This exercise set will constitute 15% of the final exam. The remaining part of the final exam will be an inclass exam covering Chapters 13 and 14 of Dummit and Foote and Chapter 7 of Adkns-Weintraub. The final exam is May 4 (Friday) from 10:00 AM – Noon. This assignment should be turned in no later than the time of the final exam.

- 1. Let $G = C_2 = \langle a : a^2 = 1 \rangle$, and let $V = F^2$ (where F is a field). For $(\alpha, \beta) \in V$, define the action of G on V by $1(\alpha, \beta) = (\alpha, \beta)$ and $a(\alpha, \beta) = (\beta, \alpha)$, and extend by linearity to make V into an FG-module. Find all of the FG-submodules of V.
- 2. If $G = C_2 \times C_2 = \langle a, b : a^2 = b^2 = 1, ab = ba \rangle$, write the real group ring $\mathbb{R}G$ as a direct sum of $\mathbb{R}G$ -submodules, each of which is 1-dimensional over \mathbb{R} .
- 3. Let $G = D_{12} = \langle a, b : a^6 = b^2 = 1, b^{-1}ab = a^{-1} \rangle$. Define matrices A, B, C, D over C by

$$A = \begin{bmatrix} e^{i\pi/3} & 0\\ 0 & e^{-i\pi/3} \end{bmatrix}, \quad B = \begin{bmatrix} 0 & 1\\ 1 & 0 \end{bmatrix}, \quad C = \begin{bmatrix} 1/2 & \sqrt{3}/2\\ -\sqrt{3}/2 & 1/2 \end{bmatrix}, \quad D = \begin{bmatrix} 1 & 0\\ 0 & -1 \end{bmatrix}.$$

- (a) Verify that each of the functions $\rho_k : G \to \operatorname{GL}(2, \mathbb{C})$ (k = 1, 2, 3, 4), given by (i) $\rho_1(a^r b^s) = A^r B^s$, (ii) $\rho_2(a^r b^s) = A^{3r}(-B)^s$, (iii) $\rho_3(a^r b^s) = (-A)^r B^s$, (iv) $\rho_4(a^r b^s) = C^r D^s$ for $0 \le r \le 5, 0 \le s \le 1$, is a representation of G.
- (b) Which of the representations ρ_k are faithful?
- (c) Which of these representations are equivalent?
- (d) Which are irreducible?
- 4. Find the missing row in the following character table:

Order of conjugacy class	(1)	(3)	(6)	(6)	(8)
Conjugacy class	Cl(1)	Cl(a)	Cl(b)	Cl(c)	Cl(d)
χ_1	1	1	1	1	1
χ_2	1	1	-1	-1	1
χ_3	3	-1	1	-1	0
χ_4	3	-1	-1	1	0
χ_5					

5. The character table of S_3 is

Conjugacy class	Cl(1)	Cl((12))	Cl((123))
χ_1	1	1	1
χ_2	1	-1	1
χ_3	2	0	-1

Let ϕ be a character such that $\phi(1) = 5$, $\phi((12)) = 1$, $\phi((123)) = 2$.

- (a) Compute the inner products $\langle \phi, \chi_1 \rangle$, $\langle \phi, \chi_2 \rangle$, and $\langle \phi, \chi_3 \rangle$.
- (b) Write the character ϕ as a linear combination of χ_1, χ_2, χ_3 .