- 1. Show that an angle of 30° and an angle of 15° cannot be trisected.
- 2. Let $\xi = e^{2\pi i/6} = \cos(2\pi/6) + i\sin(2\pi/6)$ be a primitive 6^{th} root of unity over \mathbb{Q} . Find each of the following.
 - (a) The minimal polynomial $f(x) \in \mathbb{Q}[x]$ of ξ over \mathbb{Q} .
 - (b) The splitting field F of f(x) over \mathbb{Q} .
 - (c) $[F:\mathbb{Q}].$
- 3. Find a splitting field extension $K : \mathbb{Q}$ for each of the following polynomials over \mathbb{Q} and in each case determine the degree $[K : \mathbb{Q}]$.

(a)
$$x^4 + 1$$
 (b) $x^4 + 4$ (c) $(x^4 + 1)(x^4 + 4)$ (d) $(x^4 - 1)(x^4 + 4)$

- 4. Let $f(x) \in \mathbb{Q}[x]$ be the minimal polynomial of $\alpha = \sqrt{2 + \sqrt{2}}$.
 - (a) Show that $f(x) = x^4 4x^2 + 2$. Thus, $[\mathbb{Q}(\alpha) : \mathbb{Q}] = 4$.
 - (b) Show that $\mathbb{Q}(\alpha)$ is the splitting field of f(x) over \mathbb{Q} .
- 5. Let $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ be the field with p elements, where p is a prime number. Write down all monic cubic polynomials in $\mathbb{F}_2[x]$, factor them completely into irreducible factors and construct a splitting field for each of them. Which of these fields are isomorphic?
- 6. Let $f(x) = x^3 + 2x + 2 \in \mathbb{F}_3[x]$.
 - (a) Show that f(x) is irreducible in $\mathbb{F}_3[x]$.
 - (b) Let α be a root of f(x) in some extension field K of \mathbb{F}_3 , so that $[\mathbb{F}_3[\alpha] : \mathbb{F}_3] = \deg f(x) = 3$. Show that $\mathbb{F}_3[\alpha]$ is a splitting field of f(x) over \mathbb{F}_3 . *Hint:* Show that the map $\phi_3 : K \to K$ defined by $\phi_3(t) = t^3$ is a field homomorphism that takes a root of f(x) to another root of f(x).
- 7. Suppose that $f(x) \in F[x]$ has degree n > 0, and let L be the splitting field of f(x) over F.
 - (a) Suppose that [L:F] = n!. Prove that f(x) is irreducible.
 - (b) Show that the converse of part (a) is false.