From the text (pages 98 - 106): 21, 22

1. If $I = \langle 1+2i \rangle$ is the principal ideal generated by 1+2i in the ring of Gaussian integers $\mathbb{Z}[i]$, then show that $\mathbb{Z}[i]/I$ is a finite field, and find its order.

▶ Solution. Define a ring homomorphism $\varphi : \mathbb{Z} \to \mathbb{Z}[i]/I$ by $\varphi(n) = n + I$. Note that the following calculations are true in the quotient ring $\mathbb{Z}[i]/I$:

	(1+2i)+I	=	0 + I
\implies	1 + I	=	-2i+I
\implies	i + I	=	2+I
\implies	bi + I	=	2b + I
\implies	a + bi + I	=	a+2b+I.

The last equality says that φ is surjective since every coset $a + bi + I \in \mathbb{Z}[i]/I$ has an integer representative n+I where n = a+2b. That is, $\varphi(a+2b) = a+2b+I = a+bi+I$.

Now observe that $\operatorname{Ker}(\varphi) = 5\mathbb{Z}$. To see this suppose that $n \in \operatorname{Ker}(\varphi)$. This means that $\varphi(n) = 0 + I$, i.e, $n \in I$ so that n = (1 + 2i)(a + bi) for some $a, b \in \mathbb{Z}$. Thus n = (a - 2b) + (2a + b)i so that we must have 2a + b = 0 and n = a - 2b. Hence b = -2a and then $n = a - 2b = a + 4a = 5a \in 5\mathbb{Z}$. Moreover, all multiples of 5 are in $\operatorname{Ker}(\varphi)$ since 5 = (1 + 2i)(1 - 2i). Therefore, the isomorphism theorem states that $\mathbb{Z}/5\mathbb{Z} \cong \mathbb{Z}[i]/I$, so that $\mathbb{Z}[i]/I$ is the finite field \mathbb{Z}_5 with 5 elements.

2. Express the polynomial $X^4 - 2X^2 - 3$ as a product of irreducible polynomials over each of the following fields: \mathbb{Q} , \mathbb{R} , \mathbb{C} , \mathbb{Z}_5 .

▶ Solution. The factorization $X^4 - 2X^2 - 3 = (X^2 - 3)(X^2 + 1)$ is valid over \mathbb{Z} and hence over each of the given fields. The further factorization of the two quadratics in a given field is dependent upon whether there is a root of the quadratic in that field. The results are tabulated in the following table.

Field	Factorization
Q	$(X^2 - 3)(X^2 + 1)$
\mathbb{R}	$(X - \sqrt{3})(X + \sqrt{3})(X^2 + 1)$
\mathbb{C}	$(X - \sqrt{3})(X + \sqrt{3})(X + i)(X - i)$
\mathbb{Z}_5	$(X^2 - 3)(X + 2)(X - 2)$

- 3. Let R be the quadratic integer ring $\mathbb{Z}[\sqrt{-5}]$. Define 3 ideals of R: $I_2 = \langle 2, 1 + \sqrt{-5} \rangle$, $I_3 = \langle 3, 2 + \sqrt{-5} \rangle$, and $I'_3 = \langle 3, 2 \sqrt{-5} \rangle$.
 - (a) Prove that each of the ideals I_2 , I_3 and I'_3 is a nonprincipal ideal of R.

▶ Solution. For each $z = a + b\sqrt{-5}$, define $N(z) = |z|^2 = z\overline{z} = a^2 + 5b^2$. This is a norm function on $\mathbb{Z}[\sqrt{-5}]$ such that N(zw) = N(z)N(w). Now suppose that $I_2 = \langle a + b\sqrt{-5} \rangle$ is a principal ideal. Since $2 \in I_2$ we must have an equation $2 = (a + b\sqrt{-5})(c + d\sqrt{-5})$, and applying the norm function to this equation gives $4 = (a^2 + 5b^2)(c^2 + 5d^2)$ and this equation takes place in the ordinary integers \mathbb{Z} . From the unique factorization in \mathbb{Z} we conclude that $a^2 + 5b^2 \in \{1, 2, 4\}$. The only way this can occur is if b = 0 and $a = \pm 1$ or $a = \pm 2$.

Case 1: $a = \pm 1$.

In this case we are assuming that $I_2 = \langle 1 \rangle = \mathbb{Z}[\sqrt{-5}]$. Suppose that we have an equation

$$1 = 2(r + s\sqrt{-5}) + (u + v\sqrt{-5})(1 + \sqrt{-5})$$

where r, s, v, and v are integers. This gives an equation

$$1 = 2r + u - 5v + (2b + u + v)\sqrt{-5}$$

which implies that

$$1 = 2r + u - 5v$$

$$0 = 2b + u + v.$$

Subtracting the second equation from the first gives an equation in integers

$$1 = 2(r - b - 3v).$$

This is clearly impossible since 2 does not divide 1 in \mathbb{Z} , so $I_2 \neq \langle 1 \rangle$.

Case 2: $a = \pm 2$.

In this case we are assuming that $I_2 = \langle 2 \rangle$. Since $1 + \sqrt{-5} \in I_2$, this means that we can write

$$1 + \sqrt{-5} = 2(r + s\sqrt{-5})$$

for some $r, s \in \mathbb{Z}$. This would force 2r = 1, which is not possible in \mathbb{Z} .

Since we have excluded both cases $a = \pm 1$ and $a = \pm 2$, we conclude that the supposition that I_2 is principal is not valid.

The cases for I_3 and I'_3 are similar.

(b) Show that $I_2^2 = \langle 2 \rangle$, so that the product of nonprincipal ideals can be a principal ideal.

▶ Solution. Since $I_2^2 = \langle 4, 2+2\sqrt{-5}, -4+2\sqrt{-5} \rangle \subseteq \langle 2 \rangle$ because each generator of I_2^2 is a multiple of 2, it is sufficient to show that $2 \in I_2^2$, since this will imply that $\langle 2 \rangle \subseteq I_2^2$ and hence that $I_2^2 = \langle 2 \rangle$. But $2 \in I_2^2$ since

$$2 = (2 + 2\sqrt{-5}) - (4 + (-4 + 2\sqrt{-5})),$$

which is a $\mathbb{Z}[\sqrt{-5}]$ -linear combination of the generators of I_2^2 .

 $\mathbf{2}$

(c) Similarly, prove that $I_2I_3 = \langle 1 - \sqrt{-5} \rangle$ and $I_2I'_3 = \langle 1 + \sqrt{-5} \rangle$ are principal. Deduce that the principal ideal $\langle 6 \rangle$ is a product of 4 ideals:

$$\langle 6 \rangle = I_2^2 I_3 I_3'.$$

▶ Solution. By multiplying the generators of I_2 and I_3 we conclude that

$$I_2I_3 = \langle 6, 4 + 2\sqrt{-5}, 3 + 3\sqrt{-5}, -3 + 3\sqrt{-5} \rangle.$$

From the calculations

$$6 = (1 - \sqrt{-5})(1 + \sqrt{-5})$$

$$4 + 2\sqrt{-5} = -(1 - \sqrt{-5})^2$$

$$3 + 3\sqrt{-5} = (1 - \sqrt{-5})(-2 + \sqrt{-5})$$

$$-3 + 3\sqrt{-5} = -3(1 - \sqrt{-5}),$$

it follows that each generator of I_2I_3 is in $\langle 1 - \sqrt{-5} \rangle$, and hence

$$I_2I_3 \subseteq \langle 1 - \sqrt{-5} \rangle.$$

It remains to show that $1-\sqrt{-5} \in I_2I_3$. But $1-\sqrt{-5} = (4+2\sqrt{-5})-(3+3\sqrt{-5}) \in I_2I_3$. Hence, $\langle 1-\sqrt{-5}\rangle \subset I_2I_3$ and we conclude that $I_2I_3 = \langle 1-\sqrt{-5}\rangle$.

The other equality $I_2I'_3 = \langle 1 + \sqrt{-5} \rangle$ follows from the one just completed by taking complex conjugations. Then putting the two results together gives

$$\langle 6 \rangle = \langle 1 - \sqrt{-5} \rangle \langle 1 + \sqrt{-5} \rangle = I_2 I_3 I_2 I_3' = I_2^2 I_3 I_3'.$$

Text Exercises:

21. (a) If $R = \mathbb{Z}$ or $R = \mathbb{Q}$ and d is not a square in R, show that $R[\sqrt{d}] \cong R[X]/\langle X^2 - d \rangle$.

▶ Solution. Define a substitution homomorphism $\varphi : R[X] \to \mathbb{C}$ by $\varphi(f(X)) = f(\sqrt{d})$. Then $\operatorname{Im}(\varphi) = R[\sqrt{d}]$ so $R[X]/\operatorname{Ker}(\varphi) \cong \operatorname{Im}(\varphi) = R[\sqrt{d}]$ and it is only necessary to show that $\operatorname{Ker}(\varphi) = \langle X^2 - d \rangle$. To see this, let $f(X) \in \operatorname{Ker}(\varphi)$ and divide f(X) by $X^2 - d$ in R[X] to get $f(X) = (X^2 - d)q(X) + aX + b$ where $aX + b \in R[X]$. Since $f(X) \in \operatorname{Ker}(\varphi)$ we conclude that the complex number \sqrt{d} satisfies

$$0 = f(\sqrt{d}) = ((\sqrt{d})^2 - d)q(\sqrt{d}) + a\sqrt{d} + b = a\sqrt{d} + b,$$

where a and b are in $R = \mathbb{Z}$ or $R = \mathbb{Q}$. If $a \neq 0$, then we get an equation $\sqrt{d} = -b/a \in \mathbb{Q}$. But, d is assumed to not be a square in R. If $R = \mathbb{Q}$ we have an immediate contradiction, while if $R = \mathbb{Z}$, the rational root theorem shows that any solution of $X^2 - d$ in \mathbb{Q} is already a solution in \mathbb{Z} . Hence, we conclude that a = 0, which then gives b = 0 so $X^2 - d$ divides f(X). Thus, $\operatorname{Ker}(\varphi) = \langle X^2 - d \rangle$, and the proof is complete.

(b) If $R = \mathbb{Z}$ or $R = \mathbb{Q}$ and d_1 , d_2 , and d_1/d_2 are not squares in $R \setminus \{0\}$, show that $R[\sqrt{d_1}]$ and $R[\sqrt{d_2}]$ are not isomorphic.

▶ Solution. Suppose that $R[\sqrt{d_1}]$ and $R[\sqrt{d_2}]$ are isomorphic via a ring isomorphism $\varphi : R[\sqrt{d_1}] \to R[\sqrt{d_2}]$. We show that this leads to a contradiction. Let $\varphi(\sqrt{d_1}) = a + b\sqrt{d_2} \in R[\sqrt{d_2}]$, where $a, b \in R$. Since φ is a ring homomorphism, and since $\varphi(1) = 1$, we see that $(a + b\sqrt{d_2})^2 = (\varphi(\sqrt{d_1}))^2 = \varphi(d_1) = d_1$, so that

$$a^2 + 2ab\sqrt{d_2} + b^2d_2 = d_1.$$

If a or b is 0, this shows that d_1 or d_1/d_2 is a square in R, both of which we have excluded. Thus, both a and b are not 0, and hence,

$$\sqrt{d_2} = \frac{d_1 - a^2 - b^2 d_2}{2ab}$$

Thus we would conclude that d_2 is a square in R, which is also excluded by choice. Hence, there can be no ring isomorphism of $R[\sqrt{d_1}]$ and $R[\sqrt{d_2}]$.

(c) Let $R_1 = \mathbb{Z}_p[X]/(X^2 - 2)$ and $R_2 = \mathbb{Z}_p[X]/(X^2 - 3)$. Determine if $R_1 \cong R_2$ in case p = 2, p = 5, or p = 11.

Case 1: p = 2.

▶ Solution. In this case $R_1 = \mathbb{Z}_2[X]/\langle X^2 \rangle$ and $R_2 = \mathbb{Z}_2[X]/\langle X^2 - 1 \rangle = \mathbb{Z}_2[X]/\langle (X - 1)^2 \rangle$. The substitution homomorphism $\varphi : \mathbb{Z}_2[X] \to R_2$ given by $\varphi(X) = (X - 1) + \langle (X - 1)^2 \rangle$ has $\operatorname{Ker}(\varphi) = \langle X^2 \rangle$ so the first isomorphism theorem gives an isomorphism between R_1 and R_2 .

Case 2: p = 5.

▶ Solution. In this case, the polynomials $X^2 - 2$ and $X^2 - 3$ are both irreducible in $\mathbb{Z}_5[X]$ since, by inspection $1^2 = 4^2 = 1$, $2^2 = 3^3 = 4$ in \mathbb{Z}_5 so neither polynomial has a root in \mathbb{Z}_5 . To find an isomorphism from $R_1 = \mathbb{Z}_5[X]/\langle X^2 - 2 \rangle$ to $R_2 = \mathbb{Z}[X]/\langle X^2 - 3 \rangle$, it is sufficient to find a root of the polynomial $X^2 - 2$ in R_2 . So, look for $(aX + b)^2 \equiv 2 \pmod{(X^2 - 3)}$ where the congruence is in $\mathbb{Z}_5[X]$. Thus, we want to find a and b in \mathbb{Z}_5 with

$$(aX + b)^{2} - 2 = a^{2}X^{2} + 2abX + b^{2} - 2 = c(X^{2} - 3).$$

This is true if b = 0, $c = a^2$ and -3c = -2. The last equation gives c = 4 so a = 2. Thus, define $\varphi : \mathbb{Z}_5[X] \to R_2$ by $\varphi(X) = 2X + \langle X^2 - 3 \rangle$. Since

$$\varphi(X^2 - 2) = 4X^2 - 2 + \langle X^2 - 3 \rangle = 4(X^2 - 3) + \langle X^3 - 3 \rangle = 0 + \langle X^3 - 3 \rangle,$$

it follows that $\operatorname{Ker}(\varphi) = \langle X^2 - 2 \rangle$, so the first isomorphism theorem give a ring isomorphism from $R_1 = \mathbb{Z}_5 / \langle X^2 - 2 \rangle$ to R_2 .

Case 3: p = 11.

▶ Solution. The squares in \mathbb{Z}_{11} are $1 = (\pm 1)^2$, $4 = (\pm 2)^2$, $9 = (\pm 3)^2$, $5 = (\pm 4)^2$, and $3 = (\pm 5)^2$. Hence, the polynomial $X^2 - 2$ is irreducible over \mathbb{Z}_{11} , so $R_1 = \mathbb{Z}_{11}[X]/\langle X^2 - 2 \rangle$ is a field (with $11^2 = 121$ elements), while the polynomial $X^2 - 3$ factors in $\mathbb{Z}_{11}[X]$ as $X^2 - 3 = X^2 - 25 = (X - 5)(X + 5)$, so that $R_2 = \mathbb{Z}_{11}[X]/\langle X^2 - 3 \rangle$ is not an integral domain. Thus R_1 is not isomorphic to R_2 .

- 1. Recall that R^* denotes the group of units of the ring R.
 - (a) Show that $(\mathbb{Z}[\sqrt{-1}])^* = \{\pm 1, \pm \sqrt{-1}\}.$

▶ Solution. Let $N(z) = N(a + b\sqrt{-1}) = z\overline{z} = |a + b\sqrt{-1}|^2 = a^2 + b^2 \in \mathbb{Z}^+$ be the norm on the ring $\mathbb{Z}[\sqrt{-1}]$. Since this is just the square of the modulus function on \mathbb{C} , it follows that N is multiplicative. That is, N(zw) = N(z)N(w) for all $z, z \in \mathbb{Z}[\sqrt{-1}]$. If z is a unit, then zw = 1 so 1 = N(zw) = N(z)N(w), and this is an equation among nonnegative integers, so we must have N(z) = 1. Conversely, if N(z) = 1, then $z\overline{z} = 1$ so z is a unit. Thus, $z = a + b\sqrt{-1} \in \mathbb{Z}[\sqrt{-1}]$ is a unit if and only if $1 = N(z) = a^2 + b^2$. Since a and b are integers, this can only happen if $a = \pm 1$ and b = 0; or a = 0 and $b = \pm 1$. Hence, the set of units of $\mathbb{Z}[\sqrt{-1}]$ is $\{\pm 1, \pm \sqrt{-1}\}$.

(b) If d < -1 show that $(\mathbb{Z}[\sqrt{-d}])^* = \{\pm 1\}.$

▶ Solution. The argument is the same as the previous paragraph, except that we use the norm function $N(z) = N(a+b\sqrt{-d}) = |a^2 - db^2|$. As above, N(zw) = N(z)N(w) as we conclude that $z = a + b\sqrt{-d}$ is a unit if and only if N(z) = 1. But, d < -1, so $a^2 - db^2 = 1$ if and only if $a = \pm 1$ and b = 0. Thus, $(\mathbb{Z}[\sqrt{-d}])^* = \{\pm 1\}$.

(c) Show that

$$\mathbb{Z}\left[\frac{(1+\sqrt{-3})}{2}\right]^* = \left\{\pm 1, \ \pm \frac{1+\sqrt{-3}}{2}, \ \pm \frac{-1+\sqrt{-3}}{2}\right\}.$$

▶ Solution. Let $\omega = (1 + \sqrt{-3})/2$, so that $\mathbb{Z}[\omega] = \{m + n\omega : m, n \in \mathbb{Z}\}$. As in the calculations above, if $\alpha = m + n\omega \in \mathbb{Z}[\omega]$, then we define the norm of α by $N(\alpha) = \alpha \overline{\alpha} = |\alpha|^2 \in \mathbb{Z}^+$. Thus the norm of α is the square of the modulus of α as a complex number. Moreover, α is a unit if and only if $N(\alpha) = 1$. If $\alpha = m + n\omega$, then α is a unit if and only if

$$N(\alpha) = N(m+n\omega) = N\left(m+n\left(\frac{(1+\sqrt{-3})}{2}\right)\right) = \left|\left((m+\frac{n}{2}) + \frac{n\sqrt{3}i}{2}\right)\right| \\ = \left(m+\frac{n}{2}\right)^2 + \frac{3}{4}n^2 = 1.$$

Since *m* and *n* are integers, the only possibilities for this last equation are n = 0, $m = \pm 1$; n = 1, m = 0; n = 1, m = -1; n = -1, m = 0, or n = -1, m = 1. These six choices for the pair (m, n) give the units of $\mathbb{Z}[\omega]$, as required.

(d) Let $d > 0 \in \mathbb{Z}$ not be a perfect square. Show that if $\mathbb{Z}[\sqrt{d}]$ has one unit other than ± 1 , it has infinitely many.

▶ Solution. Suppose that $u \neq \pm 1$ is a unit of $\mathbb{Z}[\sqrt{d}]$ where $d > 0 \in \mathbb{Z}$. Since $\mathbb{Z}[\sqrt{d}] \subset \mathbb{R}$, by multiplying by -1 if necessary, we can assume that u > 0. Since u is a unit, this means that there is a $v \in \mathbb{Z}[\sqrt{d}]$ with uv = 1. Then, for every $n \in \mathbb{N}$, $u^n v^n = (uv)^n = 1$, so u^n is also a unit. Since u > 0 and $u \neq 1$, it follows that the real numbers u^n are all distinct. Thus, there are infinitely many units of $\mathbb{Z}[\sqrt{d}]$.

- (e) It is known that the hypothesis in part (d) is always satisfied. Find a unit in $\mathbb{Z}[\sqrt{d}]$ other than ± 1 for $2 \leq d \leq 15$, $d \neq 4$, 9.
 - ▶ Solution. The norm in the ring $\mathbb{Z}[\sqrt{d}]$ is given by

$$N(m+n\sqrt{d}) = \left| (m+n\sqrt{d})(m-n\sqrt{d}) \right| = \left| m^2 - dn^2 \right|,$$

and $\alpha = m + n\sqrt{d}$ is a unit if and only if $N(\alpha) = 1$, in which case the equation $(m+n\sqrt{d})(m-n\sqrt{d}) = m^2 - dn^2 = \pm 1$ shows that $\alpha^{-1} = \pm (m-n\sqrt{d})$. Therefore, the strategy for finding a unit in $\mathbb{Z}[\sqrt{d}]$ is to look for m and n in \mathbb{Z} such that $m^2 - dn^2 = \pm 1$. For small values of d, this can be accomplished by trial and error, or by doing some calculations in Maple or in a spreadsheet. The following units were found in this experimental manner.

d	α	α^{-1}
2	$1+\sqrt{2}$	$-1 + \sqrt{2}$
3	$2+\sqrt{3}$	$2-\sqrt{3}$
5	$2+\sqrt{5}$	$-2 + \sqrt{5}$
6	$5 + 2\sqrt{6}$	$5 - 2\sqrt{6}$
7	$8 + 3\sqrt{7}$	$8 - 3\sqrt{7}$
8	$3+\sqrt{8}$	$3-\sqrt{8}$
10	$3 + \sqrt{10}$	$-3 + \sqrt{10}$
11	$10 + 3\sqrt{11}$	$10 - 3\sqrt{11}$
12	$7 + 2\sqrt{12}$	$7 - 2\sqrt{12}$
13	$18 + 5\sqrt{13}$	$-18 + 5\sqrt{13}$
14	$15 + 4\sqrt{14}$	$15 - 4\sqrt{14}$
15	$4 + \sqrt{15}$	$4 - \sqrt{15}$

◀