
Exercise Set 6 Math 7200 Due: October 20, 2004

From the text (pages 98 – 106): 21, 22

1. If I = 〈1+2i〉 is the principal ideal generated by 1+2i in the ring of Gaussian integers
Z[i], then show that Z[i]/I is a finite field, and find its order.

I Solution. Define a ring homomorphism ϕ : Z→ Z[i]/I by ϕ(n) = n+ I. Note that
the following calculations are true in the quotient ring Z[i]/I:

(1 + 2i) + I = 0 + I
=⇒ 1 + I = −2i + I
=⇒ i + I = 2 + I
=⇒ bi + I = 2b + I
=⇒ a + bi + I = a + 2b + I.

The last equality says that ϕ is surjective since every coset a + bi + I ∈ Z[i]/I has an
integer representative n+I where n = a+2b. That is, ϕ(a+2b) = a+2b+I = a+bi+I.

Now observe that Ker(ϕ) = 5Z. To see this suppose that n ∈ Ker(ϕ). This means
that ϕ(n) = 0 + I, i.e, n ∈ I so that n = (1 + 2i)(a + bi) for some a, b ∈ Z. Thus
n = (a − 2b) + (2a + b)i so that we must have 2a + b = 0 and n = a − 2b. Hence
b = −2a and then n = a − 2b = a + 4a = 5a ∈ 5Z. Moreover, all multiples of 5 are
in Ker(ϕ) since 5 = (1 + 2i)(1− 2i). Therefore, the isomorphism theorem states that
Z/5Z ∼= Z[i]/I, so that Z[i]/I is the finite field Z5 with 5 elements. J

2. Express the polynomial X4−2X2−3 as a product of irreducible polynomials over each
of the following fields: Q, R, C, Z5.

I Solution. The factorization X4 − 2X2 − 3 = (X2 − 3)(X2 + 1) is valid over Z and
hence over each of the given fields. The further factorization of the two quadratics in
a given field is dependent upon whether there is a root of the quadratic in that field.
The results are tabulated in the following table.

Field Factorization
Q (X2 − 3)(X2 + 1)

R (X −√3)(X +
√

3)(X2 + 1)

C (X −√3)(X +
√

3)(X + i)(X − i)
Z5 (X2 − 3)(X + 2)(X − 2)

J

3. Let R be the quadratic integer ring Z[
√−5]. Define 3 ideals of R: I2 = 〈2, 1 +

√−5〉,
I3 = 〈3, 2 +

√−5〉, and I ′3 = 〈3, 2−√−5〉.
(a) Prove that each of the ideals I2, I3 and I ′3 is a nonprincipal ideal of R.
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I Solution. For each z = a + b
√−5, define N(z) = |z|2 = zz = a2 + 5b2. This

is a norm function on Z[
√−5] such that N(zw) = N(z)N(w). Now suppose

that I2 = 〈a + b
√−5〉 is a principal ideal. Since 2 ∈ I2 we must have an equation

2 = (a+b
√−5)(c+d

√−5), and applying the norm function to this equation gives
4 = (a2 + 5b2)(c2 + 5d2) and this equation takes place in the ordinary integers Z.
From the unique factorization in Z we conclude that a2 + 5b2 ∈ {1, 2, 4}. The
only way this can occur is if b = 0 and a = ±1 or a = ±2.

Case 1: a = ±1.

In this case we are assuming that I2 = 〈1〉 = Z[
√−5]. Suppose that we have an

equation
1 = 2(r + s

√−5) + (u + v
√−5)(1 +

√−5)

where r, s, v, and v are integers. This gives an equation

1 = 2r + u− 5v + (2b + u + v)
√−5

which implies that

1 = 2r + u− 5v

0 = 2b + u + v.

Subtracting the second equation from the first gives an equation in integers

1 = 2(r − b− 3v).

This is clearly impossible since 2 does not divide 1 in Z, so I2 6= 〈1〉.
Case 2: a = ±2.

In this case we are assuming that I2 = 〈2〉. Since 1 +
√−5 ∈ I2, this means that

we can write
1 +

√−5 = 2(r + s
√−5)

for some r, s ∈ Z. This would force 2r = 1, which is not possible in Z.

Since we have excluded both cases a = ±1 and a = ±2, we conclude that the
supposition that I2 is principal is not valid.

The cases for I3 and I ′3 are similar. J

(b) Show that I2
2 = 〈2〉, so that the product of nonprincipal ideals can be a principal

ideal.

I Solution. Since I2
2 = 〈4, 2+2

√−5, −4+2
√−5〉 ⊆ 〈2〉 because each generator

of I2
2 is a multiple of 2, it is sufficient to show that 2 ∈ I2

2 , since this will imply
that 〈2〉 ⊆ I2

2 and hence that I2
2 = 〈2〉. But 2 ∈ I2

2 since

2 = (2 + 2
√−5)− (4 + (−4 + 2

√−5)),

which is a Z[
√−5]-linear combination of the generators of I2

2 . J
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(c) Similarly, prove that I2I3 = 〈1 − √−5〉 and I2I
′
3 = 〈1 +

√−5〉 are principal.
Deduce that the principal ideal 〈6〉 is a product of 4 ideals:

〈6〉 = I2
2I3I

′
3.

I Solution. By multiplying the generators of I2 and I3 we conclude that

I2I3 = 〈6, 4 + 2
√−5, 3 + 3

√−5, −3 + 3
√−5〉.

From the calculations

6 = (1−√−5)(1 +
√−5)

4 + 2
√−5 = −(1−√−5)2

3 + 3
√−5 = (1−√−5)(−2 +

√−5)

−3 + 3
√−5 = −3(1−√−5),

it follows that each generator of I2I3 is in 〈1−√−5〉, and hence

I2I3 ⊆ 〈1−√−5〉.
It remains to show that 1−√−5 ∈ I2I3. But 1−√−5 = (4+2

√−5)−(3+3
√−5) ∈

I2I3. Hence, 〈1−√−5〉 ⊂ I2I3 and we conclude that I2I3 = 〈1−√−5〉.
The other equality I2I

′
3 = 〈1 +

√−5〉 follows from the one just completed by
taking complex conjugations. Then putting the two results together gives

〈6〉 = 〈1−√−5〉〈1 +
√−5〉 = I2I3I2I

′
3 = I2

2I3I
′
3.

J

Text Exercises:

21. (a) If R = Z or R = Q and d is not a square in R, show that R[
√

d] ∼= R[X]/〈X2−d〉.

I Solution. Define a substitution homomorphism ϕ : R[X] → C by ϕ(f(X)) =
f(
√

d). Then Im(ϕ) = R[
√

d] so R[X]/ Ker(ϕ) ∼= Im(ϕ) = R[
√

d] and it is only
necessary to show that Ker(ϕ) = 〈X2 − d〉. To see this, let f(X) ∈ Ker(ϕ) and
divide f(X) by X2 − d in R[X] to get f(X) = (X2 − d)q(X) + aX + b where
aX + b ∈ R[X]. Since f(X) ∈ Ker(ϕ) we conclude that the complex number

√
d

satisfies
0 = f(

√
d) = ((

√
d)2 − d)q(

√
d) + a

√
d + b = a

√
d + b,

where a and b are in R = Z or R = Q. If a 6= 0, then we get an equation√
d = −b/a ∈ Q. But, d is assumed to not be a square in R. If R = Q we have

an immediate contradiction, while if R = Z, the rational root theorem shows that
any solution of X2 − d in Q is already a solution in Z. Hence, we conclude that
a = 0, which then gives b = 0 so X2− d divides f(X). Thus, Ker(ϕ) = 〈X2− d〉,
and the proof is complete. J
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(b) If R = Z or R = Q and d1, d2, and d1/d2 are not squares in R \ {0}, show that
R[
√

d1] and R[
√

d2] are not isomorphic.

I Solution. Suppose that R[
√

d1] and R[
√

d2] are isomorphic via a ring isomor-
phism ϕ : R[

√
d1] → R[

√
d2]. We show that this leads to a contradiction. Let

ϕ(
√

d1) = a + b
√

d2 ∈ R[
√

d2], where a, b ∈ R. Since ϕ is a ring homomorphism,
and since ϕ(1) = 1, we see that (a + b

√
d2)

2 = (ϕ(
√

d1))
2 = ϕ(d1) = d1, so that

a2 + 2ab
√

d2 + b2d2 = d1.

If a or b is 0, this shows that d1 or d1/d2 is a square in R, both of which we have
excluded. Thus, both a and b are not 0, and hence,

√
d2 =

d1 − a2 − b2d2

2ab
.

Thus we would conclude that d2 is a square in R, which is also excluded by choice.
Hence, there can be no ring isomorphism of R[

√
d1] and R[

√
d2]. J

(c) Let R1 = Zp[X]/(X2 − 2) and R2 = Zp[X]/(X2 − 3). Determine if R1
∼= R2 in

case p = 2, p = 5, or p = 11.

Case 1: p = 2.

I Solution. In this case R1 = Z2[X]/〈X2〉 and R2 = Z2[X]/〈X2−1〉 = Z2[X]/〈(X−
1)2〉. The substitution homomorphism ϕ : Z2[X] → R2 given by ϕ(X) =
(X − 1) + 〈(X − 1)2〉 has Ker(ϕ) = 〈X2〉 so the first isomorphism theorem gives
an isomorphism between R1 and R2. J

Case 2: p = 5.

I Solution. In this case, the polynomials X2−2 and X2−3 are both irreducible
in Z5[X] since, by inspection 12 = 42 = 1, 22 = 33 = 4 in Z5 so neither polynomial
has a root in Z5. To find an isomorphism from R1 = Z5[X]/〈X2 − 2〉 to R2 =
Z[X]/〈X2 − 3〉, it is sufficient to find a root of the polynomial X2 − 2 in R2. So,
look for (aX + b)2 ≡ 2 (mod (X2 − 3)) where the congruence is in Z5[X]. Thus,
we want to find a and b in Z5 with

(aX + b)2 − 2 = a2X2 + 2abX + b2 − 2 = c(X2 − 3).

This is true if b = 0, c = a2 and −3c = −2. The last equation gives c = 4 so
a = 2. Thus, define ϕ : Z5[X] → R2 by ϕ(X) = 2X + 〈X2 − 3〉. Since

ϕ(X2 − 2) = 4X2 − 2 + 〈X2 − 3〉 = 4(X2 − 3) + 〈X3 − 3〉 = 0 + 〈X3 − 3〉,

it follows that Ker(ϕ) = 〈X2 − 2〉, so the first isomorphism theorem give a ring
isomorphism from R1 = Z5/〈X2 − 2〉 to R2. J
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Case 3: p = 11.

I Solution. The squares in Z11 are 1 = (±1)2, 4 = (±2)2, 9 = (±3)2, 5 =
(±4)2, and 3 = (±5)2. Hence, the polynomial X2 − 2 is irreducible over Z11, so
R1 = Z11[X]/〈X2 − 2〉 is a field (with 112 = 121 elements), while the polynomial
X2 − 3 factors in Z11[X] as X2 − 3 = X2 − 25 = (X − 5)(X + 5), so that
R2 = Z11[X]/〈X2 − 3〉 is not an integral domain. Thus R1 is not isomorphic to
R2. J

1. Recall that R∗ denotes the group of units of the ring R.

(a) Show that (Z[
√−1])∗ = {±1,±√−1}.

I Solution. Let N(z) = N(a + b
√−1) = zz =

∣∣a + b
√−1

∣∣2 = a2 + b2 ∈ Z+

be the norm on the ring Z[
√−1]. Since this is just the square of the modulus

function on C, it follows that N is multiplicative. That is, N(zw) = N(z)N(w)
for all z, z ∈ Z[

√−1]. If z is a unit, then zw = 1 so 1 = N(zw) = N(z)N(w),
and this is an equation among nonnegative integers, so we must have N(z) = 1.
Conversely, if N(z) = 1, then zz = 1 so z is a unit. Thus, z = a+b

√−1 ∈ Z[
√−1]

is a unit if and only if 1 = N(z) = a2 + b2. Since a and b are integers, this can
only happen if a = ±1 and b = 0; or a = 0 and b = ±1. Hence, the set of units
of Z[

√−1] is
{±1, ±√−1

}
. J

(b) If d < −1 show that (Z[
√−d])∗ = {±1}.

I Solution. The argument is the same as the previous paragraph, except that
we use the norm function N(z) = N(a+ b

√−d) = |a2 − db2|. As above, N(zw) =
N(z)N(w) as we conclude that z = a + b

√−d is a unit if and only if N(z) = 1.
But, d < −1, so a2−db2 = 1 if and only if a = ±1 and b = 0. Thus, (Z[

√−d])∗ =
{±1}. J

(c) Show that

Z
[
(1 +

√−3)

2

]∗
=

{
±1, ±1 +

√−3

2
, ±−1 +

√−3

2

}
.

I Solution. Let ω = (1 +
√−3)/2, so that Z[ω] = {m + nω : m, n ∈ Z}. As in

the calculations above, if α = m + nω ∈ Z[ω], then we define the norm of α by
N(α) = αα = |α|2 ∈ Z+. Thus the norm of α is the square of the modulus of α as
a complex number. Moreover, α is a unit if and only if N(α) = 1. If α = m+nω,
then α is a unit if and only if

N(α) = N(m + nω) = N

(
m + n

(
(1 +

√−3)

2

))
=

∣∣∣∣∣

(
(m +

n

2
) +

n
√

3i

2

)∣∣∣∣∣

=
(
m +

n

2

)2

+
3

4
n2 = 1.
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Since m and n are integers, the only possibilities for this last equation are n = 0,
m = ±1; n = 1, m = 0; n = 1, m = −1; n = −1, m = 0, or n = −1, m = 1.
These six choices for the pair (m, n) give the units of Z[ω], as required. J

(d) Let d > 0 ∈ Z not be a perfect square. Show that if Z[
√

d] has one unit other
than ±1, it has infinitely many.

I Solution. Suppose that u 6= ±1 is a unit of Z[
√

d] where d > 0 ∈ Z. Since
Z[
√

d] ⊂ R, by multiplying by −1 if necessary, we can assume that u > 0. Since
u is a unit, this means that there is a v ∈ Z[

√
d] with uv = 1. Then, for every

n ∈ N, unvn = (uv)n = 1, so un is also a unit. Since u > 0 and u 6= 1, it follows
that the real numbers un are all distinct. Thus, there are infinitely many units of
Z[
√

d]. J

(e) It is known that the hypothesis in part (d) is always satisfied. Find a unit in
Z[
√

d] other than ±1 for 2 ≤ d ≤ 15, d 6= 4, 9.

I Solution. The norm in the ring Z[
√

d] is given by

N(m + n
√

d) =
∣∣∣(m + n

√
d)(m− n

√
d)

∣∣∣ =
∣∣m2 − dn2

∣∣ ,

and α = m + n
√

d is a unit if and only if N(α) = 1, in which case the equation
(m+n

√
d)(m−n

√
d) = m2−dn2 = ±1 shows that α−1 = ±(m−n

√
d). Therefore,

the strategy for finding a unit in Z[
√

d] is to look for m and n in Z such that
m2−dn2 = ±1. For small values of d, this can be accomplished by trial and error,
or by doing some calculations in Maple or in a spreadsheet. The following units
were found in this experimental manner.

d α α−1

2 1 +
√

2 −1 +
√

2

3 2 +
√

3 2−√3

5 2 +
√

5 −2 +
√

5

6 5 + 2
√

6 5− 2
√

6

7 8 + 3
√

7 8− 3
√

7

8 3 +
√

8 3−√8

10 3 +
√

10 −3 +
√

10

11 10 + 3
√

11 10− 3
√

11

12 7 + 2
√

12 7− 2
√

12

13 18 + 5
√

13 −18 + 5
√

13

14 15 + 4
√

14 15− 4
√

14

15 4 +
√

15 4−√15

J

6


