The following exercises are intended solely to be representative of what might be expected on the first exam, which covers the group theory from Chapter 1 of the text.

- 1. Prove that a group G is abelian if and only if the inversion map $\varphi: G \to G$ defined by $\varphi(a) = a^{-1}$ is a group homomorphism.
- 2. (a) Compute $\alpha\beta\alpha^{-1}$ where $\alpha = (1 \ 3 \ 5)(1 \ 2)$ and $\beta = (1 \ 5 \ 7 \ 9)$.
 - (b) Given $\gamma = (1 \ 2)(3 \ 4)$ and $\delta = (5 \ 6)(1 \ 3)$ find an element $\sigma \in S_6$ with $\sigma \gamma \sigma^{-1} = \delta$.
 - (c) Find the number of conjugates of $\gamma = (1 \ 2)(3 \ 4)$ in S_6 .
 - (d) Find the number of conjugates of $\gamma = (1 \ 2)(3 \ 4)$ in A_6 .
- 3. Let G be a group of order 28.
 - (a) Prove that G has a normal subgroup of order 7.
 - (b) Prove that if G has a normal subgroup of order 4, then G is abelian.
 - (c) Give an example of a nonabelian group of order 28.
- 4. Let $G = \langle a \rangle$ be a cyclic group of order 2n.
 - (a) What is the order of a^n ? Prove that your answer is correct.
 - (b) What is the order of a^2 ? Prove that your answer is correct.
 - (c) For which n is it true that G is isomorphic to the direct product of $H = \langle a^2 \rangle$ and $K = \langle a^n \rangle$? Justify your answer.
- 5. Let N be a normal subgroup of order p of a finite p-group G. Prove that N is contained in the center of G. (*Hint:* The class equation may be of use.)
- 6. In a non-abelian group of order 55, find the number of elements of order n for n = 1, 5, 11, and 55.
- 7. If H is a normal subgroup of G such that H and G/H are both abelian, is it true that G must also be abelian? Either prove that this is true or provide a counterexample.
- 8. Suppose that G is a group with a normal subgroup N such that $G/N \cong \mathbb{Z}_{36}$. How many subgroups H of G are there with $N \subsetneq H \subsetneq G$?