Instructions. The exam is open book and open notes.

- 1. Let $f(X) \in \mathbb{Q}[X]$ be an irreducible polynomial of degree 3. Suppose that f(X) has exactly one real root α , and let $K \subseteq \mathbb{C}$ be a splitting field of f(X).
 - (a) Is $\mathbb{Q}(\alpha)$ a normal extension of \mathbb{Q} ?
 - (b) Is K a normal extension of \mathbb{Q} ?
 - (c) Compute $G(\mathbb{Q}(\alpha) : \mathbb{Q})$.
 - (d) Compute $G(K : \mathbb{Q})$.
- 2. Let $f(X) = (X^2 2)(X^2 + 3) \in \mathbb{Q}[X]$ and let $K \subseteq \mathbb{C}$ be a splitting field of f(X).
 - (a) Compute the Galois group G_f of f(X).
 - (b) Give the complete lattice of subfields of K, including the degrees over \mathbb{Q} , and explain how the Fundamental Theorem of Galois theory is used to justify that you have found all of the subfields and their various inclusion relations.
- 3. Let \mathbb{F}_q denote the finite field with q elements. For parts (a) and (b), answers are sufficient.
 - (a) For which q does a finite field \mathbb{F}_q exist?
 - (b) What is the condition on q and t which guarantees that a finite field \mathbb{F}_q is a subfield of a finite field \mathbb{F}_t ?
 - (c) If $q \neq 2$ show that the sum of all elements of \mathbb{F}_q is 0.
- 4. (a) Let F be a field and K a field containing F. If $f(X) \in F[X]$, show that there is an isomorphism of K-algebras:

 $K \otimes_F (F[X]/\langle f(X) \rangle) \cong K[X]/\langle f(X) \rangle.$

- (b) By choosing F, f(X), and K appropriately, find an example of two fields K and L such that the F-algebra $K \otimes_F L$ has nilpotent elements.
- 5. Recall that a ring R (which we assume to have an identity) is semisimple if $_RR$ is semisimple, that is, R is semisimple as a left R-module. Show that a semisimple ring R without zero-divisors is a division ring. (To say that R does not have zero-divisors means that if ab = 0 then a = 0 or b = 0.)

 $\mathit{Hint:}$ The Wedderburn-Artin theorem might be of use.

6. Let $C = \langle a : a^3 = 1 \rangle$ be the cyclic group of order 3 and let

$$\mathbb{Q}C_3 = \left\{ \alpha \cdot 1 + \beta \cdot a + \gamma \cdot a^2 : \alpha, \ \beta, \ \gamma \in \mathbb{Q} \right\}$$

be the group ring of C_3 over the field \mathbb{Q} of rational numbers.

- (a) Verify that $V_1 = \{c(1 + a + a^2) : c \in \mathbb{Q}\}$ and $V_2 = \{\alpha \cdot 1 + \beta \cdot a + \gamma \cdot a^2 : \alpha + \beta + \gamma = 0\}$ are $\mathbb{Q}C_3$ -submodules of $\mathbb{Q}C_3$.
- (b) Show that $\mathbb{Q}C_3$ is the direct sum of V_1 and V_2 . Is this the direct sum decomposition into irreducible submodules guaranteed by Maschke's theorem?