From the text (pages 98 - 106): 21, 22

- 1. If $I = \langle 1+2i \rangle$ is the principal ideal generated by 1+2i in the ring of Gaussian integers $\mathbb{Z}[i]$, then show that $\mathbb{Z}[i]/I$ is a finite field, and find its order.
- 2. Express the polynomial $X^4 2X^2 3$ as a product of irreducible polynomials over each of the following fields: \mathbb{Q} , \mathbb{R} , \mathbb{C} , \mathbb{Z}_5 .
- 3. Let R be the quadratic integer ring $\mathbb{Z}[\sqrt{-5}]$. Define 3 ideals of R: $I_2 = \langle 2, 1 + \sqrt{-5} \rangle$, $I_3 = \langle 3, 2 + \sqrt{-5} \rangle$, and $I'_3 = \langle 3, 2 \sqrt{-5} \rangle$.
 - (a) Prove that each of the ideals I_2 , I_3 and I'_3 is a nonprincipal ideal of R.
 - (b) Show that $I_2^2 = \langle 2 \rangle$, so that the product of nonprincipal ideals can be a principal ideal.
 - (c) Similarly, prove that $I_2I_3 = \langle 1 \sqrt{-5} \rangle$ and $I_2I'_3 = \langle 1 + \sqrt{-5} \rangle$ are principal. Deduce that the principal ideal $\langle 6 \rangle$ is a product of 4 ideals:

$$\langle 6 \rangle = I_2^2 I_3 I_3'.$$