1. Recall from class that if V is a vector space over a field \mathbb{F} and $T: V \to V$ is a linear transformation, then the vector space V is made into an $\mathbb{F}[X]$ module V_T by defining the scalar multiplication

$$f(X)v = f(T)(v).$$

(See Examples 12 and 13, Pages 111-112.) For this exercise, we will let $\mathbb{F} = \mathbb{R}$, $V = \mathbb{R}^n$ and $T : \mathbb{R}^n \to \mathbb{R}^n$ will be the \mathbb{R} -linear transformation defined by the formula

$$T(x_1, x_2, \ldots, x_n) = (x_n, x_1, x_2, \ldots, x_{n-1}).$$

Answer the following questions concerning the $\mathbb{R}[X]$ module V_T determined by this linear transformation T. Let $v = (x_1, x_2, \ldots, x_n)$.

- (a) Compute Xv.
- (b) Compute $(X^2 + 2)v$.
- (c) Compute $(X^{n-1} + X^{n-2} + \dots + X + 1)v$.
- (d) If $e_1 = (1, 0, ..., 0)$ and $f(X) = a_0 + a_1 X + \cdots + a_{n-1} X^{n-1}$ is an arbitrary polynomial of degree $\leq n 1$, compute $f(X)e_1$.
- (e) Verify that $(X^n 1)v = 0$ for all $v \in V$.
- (f) Show that no polynomial f(X) of degree < n has the property f(X)v = 0 for all $v \in V$.
- 2. Let $\mathbb{F} = \mathbb{R}$ and let $V = \mathbb{R}^2$.
 - (a) If $T_1: V \to V$ is counterclockwise rotation about the origin by $\pi/2$ radians, show that V and $\{0\}$ are the only $\mathbb{R}[X]$ submodules of V_{T_1} .
 - (b) If $T_2: V \to V$ is counterclockwise rotation about the origin by π radians, show that every subspace of V is an $\mathbb{R}[X]$ submodule of V_{T_2} .