Exercise Set 6 Math 7200 Due: October 20, 2004

From the text (pages 98 — 106): 21, 22

1. If I = (14 24) is the principal ideal generated by 1+ 2i in the ring of Gaussian integers
Z[i], then show that Z[i]/I is a finite field, and find its order.

» Solution. Define a ring homomorphism ¢ : Z — Z[i]/I by ¢(n) = n+I. Note that
the following calculations are true in the quotient ring Z[i]/I:

(1+2)+1 = 0+1
— 1+17 = —2+1
— 1+ 1 = 241
= bi + I = 20+ 1
= a+bi+]I = a+2b+1.

The last equality says that ¢ is surjective since every coset a + bi + I € Z[i]/I has an
integer representative n+ I where n = a+2b. That is, p(a+2b) = a+2b+1 = a+bi+1.

Now observe that Ker(p) = 5Z. To see this suppose that n € Ker(p). This means
that p(n) = 04 I, i.e, n € I so that n = (1 + 2¢)(a + bi) for some a, b € Z. Thus
n = (a — 2b) + (2a + b)i so that we must have 2a + b = 0 and n = a — 2b. Hence
b = —2a and then n = a — 2b = a + 4a = 5a € 5Z. Moreover, all multiples of 5 are
in Ker(p) since 5 = (1 + 24)(1 — 2i). Therefore, the isomorphism theorem states that
7.)57 = Zi]/I, so that Z[i]/I is the finite field Z5 with 5 elements. <

2. Express the polynomial X* —2X?—3 as a product of irreducible polynomials over each

of the following fields: Q, R, C, Zs.

» Solution. The factorization X* —2X? — 3 = (X? — 3)(X? + 1) is valid over Z and
hence over each of the given fields. The further factorization of the two quadratics in
a given field is dependent upon whether there is a root of the quadratic in that field.
The results are tabulated in the following table.

Field Factorization
Q (=3 (X7 +1)
R (X —V3)(X +V3)(X2+1)
C | (X =V3)(X+V3)(X +4)(X —1i)
Zs, (X2 -3)(X +2)(X —2)

<

3. Let R be the quadratic integer ring Z[v/—5]. Define 3 ideals of R: Iy = (2, 1 ++/=5),
I3 = (3,24 V-b), and I} = (3, 2 — \/—5).

(a) Prove that each of the ideals I, I3 and I} is a nonprincipal ideal of R.
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» Solution. For each z = a + by/=5, define N(z2) = |z|° = 2Z = a? + 5b%. This
is a norm function on Z[/—5] such that N(zw) = N(z)N(w). Now suppose
that I, = (a+ by/—5) is a principal ideal. Since 2 € I, we must have an equation
2 = (a+byv/—5)(c+dv/=5), and applying the norm function to this equation gives
4 = (a® + 5b%)(c* + 5d?) and this equation takes place in the ordinary integers Z.
From the unique factorization in Z we conclude that a* 4+ 5b* € {1, 2, 4}. The
only way this can occur is if b =0 and a = £1 or a = £2.

Case 1: a = *1.
In this case we are assuming that I = (1) = Z[\/—5]. Suppose that we have an

equation
1=2(r+sv-=>5)+ (u+vv—=5)(1++v-5)
where r, s, v, and v are integers. This gives an equation
l=2r+u—>5v+ (2b+u+v)vV->
which implies that

1 = 2r4+u—>5v
0 = 2b+u+w.

Subtracting the second equation from the first gives an equation in integers
1=2(r—0b—3v).

This is clearly impossible since 2 does not divide 1 in Z, so Iy # (1).

Case 2: a = +2.
In this case we are assuming that I, = (2). Since 1 + /=5 € I, this means that

we can write
14+ vV—=5=2(r+svV-b)

for some r, s € Z. This would force 2r = 1, which is not possible in Z.

Since we have excluded both cases a = +1 and a = +2, we conclude that the
supposition that I, is principal is not valid.

The cases for I3 and I} are similar. <

Show that IZ = (2), so that the product of nonprincipal ideals can be a principal
ideal.

» Solution. Since I3 = (4, 2+2/—5, —4+2y/=5) C (2) because each generator
of I? is a multiple of 2, it is sufficient to show that 2 € IZ, since this will imply
that (2) C I2 and hence that I2 = (2). But 2 € I2 since

2= (24 2V=5) — (4+ (=4 +2v/=5)),

which is a Z[v/—5]-linear combination of the generators of I3. <
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(c) Similarly, prove that Ir,l3 = (1 —+/—5) and I,I; = (1 + /—5) are principal.

Deduce that the principal ideal (6) is a product of 4 ideals:
(6) = I3 131},
» Solution. By multiplying the generators of I, and I3 we conclude that
IIs = (6, 4+ 2v/=5, 3+ 3v/=5, =3+ 3v/=5).
From the calculations

6 = (1—v=5)(1+vV=5)
4+2V/-5 = —(1—+=5)?
343vV=5 = (1—v=5)(—24V=5)
—3+3V=5 = —3(1-+v=5),

it follows that each generator of 513 is in (1 —/—5), and hence
LI; C (1 —+/=5).

It remains to show that 1—v/=5 € IrI5. But 1—v/=5 = (4+2v/—5)—(3+3y/-5) €
I I3. Hence, (1 —\/=5) C I,I3 and we conclude that I5I3 = (1 — /—5).

The other equality Il = (1 + v/=5) follows from the one just completed by
taking complex conjugations. Then putting the two results together gives

(6) = (1 = V/=5)(1 +V/=5) = LI 1,1} = 12151}

Text Exercises:

21.

(a) If R=Z or R = Q and d is not a square in R, show that R[v/d] = R[X]/(X?—d).

» Solution. Define a substitution homomorphism ¢ : R[X| — C by ¢(f(X)) =
f(/d). Then Im(p) = R[Vd] so R[X]/Ker(p) = Im(p) = R[Vd] and it is only
necessary to show that Ker(yp) = (X? — d). To see this, let f(X) € Ker(yp) and
divide f(X) by X? —d in R[X] to get f(X) = (X% — d)q(X) + aX + b where
aX +b € R[X]. Since f(X) € Ker(p) we conclude that the complex number v/d
satisfies

0= f(Vd) = ((Vd)? = d)g(Vd) + aVd + b = aVd + D,

where @ and b are in R = Z or R = Q. If a # 0, then we get an equation
Vid = —b/a € Q. But, d is assumed to not be a square in R. If R = Q we have
an immediate contradiction, while if R = Z, the rational root theorem shows that
any solution of X? — d in Q is already a solution in Z. Hence, we conclude that
a = 0, which then gives b = 0 so X? — d divides f(X). Thus, Ker(p) = (X? —d),
and the proof is complete. <
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(b) If R=7Z or R = Q and dy, dy, and d;/ds are not squares in R\ {0}, show that
R[/d,] and R[y/dy] are not isomorphic.

» Solution. Suppose that R[\/d;| and R[\/ds] are isomorphic via a ring isomor-
phism ¢ : R[/d;] — R[\/d3]. We show that this leads to a contradiction. Let
©(V/dy) = a+ b\/dy € R[\/ds], where a, b € R. Since ¢ is a ring homomorphism,
and since (1) = 1, we see that (a + byv/d2)? = (¢(v/d1))? = ¢©(dy) = dy, so that

a® + 2aby/ds + b*dy = d;.

If @ or b is 0, this shows that d; or d;/ds is a square in R, both of which we have
excluded. Thus, both a and b are not 0, and hence,

\/d_2: dl—(l2—b2d2.

2ab

Thus we would conclude that ds is a square in R, which is also excluded by choice.
Hence, there can be no ring isomorphism of R[v/d;] and R[v/ds]. <

(c) Let Ry = Z,[X]/(X? —2) and Ry = Z,[X]/(X? — 3). Determine if Ry = Ry in
case p=2,p=05,0r p=11.

Case 1: p=2.

» Solution. In this case R = Z,[X]/(X?) and Ry = Zy[X|/(X?*—1) = Zy[X]/((X —
1)?). The substitution homomorphism ¢ : Zy[X] — Ry given by ¢(X) =
(X —1) + ((X —1)?) has Ker(p) = (X?) so the first isomorphism theorem gives
an isomorphism between R; and R,. <

Case 2: p=5.

» Solution. In this case, the polynomials X? —2 and X? —3 are both irreducible
in Z5[X] since, by inspection 12 = 42 = 1, 22 = 3% = 4 in Zs so neither polynomial
has a root in Zs. To find an isomorphism from R; = Zs[X]/(X? — 2) to Ry =
Z|X]/(X? — 3), it is sufficient to find a root of the polynomial X? — 2 in R,. So,
look for (aX + b)? =2 (mod (X? — 3)) where the congruence is in Zs[X]. Thus,
we want to find @ and b in Zs with

(aX +b)? —2=a*X? +2abX +b* — 2 = c(X? - 3).

This is true if b = 0, ¢ = a® and —3c = —2. The last equation gives ¢ = 4 so
a = 2. Thus, define ¢ : Zs[X]| — Ry by o(X) = 2X + (X? — 3). Since

O(X?—2) =4X? -2+ (X?=3) =4(X* = 3) + (X = 3) =0+ (X* - 3),

it follows that Ker(yp) = (X? — 2), so the first isomorphism theorem give a ring
isomorphism from Ry = Zs/(X? — 2) to Ra. <
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Case 3: p=11.

» Solution. The squares in Z;; are 1 = (+£1)% 4 = (£2)%, 9 = (£3)%, 5 =
(£4)%, and 3 = (£5)%. Hence, the polynomial X? — 2 is irreducible over Z;, so
Ry = Z11[X]/(X? — 2) is a field (with 11? = 121 elements), while the polynomial
X? — 3 factors in Z;[X] as X? —3 = X? —25 = (X — 5)(X + 5), so that
Ry = Z11[X]/(X? — 3) is not an integral domain. Thus R; is not isomorphic to
R. <

1. Recall that R* denotes the group of units of the ring R.

(a)

Show that (Z[v/—1])* = {£1, £/—1}.

» Solution. Let N(z) = N(a + by/—1) = 2z = {a+b\/—_1}2 =a*+ b €Z"
be the norm on the ring Z[/—1]. Since this is just the square of the modulus
function on C, it follows that N is multiplicative. That is, N(zw) = N(z)N(w)
for all z, z € Z[v/—1]. If z is a unit, then zw = 1 s0 1 = N(zw) = N(z)N(w),
and this is an equation among nonnegative integers, so we must have N(z) = 1.
Conversely, if N(z) = 1, then 2z = 1 s0 z is a unit. Thus, z = a+by/—1 € Z[/—1]
is a unit if and only if 1 = N(2) = a® + b?. Since a and b are integers, this can
only happen if a = +1 and b = 0; or a = 0 and b = £1. Hence, the set of units

of Z[v/—1] is {£1, £v/—1}. <
If d < —1 show that (Z[v/—d])* = {£1}.

» Solution. The argument is the same as the previous paragraph, except that
we use the norm function N(z) = N(a+by/—d) = |a® — db?|. As above, N(zw) =
N(2)N(w) as we conclude that z = a 4 by/—d is a unit if and only if N(z) = 1.
But, d < —1, so a®> —db? = 1 if and only if a = £1 and b = 0. Thus, (Z[v/—d])* =
{£1}. <

Show that

7 [(1+\/—_3)} _ {il, i1+\/—_37 i—1+\/—_3}'
2 2 2
» Solution. Let w = (1 ++/=3)/2, so that Z[w] = {m + nw : m, n € Z}. As in
the calculations above, if &« = m + nw € Z|w|, then we define the norm of « by
N(a) = a@ = |a|* € Z*. Thus the norm of « is the square of the modulus of « as
a complex number. Moreover, « is a unit if and only if N(«) = 1. If « = m + nw,
then « is a unit if and only if

N(a) = N(m+nw):N(m+n((1+—2\/__3))> — ‘((m+g)+”\fz‘)‘
o) e
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Since m and n are integers, the only possibilities for this last equation are n = 0,
m==xlin=1m=0n=1,m=-1;n=—-1,m=0,orn=—-1,m=1.
These six choices for the pair (m, n) give the units of Z[w], as required. <

Let d > 0 € Z not be a perfect square. Show that if Z[v/d] has one unit other
than 41, it has infinitely many.

» Solution. Suppose that u # 41 is a unit of Z[v/d] where d > 0 € Z. Since
Z[\/c_l] C R, by multiplying by —1 if necessary, we can assume that u > 0. Since
u is a unit, this means that there is a v € Z[v/d] with uv = 1. Then, for every
n € N, u"v™ = (uv)® = 1, so u" is also a unit. Since u > 0 and u # 1, it follows
that the real numbers u™ are all distinct. Thus, there are infinitely many units of

Z|Vd). <«

It is known that the hypothesis in part (d) is always satisfied. Find a unit in
Z[\/d] other than #1 for 2 <d < 15, d # 4, 9.

» Solution. The norm in the ring Z[v/d] is given by
N(m+nVd) = |(m+nVd)(m — n\/&)‘ = |m* — dn®|,

and a = m 4 nv/d is a unit if and only if N(a) = 1, in which case the equation
(m+nvd)(m—nvd) = m?>—dn?® = £1 shows that o' = £(m—n+/d). Therefore,
the strategy for finding a unit in Z[v/d] is to look for m and n in Z such that
m? —dn? = £1. For small values of d, this can be accomplished by trial and error,
or by doing some calculations in Maple or in a spreadsheet. The following units
were found in this experimental manner.

-1

d a 1)

2] 1+v2 —14++2
3] 2443 23
51 245 2445
6| 5+2V6 5—2v6
71 8+3VT | 8-3VT
8| 3+v8 3-8
10| 3410 | —3++10
11104 3v11| 10— 311
12| 74+2V12 | 7-2V12
13| 18+ 513 | —18 4+ 513
14|15+4v/14| 15— 414
15| 4415 4 —+/15




