1. Recall from class that if V is a vector space over a field \mathbb{F} and $T: V \to V$ is a linear transformation, then the vector space V is made into an $\mathbb{F}[X]$ module V_T by defining the scalar multiplication

$$f(X)v = f(T)(v).$$

(See Examples 12 and 13, Pages 111-112.) For this exercise, we will let $\mathbb{F} = \mathbb{R}$, $V = \mathbb{R}^n$ and $T : \mathbb{R}^n \to \mathbb{R}^n$ will be the \mathbb{R} -linear transformation defined by the formula

$$T(x_1, x_2, \ldots, x_n) = (x_n, x_1, x_2, \ldots, x_{n-1}).$$

Answer the following questions concerning the $\mathbb{R}[X]$ module V_T determined by this linear transformation T. Let $v = (x_1, x_2, \ldots, x_n)$.

(a) Compute Xv.

▶ Solution.
$$Xv = T(v) = (x_n, x_1, x_2, ..., x_{n-1}).$$

(b) Compute $(X^2 + 2)v$.

▶ Solution.

$$(X^{2}+2)v = (T^{2}+2I)(v) = (x_{n-1}+2x_{1}, x_{n}+2x_{2}, x_{1}+2x_{3}, \dots, x_{n-2}+2x_{n}).$$

(c) Compute $(X^{n-1} + X^{n-2} + \dots + X + 1)v$.

Solution.
$$(X^{n-1}+X^{n-2}+\cdots+X+1)v = (y, \ldots, y)$$
 where $y = x_1+\cdots+x_n$.

(d) If $e_1 = (1, 0, ..., 0)$ and $f(X) = a_0 + a_1 X + \cdots + a_{n-1} X^{n-1}$ is an arbitrary polynomial of degree $\leq n - 1$, compute $f(X)e_1$.

▶ Solution.
$$f(X)e_1 = (a_0, a_1, \ldots, a_{n-1}).$$

(e) Verify that $(X^n - 1)v = 0$ for all $v \in V$.

▶ Solution. Since $T^n v = v$ for all $v \in V$, it follows that $(X^n - 1)v = v$ for all $v \in V$.

(f) Show that no nonzero polynomial f(X) of degree < n has the property f(X)v = 0 for all $v \in V$.

▶ Solution. By part (d), it follows that $f(X)e_1 \neq 0$ for any nonzero polynomial of degree $\leq n-1$.

- 2. Let $\mathbb{F} = \mathbb{R}$ and let $V = \mathbb{R}^2$.
 - (a) If $T_1: V \to V$ is counterclockwise rotation about the origin by $\pi/2$ radians, show that V and $\{0\}$ are the only $\mathbb{R}[X]$ submodules of V_{T_1} .

▶ Solution. The $\mathbb{R}[x]$ -submodules of V_{T_1} are the T_1 -invariant subspaces of V. But the subspaces of V (other than V and $\{0\}$) are the lines through the origin, and rotation of a line through the origin by $\pi/2$ radians produces a line perpendicular to the starting line. Hence, no such line is invariant under T_1 .

- (b) If $T_2: V \to V$ is counterclockwise rotation about the origin by π radians, show that every subspace of V is an $\mathbb{R}[X]$ submodule of V_{T_2} .
 - ► Solution. Since rotation of a line through the origin by π radians produces the same line (with individual vectors v switched to -v), it follows that all subspaces of V are T_2 -invariant, and hence every subspace of V is an $\mathbb{R}[X]$ submodule of V_{T_2} .