3 − 2X + 1 ∈ Z[X], and use bar notation to denote passage to the
quotient ring S = Z[X]/〈f(X)〉. Let p(X) = 2x7 − 7X5 + 4X3 − 9X + 1 and let
q(X) = (X − 1)4.

(a) Express each of the following elements of S in the form g(X) for some polynomial
g(X) of degree ≤ 2: p(X), q(X), p(X) + q(X), p(X)q(X).

I Solution. Applying the division algorithm:

p(X) = (X3 − 2X + 1)(2X4 − 3X2 − 2X − 2) + (−X2 − 11X + 3)

= f(X)h1(X) + (−X2 − 11X + 3), and

q(X) = X4 − 4X3 + 6X2 − 4X + 1

= (X3 − 2X + 1)(X − 4) + (8X2 − 13X + 5)

= f(X)h2(X) + (8X2 − 13X + 5).

Thus, p(X) = −X2 − 11X + 3 and q(X) = 8X2 − 13X + 5. Since the bar oper-
ation is a ring homomorphism, it follows that

p(X) + q(X) = 7X2 − 24X + 8,
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while

p(X)q(X) = (−X2 − 11X + 3)(8X2 − 13X + 5)

= −8X4 − 75X3 + 162X2 − 94X + 15

= −8X4 − 75X3 + 162X2 − 94X + 15

= −8(2X2 −X)− 75(2X − 1) + 162X2 − 94X + 15

= 146X2 − 236X + 90.

Note that we have used the reductions X
3

= 2X − 1 and X4 = 2X2 −X which
follow from the fact that X3 − 2X + 1 = 0 in S. J

(b) Prove that S is not an integral domain.

I Solution. Since f(X) = X3 − 2X + 1 = (X2 + X − 1)(X − 1) we conclude
that

0 = f(X) = (X2 + X − 1)(X − 1)

and since X2 + X1 and X − 1 are both nonzero in S, we conclude that both of
these elements are zero divisors, so that S is not an integral domain. J

(c) Prove that X is a unit in S.

I Solution. Note that X(2−X2) = 1 since X(2−X2)− 1 = −f(X). Thus X
is a unit with inverse 2−X2. J

Text Exercises:

9. I Solution. Ideals of Z60: Since Z60 = Z/〈60〉, the ideals of Z60 are all ideals of the
form I + 〈60〉 = 〈n〉 where I = 〈n〉 is an ideal of Z containing 〈60〉. Thus, the ideals of
Z60 are the ideals 〈n〉 where n is a divisor of 60. Thus, n = 1, 2, 4, 3, 5, 6, 10, 12, 15,
20, 30, or 60. The prime ideals and the maximal ideals are those ideals in the above
list where n is prime, i.e., n = 2, 3, or 5.

The nilpotent elements of Z60 are the elements of the ideal 〈30〉, since an integer a
satisfies am ≡ 0 (mod 60) if and only if 60|am for some m ∈ N if and only if a is
divisible by each of the prime divisors of 60, that is 2, 3, and 5. Hence, am = 0 ∈
Z60 ⇐⇒ 30|a. J

14. Verify that Z[i]/〈3 + i〉 ∼= Z10.

I Solution. Define a ring homomorphism ϕ : Z→ Z[i]/〈3 + i〉 by the formula

ϕ(n) = n + 〈3 + i〉.

The required isomorphism is derived from the first isomorphism theorem if we can
show that ϕ is surjective and that Ker(ϕ) = 〈10〉.
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ϕ is surjective: To see this, we need to show that every coset (k + mi) + 〈3 + i〉 in
the quotient ring Z[i]/〈3 + i〉 contains an ordinary integer n. But in Z[i]/〈3 + i〉, the
element 3+ i is set to 0, so that, in this quotient ring, 3 = −i. This suggests that there
is an equality of cosets

(k + mi) + 〈3 + i〉 = (k − 3m) + 〈3 + i〉,

which we can check formally to be true by observing that

(k + mi)− (k − 3m) = m(3 + i) ∈ 〈3 + i〉.

Thus, ϕ(k − 3m) = (k − 3m) + 〈3 + i〉 = (k + mi) + 〈3 + i〉, so ϕ is surjective.

Ker(ϕ) = 〈10〉: Suppose ϕ(n) = 0 = 0+〈3+i〉. Thus, we are assuming that n ∈ 〈3+i〉,
which means that n = (r + si)(3 + i) = (3r − s) + (3s + r)i. Since n ∈ Z this means
that the imaginary part 3s + r = 0 so r = −3s, which means n = 3r − s = −10s so
10|n, and Ker(ϕ) ⊆ 〈10〉. Since 10 = (3 + i)(3− i), we have that 10 ∈ Ker(ϕ). Hence,
Ker(ϕ) = 〈10〉.
Now by the isomorphism theorem: Z10 = Z/ Ker(ϕ) ∼= Im(ϕ) = Z[i]/〈3 + i〉. J

18. (a) Given the complex number z = 1 + i, let φ : R[X] → C be the substitution
homomorphism determined by z. Compute Ker(φ).

I Solution. If f(X) ∈ R[X], then φ(f(X)) = f(z) = f(1 + i). If f(X) ∈
Ker(φ) then f(1 + i) = 0. For any w ∈ C, since complex conjugation is a ring
homomorphism, it follows that f(w) = f(w). Thus, f(1 − i) = 0 whenever
f(X) ∈ R[X] and f(1 + i) = 0. Thus, by the remainder theorem (Corollary 4.5,
Page 75), if f(X) ∈ Ker(φ), then (X − (1 + i)) and (X − (1 − i)) both divide
f(X) in C[X], so that X2− 2X + 2 = (X − (1 + i))(X − (1− i)) divides f(X) in
C[X]. This suggests that Ker(φ) = 〈X2 − 2X + 2〉. To see it formally, note that
X2−2X +2 = (X−(1+ i))(X− (1− i)), so certainly X2−2X +2 ∈ Ker(φ). Now
let f(X) ∈ R[X] be any polynomial in Ker(φ). Now divide f(X) by X2− 2X + 2
in R[X] to get

f(X) = (X2 − 2X + 2)q(X) + aX + b.

Since f(X) ∈ Ker(φ), it follows that

0 = f(1 + i) = a(1 + i) + b = (a + b) + ai.

Since a and b are real, it follows that a = b = 0, so (X2 − 2X + 2) divides f(X).
Hence, we conclude that Ker(φ) = 〈X2 − 2X + 2〉, as required. J

(b) The substitution homomorphism φ : R[X] → C given by φ(f(X)) = f(1+i) (from
part (a)) is a surjective homomorphism with Ker(φ) = 〈X2 − 2X + 2〉. Thus, φ
induces a isomorphism φ : R[X]/〈X2 − 2X + 2〉 → C. This is given explicitly by
φ(aX + b + 〈X2 − 2X + 2〉) = a(1 + i) + b.
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