
Chapter 7

Topics in Module Theory

This chapter will be concerned with collecting a number of results and construc-
tions concerning modules over (primarily) noncommutative rings that will be
needed to study group representation theory in Chapter 8.

7.1 Simple and Semisimple Rings and Modules

In this section we investigate the question of decomposing modules into
“simpler” modules.

(1.1) Definition. If R is a ring (not necessarily commutative) and M 6= 〈0〉
is a nonzero R-module, then we say that M is a simple or irreducible R-
module if 〈0〉 and M are the only submodules of M .

(1.2) Proposition. If an R-module M is simple, then it is cyclic.

Proof. Let x be a nonzero element of M and let N = 〈x〉 be the cyclic
submodule generated by x. Since M is simple and N 6= 〈0〉, it follows that
M = N . ut

(1.3) Proposition. If R is a ring, then a cyclic R-module M = 〈m〉 is simple
if and only if Ann(m) is a maximal left ideal.

Proof. By Proposition 3.2.15, M ∼= R/ Ann(m), so the correspondence the-
orem (Theorem 3.2.7) shows that M has no submodules other than M and
〈0〉 if and only if R has no submodules (i.e., left ideals) containing Ann(m)
other than R and Ann(m). But this is precisely the condition for Ann(m)
to be a maximal left ideal. ut

(1.4) Examples.

(1) An abelian group A is a simple Z-module if and only if A is a cyclic
group of prime order.
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(2) The hypothesis in Proposition 1.3 that M be cyclic is necessary. The
Z-module A = Z2

2 has annihilator 2Z but the module A is not simple.
(3) Consider the vector space F 2 (where F is any field) as an F [x]-module

via the linear transformation T (u1, u2) = (u2, 0). Then F 2 is a cyclic
F [X]-module, but it is not a simple F [X]-module. Indeed,

F 2 = F [X] · (0, 1)

but N = {(u, 0) : u ∈ F} is an F [X]-submodule of F 2. Thus the
converse of Proposition 1.2 is not true.

(4) Let V = R2 and consider the linear transformation T : V → V defined
by T (u, v) = (−v, u). Then the R[X]-module VT is simple. To see
this let w = (u1, v1) 6= 0 ∈ V and let N be the R[X]-submodule of
VT generated by w. Then w ∈ N and Xw = T (w) = (−v1, u1) ∈ N .
Since any (x, y) ∈ V can be written as (x, y) = αw + βXw where
α = (xu1 + yv1)/(u2

1 + v2
1) and β = (yu1 − xv1)/(u2

1 + v2
1), it follows

that N = VT and hence VT is simple.
(5) Now let W = C2 and consider the linear transformation T : W → W

defined by T (u, v) = (−v, u). Note that T is defined by the same for-
mula used in Example 1.4 (4). However, in this case the C[X]-module
WT is not simple. Indeed, the C-subspace C · (i, 1) is a T -invariant
subspace of W , and hence, it is a C[X]-submodule of WT different
from W and from 〈0〉.

The following lemma is very easy, but it turns out to be extremely
useful:

(1.5) Proposition. (Schur’s lemma)

(1) Let M be a simple R-module. Then the ring EndR(M) is a division
ring.

(2) If M and N are simple R-modules, then HomR(M, N) 6= 〈0〉 if and
only if M and N are isomorphic.

Proof. (1) Let f 6= 0 ∈ EndR(M). Then Im(f) is a nonzero submodule of
M and Ker(f) is a submodule of M different from M . Since M is simple, it
follows that Im(f) = M and Ker(f) = 〈0〉, so f is an R-module isomorphism
and hence is invertible as an element of the ring EndR(M).

(2) The same argument as in (1) shows that any nonzero homomor-
phism f : M → N is an isomorphism. ut

We have a second concept of decomposition of modules into simpler
pieces, with simple modules again being the building blocks.

(1.6) Definition. If R is a ring (not necessarily commutative), then an R-
module M is said to be indecomposable if it has no proper nontrivial com-
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plemented submodule M1, i.e., if M = M1 ⊕M2 implies that M1 = 〈0〉 or
M1 = M .

If M is a simple R-module, then M is also indecomposable, but the
converse is false. For example, Z is an indecomposable Z-module, but Z is
not a simple Z-module; note that Z contains the proper submodule 2Z.

One of the major classes of modules we wish to study is the following:

(1.7) Definition. An R-module M is said to be semisimple if it is a direct
sum of simple R-modules.

The idea of semisimple modules is to study modules by decomposing
them into a direct sum of simple submodules. In our study of groups there
was also another way to construct groups from simpler groups, namely, the
extension of one group by another, of which a special case was the semidirect
product. Recall from Definition 1.6.6 that a group G is an extension of a
group N by a group H if there is an exact sequence of groups

1 −→ N −→ G −→ H −→ 1.

If this exact sequence is a split exact sequence, then G is a semidirect
product of N and H. In the case of abelian groups, semidirect and direct
products coincide, but extension of N by H is still a distinct concept.

If G is an abelian group and N is a subgroup, then the exact sequence

〈0〉 −→ N −→ G −→ H −→ 〈0〉
is completely determined by the chain of subgroups 〈0〉 ⊆ N ⊆ G. By
allowing longer chains of subgroups, we can consider a group as obtained
by multiple extensions. We will consider this concept within the class of
R-modules.

(1.8) Definition.

(1) If R is a ring (not necessarily commutative) and M is an R-module,
then a chain of submodules of M is a sequence {Mi}n

i=0 of submodules
of M such that

(1.1) 〈0〉 = M0
⊂6= M1

⊂6= M2
⊂6= · · · ⊂6= Mn = M.

The length of the chain is n.
(2) We say that a chain {Nj}m

j=0 is a refinement of the chain {Mi}n
i=0

if each Nj is equal to Mi for some i. Refinement of chains defines a
partial order on the set C of all chains of submodules of M .

(3) A maximal element of C (if it exists) is called a composition series of
M .
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(1.9) Remarks.

(1) Note that the chain (1.1) is a composition series if and only if each of
the modules Mi/Mi−1 (1 ≤ i ≤ n) is a simple module.

(2) Our primary interest will be in decomposing a module as a direct sum
of simple modules. Note that if M = ⊕n

i=1Mi where Mi is a simple
R-module, then M has a composition series

〈0〉 ⊂6= M1
⊂6= M1 ⊕M2

⊂6= · · · ⊂6=
n⊕

i=1

Mi = M.

On the other hand, if M = ⊕∞i=1Mi, then M does not have a compo-
sition series. In a moment (Example 1.10 (2)) we shall see an example
of a module that is not semisimple but does have a composition se-
ries. Thus, while these two properties—semisimplicity and having a
composition series—are related, neither implies the other. However,
our main interest in composition series is as a tool in deriving results
about semisimple modules.

(1.10) Examples.

(1) Let D be a division ring and let M be a D-module with a basis
{x1, . . . , xm}. Let M0 = 〈0〉 and for 1 ≤ i ≤ n let Mi = 〈x1, . . . , xi〉.
Then {Mi}n

i=0 is a chain of submodules of length n, and since

Mi/Mi−1 = 〈x1, . . . , xi〉/〈x1, . . . , xi−1〉
∼= Dxi

∼= D,

we conclude that this chain is a composition series because D is a
simple D-module.

(2) If p is a prime, the chain

〈0〉 ⊂6= pZp2
⊂6= Zp2

is a composition series for the Z-module Zp2 . Note that Zp2 is not
semisimple as a Z-module since it has no proper complemented sub-
modules.

(3) The Z-module Z does not have a composition series. Indeed, if {Ii}n
i=0

is any chain of submodules of length n, then writing I1 = 〈a1〉, we can
properly refine the chain by putting the ideal 〈2a1〉 between I1 and
I0 = 〈0〉.

(4) If R is a PID, then essentially the same argument as Example 1.10 (3)
shows that R does not have a composition series as an R-module.
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(1.11) Definition. Let M be an R-module. If M has a composition series let
`(M) denote the minimum length of a composition series for M . If M does
not have a composition series, let `(M) = ∞. `(M) is called the length of
the R-module M . If `(M) < ∞, we say that M has finite length.

Note that isomorphic R-modules have the same length, since if f :
M → N is an R-module isomorphism, the image under f of a composition
series for M is a composition series for N .

(1.12) Lemma. Let M be an R-module of finite length and let N be a proper
submodule (i.e., N 6= M). Then `(N) < `(M).

Proof. Let

(1.2) 〈0〉 = M0
⊂6= M1

⊂6= · · · ⊂6= Mn = M

be a composition series of M of length n = `(M) and let Ni = N ∩Mi ⊆ N .
Let φ : Ni → Mi/Mi−1 be the inclusion map Ni → Mi followed by the pro-
jection map Mi → Mi/Mi−1. Since Ker(φ) = Ni−1, it follows from the
first isomorphism theorem that Ni/Ni−1 is isomorphic to a submodule of
Mi/Mi−1. But (1.2) is a composition series, so Mi/Mi−1 is a simple R-
module. Hence Ni = Ni−1 or Ni/Ni−1 = Mi/Mi−1 for i = 1, 2, . . . , n. By
deleting the repeated terms of the sequence {Ni}n

i=0 we obtain a composi-
tion series for the module N of length ≤ n = `(M). Suppose that this com-
position series for N has length n. Then we must have Ni/Ni−1 = Mi/Mi−1

for all i = 1, 2, . . . , n. Thus N1 = M1, N2 = M2, . . . , Nn = Mn, i.e.,
N = M . Since we have assumed that N is a proper submodule, we con-
clude that the chain {Ni}n

i=0 has repeated terms, and hence, after deleting
repeated terms we find that N has a composition series of length < `(M),
that is, `(N) < `(M). ut

(1.13) Proposition. Let M be an R-module of finite length. Then every
composition series of M has length n = `(M). Moreover, every chain of
submodules can be refined to a composition series.

Proof. We first show that any chain of submodules of M has length ≤ `(M).
Let

〈0〉 = M0
⊂6= M1

⊂6= · · · ⊂6= Mk = M

be a chain of submodules of M of length k. By Lemma 1.12,

0 = `(M0) < `(M1) < · · · < `(Mk) = `(M).

Thus, k ≤ `(M).
Now consider a composition series of M of length k. By the definition

of composition series, k ≥ `(M) and we just proved that k ≤ `(M). Thus,
k = `(M). If a chain has length `(M), then it must be maximal and, hence,
is a composition series. If the chain has length < `(M), then it is not a
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composition series and hence it may be refined until its length is `(M), at
which time it will be a composition series. ut

According to Example 1.10 (1), if D is a division ring and M is a
D-module, then a basis S = {x1, . . . , xn} with n elements determines a
composition series of M of length n. Since all composition series of M must
have the same length, we conclude that any two finite bases of M must have
the same length n. Moreover, if M had also an infinite basis T , then M
would have a linearly independent set consisting of more than n elements.
Call this set {y1, . . . , yk} with k > n. Then

〈0〉 ⊂6= 〈y1〉 ⊂6= 〈y1, y2〉 ⊂6= · · · ⊂6= 〈y1, . . . , yk〉 ⊂6= M

is a chain of length > n, which contradicts Proposition 1.13. Thus, every
basis of M is finite and has n elements. We have arrived at the following
result.

(1.14) Proposition. Let D be a division ring and let M be a D-module with
a finite basis. Then every basis of M is finite and all bases have the same
number of elements.

Proof. ut

An (almost) equivalent way to state the same result is the following.
It can be made equivalent by the convention that D∞ refers to any infinite
direct sum of copies of D, without regard to the cardinality of the index
set.

(1.15) Corollary. If D is a division ring and Dm ∼= Dn then m = n.

Proof. ut

We conclude our treatment of composition series with the following
result, which is frequently useful in constructing induction arguments.

(1.16) Proposition. Let 0 −→ K
φ−→ M

ψ−→ L −→ 0 be a short exact
sequence of R-modules. If K and L are of finite length then so is M , and

`(M) = `(K) + `(L).

Proof. Let
〈0〉 = K0

⊂6= K1
⊂6= · · · ⊂6= Kn = K

be a composition series of K, and let

〈0〉 = L0
⊂6= L1

⊂6= · · · ⊂6= Lm = L
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be a composition series for L. For 0 ≤ i ≤ n, let Mi = φ(Ki), and for
n + 1 ≤ i ≤ n + m, let Mi = ψ−1(Li−n). Then {Mi}n+m

i=0 is a chain of
submodules of M and

Mi/Mi−1
∼=

{
Ki/Ki−1 for 1 ≤ i ≤ n
Li−n/Li−n−1 for n + 1 ≤ i ≤ n + m

so that {Mi}n+m
i=0 is a composition series of M . Thus, `(M) = n + m. ut

(1.17) Example. Let R be a PID and let M be a finitely generated torsion
R-module. We may write M as a finite direct sum of primary cyclic torsion
modules:

M ∼=
k⊕

i=1

R/〈pei
i 〉.

Then it is an easy exercise to check that M is of finite length and

`(M) =
k∑

i=1

ei.

We now return to our consideration of semisimple modules. For this
purpose we introduce the following convenient notation.

If M is an R-module and s is a positive integer, then sM will denote
the direct sum M⊕· · ·⊕M (s summands). More generally, if Γ is any index
set then ΓM will denote the R-module ΓM = ⊕γ∈ΓMγ where Mγ = M for
all γ ∈ Γ. Of course, if |Γ| = s < ∞ then ΓM = sM , and we will prefer the
latter notation.

This notation is convenient for describing semisimple modules as direct
sums of simple R-modules. If M is a semisimple R-module, then

(1.3) M ∼=
⊕

i∈I

Mi

where Mi is simple for each i ∈ I. If we collect all the simple modules in
Equation (1.3) that are isomorphic, then we obtain

(1.4) M ∼=
⊕

α∈A

(ΓαMα)

where {Mα}α∈A is a set of pairwise distinct (i.e., Mα 6∼= Mβ if α 6= β)
simple modules. Equation (1.4) is said to be a simple factorization of the
semisimple module M . Notice that this is analogous to the prime factor-
ization of elements in a PID. This analogy is made even more compelling
by the following uniqueness result for the simple factorization.

(1.18) Theorem. Suppose that M and N are semisimple R-modules with
simple factorizations
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M ∼=
⊕

α∈A

(ΓαMα)(1.5)

and

N ∼=
⊕

β∈B

(ΛβNβ)(1.6)

where {Mα}α∈A and {Nβ}β∈B are the distinct simple factors of M and N ,
respectively. If M is isomorphic to N , then there is a bijection ψ : A → B
such that Mα

∼= Nψ(α) for all α ∈ A. Moreover, |Γα| < ∞ if and only if
|Λψ(α)| < ∞ and in this case |Γα| = |Λψ(α)|.
Proof. Let φ : M → N be an isomorphism and let α ∈ A be given. We may
write M ∼= Mα⊕M ′ with M ′ = ⊕γ∈A\{α} (ΓγMγ)⊕Γ′αMα where Γ′α is Γα

with one element deleted. Then by Proposition 3.3.15,

HomR(M, N) ∼= HomR(Mα, N)⊕HomR(M ′, N)

∼=
(⊕

β∈B

Λβ HomR(Mα, Nβ)
)
⊕HomR(M ′, N).(1.7)

By Schur’s lemma, HomR(Mα, Nβ) = 〈0〉 unless Mα
∼= Nβ . Therefore,

in Equation (1.7) we will have HomR(Mα, N) = 0 or HomR(Mα, N) ∼=
Λβ HomR(Mα, Nβ) for a unique β ∈ B. The first alternative cannot occur
since the isomorphism φ : M → N is identified with (φ ◦ ι1, φ ◦ ι2) where
ι1 : Mα → M is the canonical injection (and ι2 : M ′ → M is the injection).
If HomR(Mα, N) = 0 then φ ◦ ι1 = 0, which means that φ|Mα = 0. This is
impossible since φ is injective. Thus the second case occurs and we define
φ(α) = β where HomR(Mα, Nβ) 6= 〈0〉. Thus we have defined a function
φ : A → B, which is one-to-one by Schur’s lemma. It remains to check that
φ is surjective. But given β ∈ B, we may write N ∼= Nβ ⊕N ′. Then

HomR(M, N) ∼= HomR(M, Nβ)⊕HomR(M, N ′)

and
HomR(M, Nβ) ∼=

∏

α∈A

(∏

Γα

HomR(Mα, Nβ)
)
.

Since φ is surjective, we must have HomR(M, Nβ) 6= 〈0〉, and thus, Schur’s
lemma implies that

HomR(M, Nβ) ∼=
∏

Γα

Hom(Mα, Nβ)

for a unique α ∈ A. Then ψ(α) = β, so ψ is surjective.
According to Proposition 3.3.15 and Schur’s lemma,

HomR(M, N) ∼=
∏

α∈A

(⊕

β∈B

HomR(ΓαMα, ΛβNβ)
)

∼=
∏

α∈A

HomR(ΓαMα, Λψ(α)Nψ(α)).
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Therefore, φ ∈ HomR(M, N) is an isomorphism if and only if

φα = φ|ΓαMα
: ΓαMα → Λψ(α)Nψ(α)

is an isomorphism for all α ∈ A. But by the definition of ψ and Schur’s
lemma, Mα is isomorphic to Nψ(α). Also, ΓαMα has length |Γα|, and
Λψ(α)Nψ(α) has length |Λψ(α)|, and since isomorphic modules have the same
length, |Γα)| = |Λψ(α)|, completing the proof. ut

(1.19) Corollary. Let M be a semisimple R-module and suppose that M has
two simple factorizations

M ∼=
⊕

α∈A

(ΓαMα) ∼=
⊕

β∈B

(ΛβNβ)

with distinct simple factors {Mα}α∈A and {Nβ}β∈B. Then there is a bijec-
tion ψ : A → B such that Mα

∼= Nψ(α) for all α ∈ A. Moreover, |Γα| < ∞
if and only if |Λψ(α)| < ∞ and in this case |Γα| = |Λψ(α)|.
Proof. Take φ = 1M in Theorem 1.18. ut

(1.20) Remarks.

(1) While it is true in Corollary 1.19 that Mα
∼= Nψ(α) (isomorphism as

R-modules), it is not necessarily true that Mα = Nψ(α). For example,
let R = F be a field and let M be a vector space over F of dimension
s. Then for any choice of basis {m1, . . . ,ms} of M , we obtain a direct
sum decomposition

M ∼= Rm1 ⊕ · · · ⊕Rms.

(2) In Theorem 1.18 we have been content to distinguish between finite and
infinite index sets Γα, but we are not distinguishing between infinite
sets of different cardinality. Using the theory of cardinal arithmetic,
one can refine Theorem 1.18 to conclude that |Γα| = |Λψ(α)| for all
α ∈ A, where |S| denotes the cardinality of the set S.

We will now present some alternative characterizations of semisimple
modules. The following notation, which will be used only in this section,
will be convenient for this purpose. Let {Mi}i∈I be a set of submodules of
a module M . Then let

MI =
∑

i∈I

Mi

be the sum of the submodules {Mi}i∈I .

(1.21) Lemma. Let M be an R-module that is a sum of simple submodules
{Mi}i∈I , and let N be an arbitrary submodule of M . Then there is a subset
J ⊆ I such that
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M ∼= N ⊕
(⊕

i∈J

Mi

)
.

Proof. The proof is an application of Zorn’s lemma. Let

S =
{

P ⊆ I : MP
∼=

⊕

i∈P

Mi and MP ∩N = 〈0〉
}

.

Partially order S by inclusion and let C = {Pα}α∈A be an arbitrary chain
in S. If P = ∪α∈APα, we claim that P ∈ S. Suppose that P /∈ S. Since
it is clear that MP ∩ N = 〈0〉, we must have that MP 6∼= ⊕i∈P Mi. Then
Theorem 3.3.2 shows that there is some p0 ∈ P , such that Mp0∩MP ′ 6= 〈0〉,
where P ′ = P \{p0}. Suppose that 0 6= x ∈ Mp0 ∩MP ′ . Then we may write

(1.8) x = xp1 + · · ·+ xpk

where xpi
6= 0 ∈ Mpi

for {p1, . . . , pk} ⊆ P ′. Since C is a chain, there is
an index α ∈ A such that {p0, p1, . . . , pk} ⊆ Pα. Equation (1.8) shows
that MPα

6∼= ⊕i∈Pα
Mi, which contradicts the fact that Pα ∈ S. Therefore,

we must have P ∈ S, and Zorn’s lemma applies to conclude that S has a
maximal element J .

Claim. M = N + MJ
∼= N ⊕ (⊕

i∈J Mi

)
.

If this were not true, then there would be an index i0 ∈ I such that
Mi0 6⊂ N + MJ . This implies that Mi0 6⊂ N and Mi0 6⊂ MJ . Since Mi0 ∩N
and Mi0 ∩MJ are proper submodules of Mi0 , it follows that Mi0 ∩N = 〈0〉
and Mi0∩MJ = 〈0〉 because Mi0 is a simple R-module. Therefore, {i0}∪J ∈
S, contradicting the maximality of J . Hence, the claim is proved. ut

(1.22) Corollary. If an R-module M is a sum of simple submodules, then
M is semisimple.

Proof. Take N = 〈0〉 in Theorem 1.21. ut

(1.23) Theorem. If M is an R-module, then the following are equivalent:

(1) M is a semisimple module.
(2) Every submodule of M is complemented.
(3) Every submodule of M is a sum of simple R-modules.

Proof. (1) ⇒ (2) follows from Lemma 1.21, and (3) ⇒ (1) is immediate
from Corollary 1.22. It remains to prove (2) ⇒ (3).

Let M1 be a submodule of M . First we observe that every submodule of
M1 is complemented in M1. To see this, suppose that N is any submodule of
M1. Then N is complemented in M , so there is a submodule N ′ of M such
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that N ⊕N ′ ∼= M . But then N +(N ′∩M1) = M1 so that N ⊕ (N ′∩M1) ∼=
M1, and hence N is complemented in M1.

Next we claim that every nonzero submodule M2 of M contains a
nonzero simple submodule. Let m ∈ M2, m 6= 0. Then Rm ⊆ M2 and,
furthermore, R/ Ann(m) ∼= Rm where Ann(m) = {a ∈ R : am = 0} is a
left ideal of R. A simple Zorn’s lemma argument (see the proof of Theorem
2.2.16) shows that there is a maximal left ideal I of R containing Ann(m).
Then Im is a maximal submodule of Rm by the correspondence theorem.
By the previous paragraph, Im is a complemented submodule of Rm, so
there is a submodule N of Rm with N ⊕ Im ∼= Rm, and since Im is a
maximal submodule of Rm, it follows that the submodule N is simple.
Therefore, we have produced a simple submodule of M2.

Now consider an arbitrary submodule N of M , and let N1 ⊆ N be
the sum of all the simple submodules of N . We claim that N1 = N . N1

is complemented in N , so we may write N ∼= N1 ⊕ N2. If N2 6= 〈0〉 then
N2 has a nonzero simple submodule N ′, and since N ′ ⊆ N , it follows that
N ′ ⊆ N1. But N1 ∩N2 = 〈0〉. This contradiction shows that N2 = 〈0〉, i.e.,
N = N1, and the proof is complete. ut

(1.24) Corollary. Sums, submodules, and quotient modules of semisimple
modules are semisimple.

Proof. Sums: This follows immediately from Corollary 1.22.
Submodules: Any submodule of a semisimple module satisfies condition

(3) of Theorem 2.23.
Quotient modules: If M is a semisimple module, N ⊆ M is a submod-

ule, and Q = M/N , then N has a complement N ′ in M , i.e., M ∼= N ⊕N ′.
But then Q ∼= N ′, so Q is isomorphic to a submodule of M , and hence, is
semisimple. ut

(1.25) Corollary. Let M be a semisimple R-module and let N ⊆ M be a
submodule. Then N is irreducible (simple) if and only if N is indecompos-
able.

Proof. Since every irreducible module is indecomposable, we need to show
that if N is not irreducible, then N is not indecomposable. Let N1 be a
nontrivial proper submodule of N . Then N is semisimple by Corollary 1.24,
so N1 has a complement by Theorem 1.23, and N is not indecomposable.

ut

(1.26) Remark. The fact that every submodule of a semisimple R-module
M is complemented is equivalent (by Theorem 3.3.9) to the statment that
whenever M is a semisimple R-module, every short exact sequence

0 −→ N −→ M −→ K −→ 0

of R-modules splits.
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(1.27) Definition. A ring R is called semisimple if R is semisimple as a left
R-module.

Remark. The proper terminology should be “left semisimple,” with an anal-
ogous definition of “right semisimple,” but we shall see below that the two
notions coincide.

(1.28) Theorem. The following are equivalent for a ring R:

(1) R is a semisimple ring.
(2) Every R-module is semisimple.
(3) Every R-module is projective.

Proof. (1) ⇒ (2). Let M be an R-module. By Proposition 3.4.14, M has a
free presentation

0 −→ K −→ F −→ M −→ 0

so that M is a quotient of the free R-module F . Since F is a direct sum
of copies of R and R is assumed to be semisimple, it follows that F is
semisimple, and hence M is also (Corollary 1.24).

(2) ⇒ (3). Assume that every R-module is semisimple, and let P be
an arbitrary R-module. Suppose that

(1.9) 0 −→ K −→ M −→ P −→ 0

is a short exact sequence. Since M is R-module, our assumption is that
it is semisimple and then Remark 1.26 implies that sequence (1.9) is split
exact. Since (1.9) is an arbitrary short exact sequence with P on the right,
it follows from Theorem 3.5.1 that P is projective.

(3) ⇒ (1). Let M be an arbitrary submodule of R (i.e., an arbitrary
left ideal). Then we have a short exact sequence

0 −→ M −→ R −→ R/M −→ 0.

Since all R-modules are assumed projective, we have that R/M is pro-
jective, and hence (by Theorem 3.5.1) this sequence splits. Therefore,
R ∼= M ⊕ N for some submodule N ⊆ R, which is isomorphic (as an
R-module) to R/M . Then by Theorem 1.23, R is semisimple. ut

(1.29) Corollary. Let R be a semisimple ring and let M be an R-module.
Then M is irreducible (simple) if and only if M is indecomposable.

Proof. ut

(1.30) Theorem. Let R be a semisimple ring. Then every simple R-module
is isomorphic to a submodule of R.

Proof. Let N be a simple R-module, and let R = ⊕i∈IMi be a simple
factorization of the semisimple R-module R. We must show that at least
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one of the simple R-modules Mi is isomorphic to N . If this is not the case,
then

HomR(R, N) ∼= HomR

(⊕

i∈I

Mi, N
) ∼=

∏

i∈I

HomR(Mi, N) = 〈0〉

where the last equality is because HomR(Mi, N) = 〈0〉 if Mi is not iso-
morphic to N (Schur’s lemma). But HomR(R, N) ∼= N 6= 〈0〉, and this
contradiction shows that we must have N isomorphic to one of the simple
submodules Mi of R. ut

(1.31) Corollary. Let R be a semisimple ring.

(1) There are only finitely many isomorphism classes of simple R-modules.
(2) If {Mα}α∈A is the set of isomorphism classes of simple R-modules and

R ∼=
⊕

α∈A

(⊕
ΓαMα

)
,

then each Γα is finite.

Proof. Since R is semisimple, we may write

R =
⊕

β∈B

Nβ

where each Nβ is simple. We will show that B is finite, and then both
finiteness statements in the corollary are immediate from Theorem 1.30.

Consider the identity element 1 ∈ R. By the definition of direct sum,
we have

1 =
∑

β∈B

rβnβ

for some elements rβ ∈ R, nβ ∈ Nβ , with all but finitely many rβ equal to
zero. Of course, each Nβ is a left R-submodule of R, i.e., a left ideal.

Now suppose that B is infinite. Then there is a β0 ∈ B for which
rβ0 = 0. Let n be any nonzero element of Nβ0 . Then

n = n · 1 = n
(∑

β∈B

rβnβ

)
=

∑

β∈B\{β0}
(nrβ)nβ ,

so

n ∈
⊕

β∈B\{β0}
Nβ .

Thus,

n ∈ Nβ0

⋂( ⊕

β∈B\{β0}
Nβ

)
= {0},
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by the definition of direct sum again, which is a contradiction. Hence, B is
finite. ut

We now come to the basic structure theorem for semisimple rings.

(1.32) Theorem. (Wedderburn) Let R be a semisimple ring. Then there is
a finite collection of integers n1, . . . , nk, and division rings D1, . . . , Dk

such that

R ∼=
k⊕

i=1

EndDi(D
ni
i ).

Proof. By Corollary 1.31, we may write

R ∼=
k⊕

i=1

niMi

where {Mi}k
i=1 are the distinct simple R-modules and n1, . . . , nk are pos-

itive integers. Then

R ∼= EndR(R)

∼= HomR

( k⊕

i=1

niMi,

k⊕

i=1

niMi

)

∼=
k⊕

i=1

HomR(niMi, niMi)

∼=
k⊕

i=1

EndR(niMi),

by Schur’s lemma. Also, by Schur’s lemma, EndR(Mi) is a division algebra,
which we denote by Di, for each i = 1, . . . , k. Then it is easy to check
(compare the proof of Theorem 1.18) that

EndR(niMi) ∼= EndDi(D
ni
i ),

completing the proof. ut

Remark. Note that by Corollary 4.3.9, EndD(Dn) is isomorphic to Mn(Dop).
Thus, Wedderburn’s theorem is often stated as, Every semisimple ring is
isomorphic to a finite direct sum of matrix rings over division rings.

(1.33) Lemma. Let D be a division ring and n a positive integer. Then
R = EndD(Dn) is semisimple as a left R-module and also as a right R-
module. Furthermore, R is semisimple as a left D-module and as a right
D-module.
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Proof. Write Dn = D1 ⊕D2 ⊕ · · · ⊕Dn where Di = D. Let

Mi =
{

f ∈ EndD(Dn) : Ker(f) ⊇
⊕

k 6=i

Dk

}
,

Nj = {f ∈ EndD(Dn) : Im(f) ⊆ Dj},
and let

Pij = Mi ∩Nj .

Note that Pij
∼= D. Then

EndD(Dn) ∼= M1 ⊕ · · · ⊕Mn

as a left R-module, and

EndD(Dn) ∼= N1 ⊕ · · · ⊕Nn

as a right R-module. We leave it to the reader to check that each Mi (resp.,
Nj) is a simple left (resp., right) R-module. Also,

EndD(Dn) ∼=
⊕

Pij

as a left (resp., right) D-module, and each Pij is certainly simple (on either
side). ut

(1.34) Corollary. A ring R is semisimple as a left R-module if and only if
it is semisimple as a right R-module.

Proof. This follows immediately from Theorem 1.32 and Lemma 1.33. ut

Observe that R is a simple left R-module (resp., right R-module) if
and only if R has no nontrivial proper left (resp., right) ideals, which is
the case if and only if R is a division algebra. Thus, to define simplicity
of R in this way would bring nothing new. Instead we make the following
definition:

(1.35) Definition. A ring R with identity is simple if it has no nontrivial
proper (two-sided) ideals.

Remark. In the language of the next section, this definition becomes “A
ring R with identity is simple if it is simple as an (R, R)-bimodule.”

(1.36) Corollary. Let D be a division ring and n a positive integer. Then
EndD(Dn) is a simple ring that is semisimple as a left EndD(Dn)-module.

Conversely, if R is a simple ring that is semisimple as a left R-module,
or, equivalently, as a right R-module, then

R ∼= EndD(Dn)
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for some division ring D and positive integer n.

Proof. We leave it to the reader to check that EndD(Dn) is simple (compare
Theorem 2.2.26 and Corollary 2.2.27), and then the first part of the corol-
lary follows from Lemma 1.33. Conversely, if R is semisimple we have the
decomposition given by Wedderburn’s theorem (Theorem 1.32), and then
the condition of simplicity forces k = 1. ut

Our main interest in semisimple rings and modules is in connection
with our investigation of group representation theory, but it is also of in-
terest to reconsider modules over a PID from this point of view. Thus let
R be a PID. We wish to give a criterion for R-modules to be semisimple.
The following easy lemma is left as an exercise.

(1.37) Lemma. Let R be an integral domain. Then R is a semisimple ring
if and only if R is a field. If R is a field, R is simple.

Proof. Exercise. ut

From this lemma and Theorem 1.28, we see that if R is a field, then
every R-module (i.e., vector space) is semisimple and there is nothing more
to say. For the remainder of this section, we will assume that R is a PID
that is not a field.

Let M be a finitely generated R-module. Then by Corollary 3.6.9, we
have that M ∼= F ⊕ Mτ , where F is free (of finite rank) and Mτ is the
torsion submodule of M . If F 6= 〈0〉 then Lemma 1.37 shows that M is
not semisimple. It remains to consider the case where M = Mτ , i.e., where
M is a finitely generated torsion module. Recall from Theorem 3.7.13 that
each such M is a direct sum of primary cyclic R-modules.

(1.38) Proposition. Let M be a primary cyclic R-module (where R is a PID
is not a field) and assume that Ann(M) = 〈pe〉 where p ∈ R is a prime. If
e = 1 then M is simple. If e > 1, then M is not semisimple.

Proof. First suppose that e = 1, so that M ∼= R/〈p〉. Then M is a simple
R-module because 〈p〉 is a prime ideal in the PID R, and hence, it is a
maximal ideal.

Next suppose that e > 1. Then

〈0〉 6= pe−1M ⊂6= M,

and pe−1M is a proper submodule of M , which is not complemented; hence,
M is not semisimple by Theorem 1.28. ut

(1.39) Theorem. Let M be a finitely generated torsion R-module (where R
is a PID that is not a field). Then M is semisimple if and only if me(M)
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(see Definition 3.7.8) is a product of distinct prime factors. M is a simple
R-module if and only if

me(M) = co(M) = 〈p〉
where p ∈ R is a prime.

Proof. First suppose that M is cyclic, and me(M) = 〈pe1
1 . . . pek

k 〉. Then
the primary decomposition of M is given by

M ∼= (R/〈pe1
1 〉)⊕ · · · ⊕ (R/〈pek

k 〉) ,

and M is semisimple if and only if each of the summands is semisimple,
which by Proposition 1.38, is true if and only if

e1 = e2 = · · · = ek = 1.

Now let M be general. Then by Theorem 3.7.1, there is a cyclic de-
composition

M ∼= Rw1 ⊕ · · · ⊕Rwn

such that Ann(wi) = 〈si〉 and si | si+1 for 1 ≤ i ≤ n − 1. Then M is
semisimple if and only if each of the cyclic submodules Rwi is semisimple,
which occurs (by the previous paragraph) if and only if si is a product of
distinct prime factors. Since si | si+1, this occurs if and only if sn = me(M)
is a product of distinct prime factors. The second assertion is then easy to
verify. ut

(1.40) Remark. In the two special cases of finite abelian groups and linear
transformations that we considered in some detail in Chapters 3 and 4,
Theorem 1.39 takes the following form:

(1) A finite abelian group is semisimple if and only if it is the direct product
of cyclic groups of prime order, and it is simple if and only if it is cyclic
of prime order.

(2) Let V be a finite-dimensional vector space over a field F and let
T : V → V be a linear transformation. Then VT is a semisimple F [X]-
module if and only if the minimal polynomial mT (X) of T is a product
of distinct irreducible factors and is simple if and only if its character-
istic polynomial cT (X) is equal to its minimal polynomial mT (X), this
polynomial being irreducible (see Lemma 4.4.11.) If F is algebraically
closed (so that the only irreducible polynomials are linear ones) then
VT is semisimple if and only if T is diagonalizable and simple if and
only if V is one-dimensional (see Corollary 4.4.32).
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7.2 Multilinear Algebra

We have three goals in this section: to introduce the notion of a bimodule, to
further our investigation of “Hom,” and to introduce and investigate tensor
products. The level of generality of the material presented in this section
is dictated by the applications to the theory of group representations. For
this reason, most of the results will be concerned with modules over rings
that are not commutative; frequently there will be more than one module
structure on the same abelian group, and many of the results are concerned
with the interaction of these various module structures. We start with the
concept of bimodule.

(2.1) Definition. Let R and S be rings. An abelian group M is an (R, S)-
bimodule if M is both a left R-module and a right S-module, and the com-
patibility condition

(2.1) r(ms) = (rm)s

is satisfied for every r ∈ R, m ∈ M , and s ∈ S.

(2.2) Examples.

(1) Every left R-module is an (R,Z)-bimodule, and every right S-module
is a (Z, S)-bimodule.

(2) If R is a commutative ring, then every left or right R-module is an
(R,R)-bimodule in a natural way. Indeed, if M is a left R-module,
then according to Remark 3.1.2 (1), M is also a right R-module by
means of the operation mr = rm. Then Equation (2.1) is

r(ms) = r(sm) = (rs)m = (sr)m = s(rm) = (rm)s.

(3) If T is a ring and R and S are subrings of T (possibly with R = S = T ),
then T is an (R,S)-bimodule. Note that Equation (2.1) is simply the
associative law in T .

(4) If M and N are left R-modules, then the abelian group HomR(M, N)
has the structure of an (EndR(N), EndR(M))-bimodule, as follows. If
f ∈ HomR(M, N), φ ∈ EndR(M), and ψ ∈ EndR(N), then define
fφ = f ◦ φ and ψf = ψ ◦ f . These definitions provide a left EndR(N)-
module and a right EndR(M)-module structure on HomR(M, N), and
Equation (2.1) follows from the associativity of composition of func-
tions.

(5) Recall that a ring T is an R-algebra, if T is an R-module and the R-
module structure on T and the ring structure of T are compatible, i.e.,
r(t1t2) = (rt1)t2 = t1(rt2) for all r ∈ R and t1, t2 ∈ T . If T happens
to be an (R, S)-bimodule, such that r(t1t2) = (rt1)t2 = t1(rt2) and
(t1t2)s = t1(t2s) = (t1s)t2 for all r ∈ R, s ∈ S, and t1, t2 ∈ T , then we
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say that T is an (R, S)-bialgebra. For example, if R and S are subrings
of a commutative ring T , then T is an (R, S)-bialgebra.

Suppose that M is an (R, S)-bimodule and N ⊆ M is a subgroup of the
additive abelian group of M . Then N is said to be an (R, S)-bisubmodule
of M if N is both a left R-submodule and a right S-submodule of M . If
M1 and M2 are (R, S)-bimodules, then a function f : M1 → M2 is an
(R,S)-bimodule homomorphism if it is both a left R-module homomor-
phism and a right S-module homomorphism. The set of (R,S)-bimodule
homomorphisms will be denoted Hom(R,S)(M1, M2). Since bimodule ho-
momorphisms can be added, this has the structure of an abelian group,
but, a priori, nothing more. If f : M1 → M2 is an (R, S)-bimodule ho-
momorphism, then it is a simple exercise to check that Ker(f) ⊆ M1 and
Im(f) ⊆ M2 are (R, S)-bisubmodules.

Furthermore, if N ⊆ M is an (R,S)-bisubmodule, then the quotient
abelian group is easily seen to have the structure of an (R, S)-bimodule.
We leave it as an exercise for the reader to formulate and verify the noether
isomorphism theorems (see Theorems 3.2.3 to 3.2.6) in the context of (R, S)-
bimodules. It is worth pointing out that if M is an (R,S)-bimodule, then
there are three distinct concepts of submodule of M , namely, R-submodule,
S-submodule, and (R, S)-bisubmodule. Thus, if X ⊆ M , then one has three
concepts of submodule of M generated by the set X. To appreciate the
difference, suppose that X = {x} consists of a single element x ∈ M . Then
the R-submodule generated by X is the set

(2.2) Rx = {rx : r ∈ R},

the S-submodule generated by X is the set

(2.3) xS = {xs : s ∈ S},

while the (R,S)-bisubmodule generated by X is the set

(2.4) RxS = {
n∑

i=1

rixsi : n ∈ N and ri ∈ R, si ∈ S for 1 ≤ i ≤ n}.

(2.3) Examples.

(1) If R is a ring, then a left R-submodule of R is a left ideal, a right
R-submodule is a right ideal, and an (R, R)-bisubmodule of R is a
(two-sided) ideal.

(2) As a specific example, let R = M2(Q) and let x =
[
1
0

0
0

]
. Then the left

R-submodule of R generated by {x} is

Rx =
{[

a 0
b 0

]
: a, b ∈ Q

}
,
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the right R-submodule of R generated by {x} is

xR =
{[

a b
0 0

]
: a, b ∈ Q

}
,

while the (R,R)-bisubmodule of R generated by {x} is R itself (see
Theorem 2.2.26).

When considering bimodules, there are (at least) three distinct types
of homomorphisms that can be considered. In order to keep them straight,
we will adopt the following notational conventions. If M and N are left
R-modules (in particular, both could be (R, S)-bimodules, or one could be
an (R,S)-bimodule and the other a (R, T )-bimodule), then HomR(M, N)
will denote the set of (left) R-module homomorphisms from M to N . If M
and N are right S-modules, then Hom−S(M, N) will denote the set of all
(right) S-module homomorphisms. If M and N are (R, S)-bimodules, then
Hom(R,S)(M, N) will denote the set of all (R,S)-bimodule homomorphisms
from M to N . With no additional hypotheses, the only algebraic structure
that can be placed upon these sets of homomorphisms is that of abelian
groups, i.e., addition of homomorphisms is a homomorphism in each situa-
tion described. The first thing to be considered is what additional structure
is available.

(2.4) Proposition. Suppose that M is an (R, S)-bimodule and N is an
(R, T )-bimodule. Then HomR(M, N) can be given the structure of an
(S, T )-bimodule.

Proof. We must define compatible left S-module and right T -module struc-
tures on HomR(M, N). Thus, let f ∈ HomR(M, N), s ∈ S, and t ∈ T .
Define sf and ft as follows:

sf(m) = f(ms) for all m ∈ M(2.5)
and

ft(m) = f(m)t for all m ∈ M .(2.6)

We must show that Equation (2.5) defines a left S-module structure on
HomR(M, N) and that Equation (2.6) defines a right T -module structure
on HomR(M, N), and we must verify the compatibility condition s(ft) =
(sf)t.

We first verify that sft is an R-module homomorphism. To see this,
suppose that r1, r2 ∈ R, m1, m2 ∈ M and note that

sft(r1m1 + r2m2) = f((r1m1 + r2m2)s)t
= f((r1m1)s + (r2m2)s)t
= f(r1(m1s) + r2(m2s))t
= (r1f(m1s) + r2f(m2s)) t
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= (r1f(m1s))t + (r2f(m2s))t
= r1(f(m1s)t) + r2(f(m2s)t)
= r1(sft)(m1) + r2(sft)(m2),

where the third equality follows from the (R,S)-bimodule structure on M ,
while the next to last equality is a consequence of the (R, T )-bimodule
structure on N . Thus, sft is an R-module homomorphism for all s ∈ S,
t ∈ T , and f ∈ HomR(M, N).

Now observe that, if s1, s2 ∈ S and m ∈ M , then

(s1(s2f)) (m) = (s2f)(ms1)
= f((ms1)s2)
= f(m(s1s2))
= ((s1s2)f) (m)

so that HomR(M, N) satisfies axiom (cl) of Definition 3.1.1. The other
axioms are automatic, so HomR(M, N) is a left S-module. Similarly, if t1,
t2 ∈ T and m ∈ M , then

((ft1)t2) (m) = ((ft1)(m)) t2

= (f(m)t1) t2

= f(m)(t1t2)
= (f(t1t2)) (m).

Thus, HomR(M, N) is a right T -module by Definition 3.1.1 (2). We have
only checked axiom (cr), the others being automatic.

It remains to check the compatibility of the left S-module and right
T -module structures. But, if s ∈ S, t ∈ T , f ∈ HomR(M, N), and m ∈ M ,
then

((sf)t) (m) = (sf)(m)t = f(ms)t = (ft)(ms) = s(ft)(m).

Thus, (sf)t = s(ft) and HomR(M, N) is an (S, T )-bimodule, which com-
pletes the proof of the proposition. ut

Proved in exactly the same way is the following result concerning the
bimodule structure on the set of right R-module homomorphisms.

(2.5) Proposition. Suppose that M is an (S, R)-bimodule and N is a (T,R)-
bimodule. Then Hom−R(M, N) has the structure of a (T, S)-bimodule, via
the module operations

(tf)(m) = t(f(m)) and (fs)(m) = f(sm)

where s ∈ S, t ∈ T , f ∈ Hom−R(M, N), and m ∈ M .

Proof. Exercise. ut
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Some familiar results are corollaries of these propositions. (Also see
Example 3.1.5 (10).)

(2.6) Corollary.

(1) If M is a left R-module, then M∗ = HomR(M, R) is a right R-module.
(2) If M and N are (R,R)-bimodules, then HomR(M, N) is an (R, R)-
bimodule, and EndR(M) is an (R, R)-bialgebra. In particular, this is the
case when the ring R is commutative.

Proof. Exercise. ut

Remark. If M and N are both (R, S)-bimodules, then the set of bimod-
ule homomorphisms Hom(R,S)(M, N) has only the structure of an abelian
group.

Theorem 3.3.10 generalizes to the following result in the context of
bimodules. The proof is identical, and hence it will be omitted.

(2.7) Theorem. Let

(2.7) 0 −→ M1
φ−→ M

ψ−→ M2

be a sequence of (R,S)-bimodules and (R, S)-bimodule homomorphisms.
Then the sequence (2.7) is exact if and only if the sequence

(2.8) 0 −→ HomR(N, M1)
φ∗−→ HomR(N, M)

ψ∗−→ HomR(N, M2)

is an exact sequence of (T, S)-bimodules for all (R, T )-bimodules N .
If

(2.9) M1
φ−→ M

ψ−→ M2 −→ 0

is a sequence of (R, S)-bimodules and (R, S)-bimodule homomorphisms,
then the sequence (2.9) is exact if and only if the sequence

(2.10) 0 −→ HomR(M2, N)
ψ∗−→ HomR(M, N)

φ∗−→ HomR(M1, N)

is an exact sequence of (S, T )-bimodules for all (R, T )-bimodules N .

Proof. ut

Similarly, the proof of the following result is identical to the proof of
Theorem 3.3.12.

(2.8) Theorem. Let N be a fixed (R, T )-bimodule. If

(2.11) 0 −→ M1
φ−→ M

ψ−→ M2 −→ 0
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is a split short exact sequence of (R, S)-bimodules, then

(2.12) 0 −→ HomR(N, M1)
φ∗−→ HomR(N, M)

ψ∗−→ HomR(N, M2) −→ 0

is a split short exact sequence of (T, S)-bimodules, and

(2.13) 0 −→ HomR(M2, N)
ψ∗−→ HomR(M, N)

φ∗−→ HomR(M1, N) −→ 0

is a split short exact sequence of (S, T )-bimodules.

Proof. ut

This concludes our brief introduction to bimodules and module struc-
tures on spaces of homomorphisms; we turn our attention now to the con-
cept of tensor product of modules. As we shall see, Hom and tensor products
are closely related, but unfortunately, there is no particularly easy defini-
tion of tensor products. On the positive side, the use of the tensor product
in practice does not usually require an application of the definition, but
rather fundamental properties (easier than the definition) are used.

Let M be an (R, S)-bimodule and let N be an (S, T )-bimodule. Let F
be the free abelian group on the index set M × N (Remark 3.4.5). Recall
that this means that F = ⊕(m,n)∈M×NZ(m,n) where Z(m,n) = Z for all
(m, n) ∈ M ×N , and that a basis of F is given by S = {e(m,n)}(m,n)∈M×N

where e(m,n) = (δmkδn`)(k,`)∈M×N , that is, e(m,n) = 1 in the component of
F corresponding to the element (m,n) ∈ M ×N and e(m,n) = 0 in all other
components. As is conventional, we will identify the basis element e(m,n)

with the element (m,n) ∈ M ×N . Thus a typical element of F is a linear
combination ∑

(m,n)∈M×N

c(m,n)(m,n)

where c(m,n) ∈ Z and all but finitely many of the integers c(m,n) are 0. Note
that F can be given the structure of an (R, T )-bimodule via the multipli-
cation

(2.14) r

(
k∑

i=1

ci(mi, ni)

)
t =

k∑

i=1

ci(rmi, nit)

where r ∈ R, t ∈ T , and c1, . . . , ck ∈ Z.
Let K ⊆ F be the subgroup of F generated by the subset H1∪H2∪H3

where the three subsets H1, H2, and H3 are defined by

H1 = {(m1 + m2, n)− (m1, n)− (m2, n) : m1, m2 ∈ M, n ∈ N}
H2 = {(m, n1 + n2)− (m, n1)− (m, n2) : m ∈ M, n1, n2 ∈ N}
H3 = {(ms, n)− (m, sn) : m ∈ M, n ∈ N, s ∈ S}.
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Note that K is an (R, T )-submodule of F using the bimodule structure
given by Equation (2.14).

With these preliminaries out of the way, we can define the tensor prod-
uct of M and N .

(2.9) Definition. With the notation introduced above, the tensor product of
the (R, S)-bimodule M and the (S, T )-bimodule N , denoted M ⊗S N , is the
quotient (R, T )-bimodule

M ⊗S N = F/K.

If π : F → F/K is the canonical projection map, then we let m ⊗S n =
π((m,n)) for each (m,n) ∈ M ×N ⊆ F . When S is clear from the context
we will frequently write m⊗ n in place of m⊗S n.

Note that the set

(2.15) {m⊗S n : (m,n) ∈ M ×N}
generates M ⊗S N as an (R, T )-bimodule, but it is important to recognize
that M ⊗S N is not (in general) equal to the set in (2.15). Also important
to recognize is the fact that m⊗S n = (m,n)+K is an equivalence class, so
that m⊗ n = m′ ⊗ n′ does not necessarily imply that m = m′ and n = n′.
As motivation for this rather complicated definition, we have the following
proposition. The proof is left as an exercise.

(2.10) Proposition. Let M be an (R,S)-bimodule, N an (S, T )-bimodule,
and let m, mi ∈ M , n, ni ∈ N , and s ∈ S. Then the following identities
hold in M ⊗S N .

(m1 + m2)⊗ n = m1 ⊗ n + m2 ⊗ n(2.16)
m⊗ (n1 + n2) = m⊗ n1 + m⊗ n2(2.17)
ms⊗ n = m⊗ sn.(2.18)

Proof. Exercise. ut

Indeed, the tensor product M ⊗S N is obtained from the cartesian
product M × N by “forcing” the relations (2.16)–(2.18), but no others,
to hold. This idea is formalized in Theorem 2.12, the statement of which
requires the following definition.

(2.11) Definition. Let M be an (R, S)-bimodule, N an (S, T )-bimodule, and
let M × N be the cartesian product of M and N as sets. Let Q be any
(R, T )-bimodule. A map g : M ×N → Q is said to be S-middle linear if it
satisfies the following properties (where r ∈ R, s ∈ S, t ∈ T , m, mi ∈ M
and n, ni ∈ N):
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(1) g(rm, nt) = rg(m, n)t,
(2) g(m1 + m2, n) = g(m1, n) + g(m2, n),
(3) g(m, n1 + n2) = g(m, n1) + g(m, n2), and
(4) g(ms, n) = g(m, sn).

Note that conditions (1), (2), and (3) simply state that for each m ∈ M
the function gm : N → Q defined by gm(n) = g(m, n) is in Hom−T (N, Q)
and for each n ∈ N the function gn : M → Q defined by gn(m) = g(m, n)
is in HomR(M, Q). Condition (4) is compatibility with the S-module struc-
tures on M and N .

If π : F → M ⊗S N = F/K is the canonical projection map and
ι : M ×N → F is the inclusion map that sends (m, n) to the basis element
(m, n) ∈ F , then we obtain a map θ : M × N → M ⊗ N . According
to Proposition 2.10, the function θ is S-middle linear. The content of the
following theorem is that every S-middle linear map “factors” through θ.
This can, in fact, be taken as the fundamental defining property of the
tensor product.

(2.12) Theorem. Let M be an (R,S)-bimodule, N an (S, T )-bimodule, Q
an (R, T )-bimodule, and g : M × N → Q an S-middle linear map. Then
there exists a unique (R, T )-bimodule homomorphism g̃ : M ⊗S N → Q
with g = g̃ ◦ θ. Furthermore, this property characterizes M ⊗S N up to
isomorphism.

Proof. If F denotes the free Z-module on the index set M×N , which is used
to define the tensor product M⊗S N , then Equation (2.14) gives an (R, T )-
bimodule structure on F . Since F is a free Z-module with basis M × N
and g : M × N → Q is a function, Proposition 3.4.9 shows that there is
a unique Z-module homomorphism g′ : F → Q such that g′ ◦ ι = g where
ι : M ×N → F is the inclusion map. The definition of the (R, T )-bimodule
structure on F and the fact that g is S-middle linear implies that g′ is in
fact an (R, T )-bimodule homomorphism. Let K ′ = Ker(g′), so the first iso-
morphism theorem provides an injective (R, T )-bimodule homomorphism
g′′ : F/K ′ → Q such that g′ = π′ ◦ g′′ where π′ : F → F/K ′ is the canon-
ical projection map. Recall that K ⊂ F is the subgroup of F generated
by the sets H1, H2, and H3 defined prior to Definition 2.9. Since g is an
S-middle linear map, it follows that K ⊆ Ker(g′) = K ′, so there is a map
π2 : F/K → F/K ′ such that π2 ◦ π = π′.

Thus, g : M ×N → Q can be factored as follows:

(2.19) M ×N
ι−→ F

π−→ F/K
π2−→ F/K ′ g′′−→ Q.

Recalling that F/K = M ⊗S N , we define g̃ = g′′ ◦ π2. Since θ = π ◦ ι,
Equation (2.19) shows that g = g̃ ◦ θ.

It remains to consider uniqueness of g̃. But M ⊗S N is generated by
the set {m ⊗S n = θ(m, n) : m ∈ M, n ∈ N}, and any function g̃ such
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that g̃ ◦ θ = g satisfies g̃(m ⊗ n) = g̃(θ(m, n)) = g(m, n), so g̃ is uniquely
specified on a generating set and, hence, is uniquely determined.

Now suppose that we have (R, T )-bimodules Pi and S-middle linear
maps θi : M × N → Pi such that, for any (R, T )-bimodule Q and any
S-middle linear map g : M × N → Q, there exist unique (R, T )-bimodule
homomorphisms g̃i : Pi → Q with g = g̃i ◦ θi for i = 1, 2. We will show
that P1 and P2 are isomorphic, and indeed that there is a unique (R, T )-
bimodule isomorphism φ : P1 → P2 with the property that θ2 = φ ◦ θ1.

Let Q = P2 and g = θ2. Then by the above property of P1 there is
a unique (R, T )-bimodule homomorphism φ : P1 → P2 with θ2 = φ ◦ θ1.
We need only show that φ is an isomorphism. To this end, let Q = P1 and
g = θ1 to obtain ψ : P2 → P1 with θ1 = ψ ◦ θ2. Then

θ1 = ψ ◦ θ2 = ψ ◦ (φ ◦ θ1) = (ψ ◦ φ) ◦ θ1.

Now apply the above property of P1 again with Q = P1 and g = θ1. Then
there is a unique g̃ with g = g̃ ◦ θ1, i.e., a unique g̃ with θ1 = g̃ ◦ θ1.
Obviously, g̃ = 1P1 satisfies this condition but so does g̃ = ψ ◦ φ, so we
conclude that ψ ◦ φ = 1P1 .

Similarly, φ ◦ ψ = 1P2 , so ψ = φ−1, and we are done. ut

(2.13) Remarks.

(1) If M is a right R-module and N is a left R-module, then M ⊗R N is
an abelian group.

(2) If M and N are both (R, R)-bimodules, then M ⊗R N is an (R, R)-
bimodule. A particular (important) case of this occurs when R is a
commutative ring. In this case every left R-module is automatically a
right R-module, and vice-versa. Thus, over a commutative ring R, it
is meaningful to speak of the tensor product of R-modules, without
explicit attention to the subtleties of bimodule structures.

(3) Suppose that M is a left R-module and S is a ring that contains R as
a subring. Then we can form the tensor product S⊗R M which has the
structure of an (S,Z)-bimodule, i.e, S ⊗R M is a left S-module. This
construction is called change of rings and it is useful when one would
like to be able to multiply elements of M by scalars from a bigger ring.
For example, if V is any vector space over R, then C⊗R V is a vector
space over the complex numbers. This construction has been implicitly
used in the proof of Theorem 4.6.23.

(4) If R is a commutative ring, M a free R-module, and φ a bilinear form
on M , then φ : M×M → R is certainly middle linear, and so φ induces
an R-module homomorphism

φ̃ : M ⊗R M → R.
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(2.14) Corollary.

(1) Let M and M ′ be (R, S)-bimodules, let N and N ′ be (S, T )-bimodules,
and suppose that f : M → M ′ and g : N → N ′ are bimodule homo-
morphisms. Then there is a unique (R, T )-bimodule homomorphism

(2.20) f ⊗ g = f ⊗S g : M ⊗S N −→ M ′ ⊗S N ′

satisfying (f ⊗ g)(m⊗ n) = f(m)⊗ g(n) for all m ∈ M , n ∈ N .
(2) If M ′′ is another (R,S)-bimodule, N ′′ is an (S, T )-bimodule, and f ′′ :

M ′ → M ′′, g′′ : N ′ → N ′′ are bimodule homomorphisms, then letting
f⊗g : M⊗N → M ′⊗N ′ and f ′⊗g′ : M ′⊗N ′ → M ′′⊗N ′′ be defined
as in part (1), we have

(f ′ ⊗ g′)(f ⊗ g) = (f ′f)⊗ (g′g) : M ⊗N −→ M ′′ ⊗N ′′.

Proof. (1) Let F be the free abelian group on M×N used in the definition of
M⊗S N , and let h : F → M ′⊗S N ′ be the unique Z-module homomorphism
such that h(m, n) = f(m)⊗S g(n). Since f and g are bimodule homomor-
phisms, it is easy to check that h is an S-middle linear map, so by Theorem
2.12, there is a unique bimodule homomorphism h̃ : M ⊗ N → M ′ ⊗ N ′

such that h = h̃ ◦ θ where θ : M ×N → M ⊗N is the canonical map. Let
f ⊗ g = h̃. Then

(f ⊗ g)(m⊗ n) = h̃(m⊗ n) = h ◦ θ(m, n) = h(m, n) = f(m)⊗ g(n)

as claimed.
(2) is a routine calculation, which is left as an exercise. ut

We will now consider some of the standard canonical isomorphisms
relating various tensor product modules. The verifications are, for the most
part, straightforward applications of Theorem 2.12. A few representative
calculations will be presented; the others are left as exercises.

(2.15) Proposition. Let M be an (R, S)-bimodule. Then there are (R, S)-
bimodule isomorphisms

R⊗R M ∼= M and M ⊗S S ∼= M.

Proof. We check the first isomorphism; the second is similar. Let f :
R × M → M be defined by f(r, m) = rm. It is easy to check that f is
an R-middle linear map, and thus Theorem 2.12 gives an (R,S)-bimodule
homomorphism f̃ : R ⊗R M → M such that f̃(r ⊗ m) = rm. Define
g : M → R ⊗R M by g(m) = 1 ⊗m. Then g is an (R, S)-bimodule homo-
morphism, and it is immediate that f̃ and g are inverses of each other. ut
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(2.16) Proposition. Let M and N be (R, R)-bimodules. Then

M ⊗R N ∼= N ⊗R M.

Proof. The isomorphism is given (via an application of Theorem 2.12) by
m⊗ n 7→ n⊗m. ut

(2.17) Proposition. Let M be an (R,S)-bimodule, N an (S, T )-bimodule,
and P a (T, U)-bimodule. Then there is an isomorphism of (R,U)-bimodules

(M ⊗S N)⊗T P ∼= M ⊗S (N ⊗T P ) .

Proof. Fix an element p ∈ P and define a function

fp : M ×N → M ⊗S (N ⊗T P )

by
fp(m, n) = m⊗S (n⊗T p).

fp is easily checked to be S-middle linear, so Theorem 2.12 applies to give
an (R, T )-bimodule homomorphism f̃p : M ⊗S N → M ⊗S (N ⊗T P ). Then
we have a map f : (M ⊗S N)× P → M ⊗S (N ⊗T P ) defined by

f((m⊗ n), p) = f̃p(m⊗ n) = m⊗ (n⊗ p).

But f is T -middle linear, and hence there is a map of (R,U)-bimodules

f̃ : (M ⊗S N)⊗T P −→ M ⊗S (N ⊗T P )

satisfying f̃((m⊗n)⊗p) = m⊗(n⊗p). Similarly, there is an (R, U)-bimodule
homomorphism

g̃ : M ⊗S (N ⊗T P ) −→ (M ⊗S N)⊗T P

satisfying g̃(m⊗ (n⊗ p)) = (m⊗n)⊗ p. Clearly, g̃f̃ (respectively f̃ g̃) is the
identity on elements of the form (m⊗n)⊗p (respectively, m⊗ (n⊗p)), and
since these elements generate the respective tensor products, we conclude
that f̃ and g̃ are isomorphisms. ut

(2.18) Proposition. Let M = ⊕i∈IMi be a direct sum of (R,S)-bimodules,
and let N = ⊕j∈JNj be a direct sum of (S, T )-bimodules. Then there is an
isomorphism

M ⊗S N ∼=
⊕

i∈I

⊕

j∈J

(Mi ⊗S Nj)

of (R, T )-bimodules.

Proof. Exercise. ut
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(2.19) Remark. When one is taking Hom and tensor product of various
bimodules, it can be somewhat difficult to keep track of precisely what
type of module structure is present on the given Hom or tensor product.
The following is a useful mnemonic device for keeping track of the various
module structures when forming Hom and tensor products. We shall write
RMS to indicate that M is an (R,S)-bimodule. When we form the tensor
product of an (R,S)-bimodule and an (S, T )-bimodule, then the resulting
module has the structure of an (R, T )-bimodule (Definition 2.9). This can
be indicated mnemonically by

(2.21) RMS ⊗S SNT = RPT .

Note that the two subscripts “S” on the bimodules appear adjacent to
the subscript “S” on the tensor product sign, and after forming the tensor
product they all disappear leaving the outside subscripts to denote the
bimodule type of the answer (= tensor product).

A similar situation holds for Hom, but with one important differ-
ence. Recall from Proposition 2.4 that if M is an (R, S)-bimodule and N
is an (R, T )-bimodule, then HomR(M, N) has the structure of an (S, T )-
bimodule. (Recall that HomR(M, N) denotes the left R-module homomor-
phisms.) In order to create a simple mnemonic device similar to that of
Equation (2.21), we make the following definition. If M and N are left R-
modules, then we will write M ∩| R N for HomR(M, N). Using ∩| R in place
of ⊗R, we obtain the same convention about matching subscripts disap-
pearing, leaving the outer subscripts to give the bimodule type, provided
that the order of the subscripts of the module on the left of the ∩| R sign are
reversed. Thus, Proposition 2.4 is encoded in this context as the statement

RMS and RNT =⇒ SMR ∩| R RNT = SPT .

A similar convention holds for homomorphisms of right T -modules.
This is illustrated by

Hom−T (RMT , SNT ) = SNT ∩| −T T MR = SPR,

the result being an (S, R)-bimodule (see Proposition 2.5). Note that we
must reverse the subscripts on M and interchange the position of M and
N .

We shall now investigate the connection between Hom and tensor prod-
uct. This relationship will allow us to deduce the effect of tensor products
on exact sequences, using the known results for Hom (Theorems 2.7 and
2.8 in the current section, which are generalizations of Theorems 3.3.10 and
3.3.12).

(2.20) Theorem. (Adjoint associativity of Hom and tensor product) Let
M1 and M2 be (S, R)-bimodules, N a (T, S)-bimodule, and P a (T, U)-
bimodule. If ψ : M2 → M1 is an (S,R)-bimodule homomorphism, then
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there are (R,U)-bimodule isomorphisms

Φi : HomS(Mi, HomT (N, P )) −→ HomT (N ⊗S Mi, P )

such that the following diagram commutes:

(2.22)

HomS(M1, HomT (N, P ))
ψ∗−→ HomS(M2, HomT (N, P ))yΦ1

yΦ2

HomT (N ⊗S M1, P )
(1N⊗Sφ)∗−→ HomT (N ⊗S M2, P )

Proof. Define Φi : HomS(Mi, HomT (N, P )) → HomT (N ⊗S Mi, P ) by

Φi(f)(n⊗m) = (f(m))(n)

where f ∈ HomS(Mi, HomT (N, P )), m ∈ Mi, and n ∈ N . It is easy to
check that Φi(f) ∈ HomT (N ⊗S M, P ) and that Φ is a homomorphism of
(R,U)-bimodules. The inverse map is given by

(Ψi(g)(m)) (n) = g(m⊗ n)

where g ∈ HomT (N ⊗S M, P ), m ∈ M , and n ∈ N . To check the commu-
tativity of the diagram, suppose that f ∈ HomS(M, HomT (N, P ), n ∈ N ,
and m2 ∈ M2. Then

((Φ2 ◦ ψ∗) (f)) (n⊗m2) = (Φ2(f ◦ ψ)) (n⊗m2)
= ((f ◦ ψ)(m2)) (n)
= f(ψ(m2))(n)
= (Φ1(f)) (n⊗ ψ(m2))
= (Φ1(f)) ((1n ⊗ ψ)(n⊗m2))
= (1n ⊗ ψ)∗ (Φ1(f)) (n⊗m2)
=

(
(1N ⊗ ψ)∗ ◦ Φ1(f)

)
(n⊗m2).

Thus, Φ2 ◦ ψ∗ = (1N ⊗ ψ)∗ ◦ Φ1 and diagram (2.22) is commutative. ut

There is an analogous result concerning homomorphisms of right mod-
ules. In general we shall not state results explicitly for right modules; they
can usually be obtained by obvious modifications of the left module results.
However, the present result is somewhat complicated, so it will be stated
precisely.

(2.21) Theorem. Let M1 and M2 be (R, S)-bimodules, N an (S, T )-bimodule,
and P a (U, T )-bimodule. If ψ : M2 → M1 is an (R,S)-bimodule homomor-
phism, then there are (U,R)-bimodule isomorphisms

Φi : Hom−S(Mi, Hom−T (N, P )) −→ Hom−T (Mi ⊗S N, P )
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such that the following diagram commutes:

(2.23)

Hom−S(M1, Hom−T (N, P ))
ψ∗−→ Hom−S(M2, Hom−T (N, P ))yΦ1

yΦ2

Hom−T (M1 ⊗S N, P )
(1N⊗Sφ)∗−→ Hom−T (M2 ⊗S N, P )

Proof. The proof is the same as that of Theorem 2.20. ut

Remark. Note that Theorems 2.20 and 2.21 are already important results
in case M1 = M2 = M and ψ = 1M .

As a simple application of adjoint associativity, there is the following
result.

(2.22) Corollary. Let M be an (R,S)-bimodule, N an (S, T )-bimodule, and
let P = M ⊗S N (which is an (R, T )-bimodule). If M is projective as a
left R-module (resp., as a right S-module) and N is projective as a left S-
module (resp., as a right T -module), then P is projective as a left R-module
(resp., as a right T -module).

Proof. To show that P is projective as a left R-module, we must show that,
given any surjection f : A → B of R-modules, the induced map

f∗ : HomR(P, A) −→ HomR(P, B)

is also surjective. By hypothesis, M is projective as a left R-module so that

f∗ : HomR(M, A) −→ HomR(M, B)

is surjective. Also, N is assumed to be projective as a left S-module, so the
map

(f∗)∗ : HomS(N, HomR(M, A)) −→ HomS(N, HomR(M, A))

is also surjective. But, by Theorem 2.20, if C = A or B, then

HomS(N, HomR(M, C)) ∼= HomR(P, C).

It is simple to check that in fact there is a commutative diagram

HomS(N, HomR(M, A))
(f∗)∗−→ HomS(N, HomR(M, B))yΦ1

yΦ2

HomR(P, A)
f∗−→ HomR(P, B)

and this completes the proof. ut
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One of the most important consequences of the adjoint associativity
property relating Hom and tensor product is the ability to prove theorems
concerning the exactness of sequences of tensor product modules by appeal-
ing to the theorems on exactness of Hom sequences, namely, Theorems 2.7
and 2.8.

(2.23) Theorem. Let N be a fixed (R, T )-bimodule. If

(2.24) M1
φ−→ M

ψ−→ M2 −→ 0

is an exact sequence of (S,R)-bimodules, then

(2.25) M1 ⊗R N
φ⊗1N−→ M ⊗R N

ψ⊗1N−→ M2 ⊗R N −→ 0

is an exact sequence of (S, T )-bimodules, while if (2.24) is an exact sequence
of (T, S)-bimodules, then

(2.26) N ⊗T M1
1N⊗φ−→ N ⊗T M

1N⊗ψ−→ N ⊗T M2 −→ 0

is an exact sequence of (R, S)-bimodules.

Proof. We will prove the exactness of sequence (2.26); exactness of sequence
(2.25) is similar and it is left as an exercise. According to Theorem 2.7, in
order to check the exactness of sequence (2.26), it is sufficient to check that
the induced sequence

0 −→ HomR(N ⊗T M2, P ) −→ HomR(N ⊗T M, P )(2.27)
−→ HomR(N ⊗T M1, P )

is exact for every (R, U)-bimodule P . But Theorem 2.20 identifies sequence
(2.27) with the following sequence, which is induced from sequence (2.24)
by the (T,U)-bimodule HomR(N, P ):

0 −→ HomT (M2, HomR(N, P )) −→ HomT (M, HomR(N, P ))(2.28)
−→ HomT (M1, HomR(N, P )).

Since (2.24) is assumed to be exact, Theorem 2.7 shows that sequence (2.28)
is exact for any (R, U)-bimodule P . Thus sequence (2.27) is exact for all
P , and the proof is complete. ut

(2.24) Examples.

(1) Consider the following short exact sequence of Z-modules:

(2.29) 0 −→ Z
φ−→ Z

ψ−→ Zm −→ 0

where φ(i) = mi and ψ is the canonical projection map. If we take
N = Zn, then exact sequence (2.25) becomes
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(2.30) Z⊗ Zn
φ⊗1−→ Z⊗ Zn

ψ⊗1−→ Zm ⊗ Zn −→ 0.

By Proposition 2.15, exact sequence (2.30) becomes the exact sequence

(2.31) Zn
φ̃−→ Zn

ψ̃−→ Zm ⊗ Zn −→ 0

where (φ̃)(i) = mi. Thus Zm⊗Zn
∼= Coker(φ̃). Now let d = gcd(m, n)

and write m = m′d, n = n′d. Then the map φ̃ is the composite

Zn
φ1−→ Zn

φ2−→ Zn

where φ1(i) = m′i and φ2(i) = di. Since gcd(m′, n) = 1, it follows
that φ1 is an isomorphism (Proposition 1.4.11), while Im(φ2) = dZn.
Hence, Coker(φ̃) ∼= Zn/dZn

∼= Zd, i.e.,

Zm ⊗ Zn
∼= Zd.

(2) Suppose that M is any finite abelian group. Then

M ⊗Z Q = 〈0〉.
To see this, consider a typical generator x⊗r of M⊗ZQ, where x ∈ M
and r ∈ Q. Let n = |M |. Then nx = 0 and, according to Equation
(2.18),

x⊗ r = x⊗ n(r/n) = xn⊗ (r/n) = 0⊗ (r/n) = 0.

Since x ∈ M and r ∈ Q are arbitrary, it follows that every generator
of M ⊗Q is 0.

(3) Let R be a commutative ring, I ⊆ R an ideal, and M any R-module.
Then

(2.32) (R/I)⊗R M ∼= M/IM.

To see this consider the exact sequence of R-modules

0 −→ I
ι−→ R −→ R/I −→ 0.

Tensor this sequence of R-modules with M to obtain an exact sequence

I ⊗R M
ι⊗1−→ R⊗R M −→ (R/I)⊗R M −→ 0.

But according to Proposition 2.15, R⊗R M ∼= M (via the isomorphism
Φ(r ⊗ m) = rm), and under this identification it is easy to see that
Im(ι⊗ 1) = IM . Thus, (R/I)⊗R M ∼= M/IM , as we wished to verify.

Example 2.32 (1) shows that even if a sequence

0 −→ M1 −→ M −→ M2 −→ 0
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is short exact, the tensored sequence (2.25) need not be part of a short exact
sequence, i.e., the initial map need not be injective. For a simple situation
where this occurs, take m = n in Example 2.32 (1). Then exact sequence
(2.30) becomes

Zn
φ⊗1−→ Zn −→ Zn −→ 0.

The map φ⊗ 1 is the zero map, so it is certainly not an injection.
This example, plus our experience with Hom, suggests that we consider

criteria to ensure that tensoring a short exact sequence with a fixed module
produces a short exact sequence. We start with the following result, which
is exactly analogous to Theorem 2.8 for Hom.

(2.25) Theorem. Let N be a fixed (R, T )-bimodule. If

(2.33) 0 −→ M1
φ−→ M

ψ−→ M2 −→ 0

is a split short exact sequence of (S,R)-bimodules, then

(2.34) 0 −→ M1 ⊗R N
φ⊗1N−→ M ⊗R N

ψ⊗1N−→ M2 ⊗R N −→ 0

is a split short exact sequence of (S, T )-bimodules, while if (2.33) is a split
short exact sequence of (T, S)-bimodules, then

(2.35) 0 −→ N ⊗T M1
1N⊗φ−→ N ⊗T M

1N⊗ψ−→ N ⊗T M2 −→ 0

is a split short exact sequence of (R, S)-bimodules.

Proof. We will do sequence (2.34); (2.35) is similar and is left as an exercise.
Let α : M → M1 split φ, and consider the map

α⊗ 1 : M ⊗R N → M1 ⊗R N.

Then

((α⊗ 1)(φ⊗ 1)) (m⊗ n) = (αφ⊗ 1)(m⊗ n) = (1⊗ 1)(m⊗ n) = m⊗ n

so that φ⊗1 is an injection, which is split by α⊗1. The rest of the exactness
is covered by Theorem 2.23. ut

(2.26) Remark. Theorems 2.7 and 2.23 show that given a short exact se-
quence, applying Hom or tensor product will give a sequence that is exact
on one end or the other, but in general not on both. Thus Hom and tensor
product are both called half exact, and more precisely, Hom is called left
exact and tensor product is called right exact. We will now investigate some
conditions under which the tensor product of a module with a short exact
sequence always produces a short exact sequence. It was precisely this type
of consideration for Hom that led us to the concept of projective module.
In fact, Theorem 3.5.1 (4) shows that if P is a projective R-module and
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0 −→ M1
φ−→ M

ψ−→ M2 −→ 0

is a short exact sequence of R-modules, then the sequence

0 −→ HomR(P, M1)
φ∗−→ HomR(P, M)

ψ∗−→ HomR(P, M2) −→ 0

is short exact. According to Theorem 3.3.10, the crucial ingredient needed
is the surjectivity of ψ∗ and this is what projectivity of P provides. For
the case of tensor products, the crucial fact needed to obtain a short exact
sequence will be the injectivity of the initial map of the sequence.

(2.27) Proposition. Let N be an (R, T )-bimodule that is projective as a left
R-module. Then for any injection ι : M1 → M of (S,R)-bimodules,

ι⊗ 1 : M1 ⊗R N −→ M ⊗R N

is an injection of (S, T )-bimodules. If N is projective as a right T -module
and ι : M1 → M is an injection of (T, S)-bimodules, then

1⊗ ι : N ⊗T M1 −→ N ⊗T M

is an injection of (R,S)-bimodules.

Proof. First suppose that as a left R-module N is free with a basis {nj}j∈J .
Then N ∼= ⊕j∈JRj where each summand Rj = Rnj is isomorphic to R as
a left R-module. Then by Proposition 2.18

M1 ⊗R N ∼=
⊕

j∈J

(M1 ⊗R Rj) =
⊕

j∈J

M1j

where each M1j is isomorphic to M1 as a left S-module, and similarly
M⊗R N ∼= ⊕j∈JMj , where each Mj is isomoprhic to M as a left S-module.
Furthermore, the map ι⊗ 1 : M1⊗R N → M ⊗R N is given as a direct sum

⊕

j∈J

(ιj : M1j → Mj)

where each ιj agrees with ι under the above identifications. But then, since
ι is an injection, so is each ιj , and hence so is ι⊗ 1.

Now suppose that N is projective as a left R-module. Then there is a
left R-module N ′ such that N ⊕N ′ = F where F is a free left R-module.
We have already shown that

ι⊗ 1 : M1 ⊗R F −→ M ⊗R F

is an injection. But using Proposition 2.18 again,

M1 ⊗R F ∼= (M1 ⊗R N)⊕ (M1 ⊗R N ′)
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so we may write ι⊗1 = ι1⊕ι2 where (in particular) ι1 = ι⊗1 : M1⊗R N →
M ⊗R F . Since ι⊗ 1 is an injection, so is ι1, as claimed. Thus the proof is
complete in the case that N is projective as a left R-module. The proof in
case N is projective as a right T -module is identical. ut

Note that we have not used the right T -module structures in the above
proof. This is legitimate, since if a homomorphism is injective as a map of
left S-modules, and it is an (S, T )-bimodule map, then it is injective as an
(S, T )-bimodule map.

(2.28) Corollary. Let N be a fixed (R, T )-bimodule that is projective as a
left R-module. If

(2.36) 0 −→ M1
φ−→ M

ψ−→ M2 −→ 0

is a short exact sequence of (S, R)-bimodules, then

(2.37) 0 −→ M1 ⊗R N
φ⊗1N−→ M ⊗R N

ψ⊗1N−→ M2 ⊗R N −→ 0

is a short exact sequence of (S, T )-bimodules; while if (2.36) is an exact
sequence of (T, S)-bimodules and N is projective as a right T -module, then

(2.38) 0 −→ N ⊗T M1
1N⊗φ−→ N ⊗T M

1N⊗ψ−→ N ⊗T M2 −→ 0

is a short exact sequence of (R, S)-bimodules.

Proof. This follows immediately from Theorem 2.23 and Proposition 2.27.
ut

(2.29) Remark. A module satisfying the conclusion of Proposition 2.27 is
said to be flat. That is, a left R-module N is flat if tensoring with all short
exact sequences of right R-modules produces a short exact sequence, with
a similar definition for right R-modules. Given Theorem 2.23, in order to
prove that a left R-module N is flat, it is sufficient to prove that for all right
R-modules M and submodules K, the inclusion map ι : K → M induces
an injective map

ι⊗ 1 : K ⊗R N −→ M ⊗R N.

Thus, what we have proven is that projective modules are flat.

In Section 6.1 we discussed duality for free modules over commutative
rings. Using the theory developed in the current section, we will extend por-
tions of our discussion of duality to the context of projective (bi-)modules.

(2.30) Definition. Let M be an (R, S)-bimodule. The dual module of M is
the (S, R)-bimodule M∗ defined by

HomR(M, R).
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In particular, if M is a left R-module, i.e., take S = Z, then the dual module
M∗ is a right R-module. The double dual of M is defined to be

M∗∗ = Hom−R(M∗, R).

As in Section 6.1, there is a homomorphism η : M → M∗∗ of (R, S)-
bimodules defined by

(η(v))(ω) = ω(v) for all v ∈ M , ω ∈ M∗

and if η is an isomorphism, then we will say that M is reflexive.

If M is an (R, S)-bimodule, which is finitely generated and free as a
left R-module, then given any basis B of M , one may construct a basis of
M∗ (as a right R-module) exactly as in Definition 6.1.3 and the proof of
Theorem 6.1.7 goes through verbatim to show that finitely generated free R-
modules are reflexive, even when R need not be commutative. Furthermore,
the proofs of Theorems 3.5.8 and 6.1.13 go through without difficulty if one
keeps track of the types of modules under consideration. We will simply
state the following result and leave the details of tracing through the module
types as an exercise.

(2.31) Proposition. Let M be an (R,S)-bimodule, which is finitely generated
and projective as a left R-module. Then the dual module M∗ is finitely
generated and projective as a right R-module. Furthermore, M is reflexive
as an (R,S)-bimodule.

Proof. Exercise. See the comments above. ut

If M is an (R, S)-bimodule and P is an (R, T )-bimodule, then define

ζ : M∗ × P → HomR(M, P )

by

(ζ(ω, p)) (m) = ω(m)p for ω ∈ M∗, p ∈ P , and m ∈ M.

Then ζ is S-middle linear and hence it induces an (S, T )-bimodule homo-
morphism

ζ̃ : M∗ ⊗R P −→ HomR(M, P )

given by

(2.39) (ζ̃(ω ⊗ p))(m) = ω(m)p

for all ω ∈ M∗, p ∈ P , and m ∈ M .

(2.32) Proposition. Let M be an (R,S)-bimodule, which is finitely generated
and projective as a left R-module, and let P be an arbitrary (R, T )-bimodule.
Then the map
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ζ̃ : M∗ ⊗R P −→ HomR(M, P )

defined by Equation (2.39) is an (S, T )-bimodule isomorphism.

Proof. Since ζ̃ is an (S, T )-bimodule homomorphism, it is only necessary
to prove that it is bijective. To achieve this first suppose that M is free of
finite rank k as a left R-module. Let B = {v1, . . . , vk} be a basis of M and
let {v∗1 , . . . , v∗k} be the basis of M∗ dual to B. Note that every element of
M∗ ⊗R P can be written as x =

∑k
i=1 v∗i ⊗ pi for p1, . . . , pk ∈ P . Suppose

that ζ̃(x) = 0, i.e., (ζ̃(x))(m) = 0 for every m ∈ M . But ζ̃(x)(vi) = pi so
that pi = 0 for 1 ≤ i ≤ k. That is, x = 0 and we conclude that ζ̃ is injective.

Given any f ∈ HomR(M, P ), let

xf =
k∑

i=1

v∗i ⊗ f(vi).

Then (ζ̃(xf ))(vi) = f(vi) for 1 ≤ i ≤ k, i.e., ζ̃(xf ) and f agree on a basis
of M ; hence, ζ̃(xf ) = f and ζ̃ is a surjection, and the proof is complete in
case M is free of rank k.

Now suppose that M is finitely generated and projective, and let N be
a left R-module such that F = M ⊕N is finitely generated and free. Then
ζ̃ : F ∗ ⊗R P → HomR(F, P ) is a Z-module isomorphism, and

F ∗⊗R P = (M ⊕N)∗⊗R P ∼= (M∗⊕N∗)⊗R P ∼= (M∗⊗R P )⊕ (N∗⊗R P )

while

HomR(F, P ) = HomR(M ⊕N, P ) ∼= HomR(M, P )⊕HomR(N, P )

where all isomorphisms are Z-module isomorphisms. Under these isomor-
phisms,

ζ̃F = ζ̃M ⊕ ζ̃N

ζ̃M : M∗ ⊗R P −→ HomR(M, P )

ζ̃N : N∗ ⊗R P −→ HomR(N, P ).

Since ζ̃F is an isomorphism, it follows that ζ̃M and ζ̃N are isomorphisms as
well. In particular, ζ̃M is bijective and the proof is complete. ut

(2.33) Corollary. Let M be an (R,S)-bimodule, which is finitely generated
and projective as a left R-module, and let P be an arbitrary (T,R)-bimodule.
Then

M∗ ⊗R P ∗ ∼= (P ⊗R M)∗

as (S, T )-bimodules.

Proof. From Proposition 2.32, there is an isomorphism



7.2 Multilinear Algebra 433

M∗ ⊗R P ∗ ∼= HomR(M, P ∗)
= HomR(M, HomR(P, R))
∼= HomR(P ⊗R M, R) (by adjoint associativity)
= (P ⊗R M)∗ .

ut

(2.34) Remark. The isomorphism of Corollary 2.33 is given explicitly by

φ(f ⊗ g)(p⊗m) = f(m)g(p) ∈ R

where f ∈ M∗, g ∈ P ∗, p ∈ P , and m ∈ M .

We will conclude this section by studying the matrix representation of
the tensor product of R-module homomorphisms. Thus, let R be a commu-
tative ring, let M1, M2, N1, and N2 be finite rank free R-modules, and let
fi : Mi → Ni be R-module homomorphisms for i = 1, 2. Let mi be the rank
of Mi and ni the rank of Ni for i = 1, 2. If M = M1⊗M2 and N = N1⊗N2,
then it follows from Proposition 2.18 that M and N are free R-modules of
rank m1n1 and m2n2, respectively. Let f = f1 ⊗ f2 ∈ HomR(M, N). We
will compute a matrix representation for f from that for f1 and f2. To do
this, suppose that

A = {a1, . . . , am1}
B = {b1, . . . , bn1}
C = {c1, . . . , cm2}
D = {d1, . . . , cn2}

are bases of M1, N1, M2, and N2, respectively. Let

E = {a1 ⊗ c1, a1 ⊗ c2, . . . , a1 ⊗ cm2 ,

a2 ⊗ c1, a2 ⊗ c2, . . . , a2 ⊗ cm2 ,

...
am1 ⊗ c1, am1 ⊗ c2, . . . , am1 ⊗ cm2}

and
F = {b1 ⊗ d1, b1 ⊗ d2, . . . , b1 ⊗ dn2 ,

b2 ⊗ d1, b2 ⊗ d2, . . . , b2 ⊗ dn2 ,

...
bn1 ⊗ d1, bn1 ⊗ d2, . . . , bn1 ⊗ dn2}.

Then E is a basis for M and F is a basis for N . With respect to these bases,
there is the following result:
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(2.35) Proposition. With the notation introduced above,

[f1 ⊗ f2]
E
F = [f1]

A
B ⊗ [f2]

C
D .

Proof. Exercise. ut

Recall that the notion of tensor product of matrices was introduced in
Definition 4.1.16 and has been used subsequently in Section 5.5. If [f1]AB =
A = [αij ] and [f2]CD = B = [βij ], then Proposition 2.35 states that (in block
matrix notation)

[f1 ⊗ f2]EF =




α11B α12B · · · α1m1B
...

...
. . .

...
αn11B αn12B · · · αn1m1B


 .

There is another possible ordering for the bases E and F . If we set

E ′ = {ai ⊗ cj : 1 ≤ i ≤ m1, 1 ≤ j ≤ m2}
and

F ′ = {bi ⊗ dj : 1 ≤ i ≤ n1, 1 ≤ j ≤ n2}
where the elements are ordered by first fixing j and letting i increase (lex-
icographic ordering with j the dominant letter), then we leave it to the
reader to verify that the matrix of f1 ⊗ f2 is given by

[f1 ⊗ f2]E
′
F ′ =




β11A β12A · · · β1m2A
...

...
. . .

...
βn21A βn22A · · · βn2m2A


 .

7.3 Exercises

1. Let M be a simple R-module, and let N be any R-module.
(a) Show that every nonzero homomorphism f : M → N is injective.
(b) Show that every nonzero homomorphism f : N → M is surjective.

2. Let F be a field and let R = {
[

a
0

b
c

]
: a, b, c ∈ F} be the ring of upper

triangular matrices over F . Let M = F 2 and make M into a (left) R-module
by matrix multiplication. Show that EndR(M) ∼= F . Conclude that the
converse of Schur’s lemma is false, i.e., EndR(M) can be a division ring
without M being a simple R-module.

3. Suppose that R is a D-algebra, where D is a division ring, and let M be an
R-module which is of finite rank as a D-module. Show that as an R-module,
`(M) ≤ rankD(M).

4. An R-module M is said to satisfy the decending chain condition (DCC) on
submodules if any strictly decreasing chain of submodules of M is of finite
length.
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(a) Show that if M satisfies the DCC, then any nonempty set of submodules
of M contains a minimal element.

(b) Show that `(M) < ∞ if and only if M satisfies both the ACC (ascending
chain condition) and DCC.

5. Let R = {
[

a
0

b
c

]
: a, b ∈ R; c ∈ Q}. R is a ring under matrix addition and

multiplication. Show that R satisfies the ACC and DCC on left ideals, but
neither chain condition is valid for right ideals. Thus R is of finite length as
a left R-module, but `(R) = ∞ as a right R-module.

6. Let R be a ring without zero divisors. If R is not a division ring, prove that
R does not have a composition series.

7. Let f : M1 → M2 be an R-module homomorphism.
(a) If f is injective, prove that `(M1) ≤ `(M2).
(b) If f is surjective, prove that `(M2) ≤ `(M1).

8. Let M be an R-module of finite length and let K and N be submodules of
M . Prove the following length formula:

`(K + N) + `(K ∩N) = `(K) + `(N).

9. (a) Compute `(Zpn).
(b) Compute `(Zpn ⊕ Zqm).
(c) Compute `(G) where G is any finite abelian group.
(d) More generally, compute `(M) for any finitely generated torsion module

over a PID R.

10. Compute the length of M = F [X]/〈f(X)〉 as an F [X]-module if f(X) is
a polynomial of degree n with two distinct irreducible factors. What is the
length of M as an F -module?

11. Let F be a field, let V be a finite-dimensional vector space over F , and let
T ∈ EndF (V ). We shall say that T is semisimple if the F [X]-module VT is
semisimple. If A ∈ Mn(F ), we shall say that A is semisimple if the linear
transformation TA : F n → F n (multiplication by A) is semisimple. Let F2

be the field with 2 elements and let F = F2(Y ) be the rational function field
in the indeterminate Y , and let K = F [X]/〈X2 + Y 〉. Since X2 + Y ∈ F [X]
is irreducible, K is a field containing F as a subfield. Now let

A = C(X2 + Y ) =
[

0 Y
1 0

]
∈ M2(F ).

Show that A is semisimple when considered in M2(F ) but A is not semisimple
when considered in M2(K). Thus, semisimplicity of a matrix is not neces-
sarily preserved when one passes to a larger field. However, prove that if L
is a subfield of the complex numbers C, then A ∈ Mn(L) is semisimple if
and only if it is also semisimple as a complex matrix.

12. Let V be a vector space over R and let T ∈ EndR(V ) be a linear transforma-
tion. Show that T = S + N where S is a semisimple linear transformation,
N is nilpotent, and SN = NS.

13. Prove that the modules Mi and Nj in the proof of Lemma 1.33 are simple,
as claimed.

14. Prove Lemma 1.37.

15. If D is a division ring and n is a positive integer, prove that EndD(Dn) is a
simple ring.

16. Give an example of a semisimple commutative ring that is not a field.

17. (a) Prove that if R is a semisimple ring and I is an ideal, then R/I is
semisimple.

(b) Show (by example) that a subring of a semisimple ring need not be
semisimple.
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18. Let R be a ring that is semisimple as a left R-module. Show that R is simple
if and only if all simple left R-modules are isomorphic.

19. Let M be a finitely generated abelian group. Compute each of the following
groups:
(a) HomZ(M, Q/Z).
(b) HomZ(Q/Z, M).
(c) M ⊗Z Q/Z.

20. Let M be an (R, S)-bimodule and N an (S, T )-bimodule. Suppose that∑
xi ⊗ yi = 0 in M ⊗S N . Prove that there exists a finitely generated

(R, S)-bisubmodule M0 of M and a finitely generated (S, T )-bisubmodule
N0 of N such that

∑
xi ⊗ yi = 0 in M0 ⊗S N0.

21. Let R be an integral domain and let M be an R-module. Let Q be the
quotient field of R and define φ : M → Q⊗R M by φ(x) = 1⊗ x. Show that
Ker(φ) = Mτ = torsion submodule of M . (Hint: If 1 ⊗ x = 0 ∈ Q ⊗R M
then 1 ⊗ x = 0 in (Rc−1) ⊗R M ∼= M for some c 6= 0 ∈ R. Then show that
cx = 0.)

22. Let R be a PID and let M be a free R-module with N a submodule. Let Q be
the quotient field and let φ : M → Q⊗R M be the map φ(x) = 1⊗ x. Show
that N is a pure submodule of M if and only if Q · (φ(N)) ∩ Im(φ) = φ(N).

23. Let R be a PID and let M be a finitely generated R-module. If Q is the
quotient field of R, show that M ⊗R Q is a vector space over Q of dimension
equal to rankR(M/Mτ ).

24. Let R be a commutative ring and S a multiplicatively closed subset of R
containing no zero divisors. Let RS be the localization of R at S. If M is
an R-module, then the RS-module MS was defined in Exercise 6 of Chapter
3. Show that MS

∼= RS ⊗R M where the isomorphism is an isomorphism of
RS-modules.

25. If S is an R-algebra, show that Mn(S) ∼= S ⊗R Mn(R).

26. Let M and N be finitely generated R-modules over a PID R. Compute
M ⊗R N . As a special case, if M is a finite abelian group with invariant
factors s1, . . ., st (where as usual we assume that si

divides si+1), show that M ⊗Z M is a finite group of order
∏t

j=1
s2t−2j+1

j .

27. Let F be a field and K a field containing F . Suppose that V is a finite-
dimensional vector space over F and let T ∈ EndF (V ). If B = {vi} is a
basis of V , then C = {1} ⊗ B = {1 ⊗ vi} is a basis of K ⊗F V . Show that
[1⊗ T ]C = [T ]B. If S ∈ EndF (V ), show that 1⊗ T is similar to 1⊗ S if and
only if S is similar to T .

28. Let V be a complex inner product space and T : V → V a normal linear
transformation. Prove that T is self-adjoint if and only if there is a real inner
product space W , a self-adjoint linear transformation S : W → W , and an
isomorphism φ : C⊗R W → V making the following diagram commute.

C⊗R W
1⊗S−→ C⊗R Wyφ

yφ

V
T−→ V

29. Let R be a commutative ring.
(a) If I and J are ideals of R, prove that

R/I ⊗R R/J ∼= R/(I + J).

(b) If S and T are R-algebras, I is an ideal of S, and J is an ideal of T ,
prove that

S/I ⊗R T/J ∼= (S ⊗R T )/〈I, J〉,
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where 〈I, J〉 denotes the ideal of S⊗RT generated by I⊗RT and S⊗RJ .

30. (a) Let F be a field and K a field containing F . If f(X) ∈ F [X], show that
there is an isomorphism of K-algebras:

K ⊗F (F [X]/〈f(X)〉) ∼= K[X]/〈f(X)〉.
(b) By choosing F , f(X), and K appropriately, find an example of two fields

K and L containing F such that the F -algebra K ⊗F L has nilpotent
elements.

31. Let F be a field. Show that F [X, Y ] ∼= F [X]⊗F F [Y ] where the isomorphism
is an isomorphism of F -algebras.

32. Let G1 and G2 be groups, and let F be a field. Show that

F(G1 ×G2) ∼= F(G1)⊗F F(G2).

33. Let R and S be rings and let f : R → S be a ring homomorphism. If N
is an S-module, then we may make N into an R-module by restriction of
scalars, i.e., a ·x = f(a) ·x for all a ∈ R and x ∈ N . Now form the S-module
NS = S ⊗R N and define g : N → NS by

g(y) = 1⊗ y.

Show that g is injective and g(N) is a direct summand of NS .

34. Let F be a field, V and W finite-dimensional vector spaces over F , and let
T ∈ EndF (V ), S ∈ EndF (W ).
(a) If α is an eigenvalue of S and β is an eigenvalue of T , show that the

product αβ is an eigenvalue of S ⊗ T .
(b) If S and T are diagonalizable, show that S ⊗ T is diagonalizable.

35. Let R be a semisimple ring, M an (R, S)-bimodule that is simple as a left R-
module, and let P be an (R, T )-bimodule that is simple as a left R-module.
Prove that

M∗ ⊗R P =
{

EndR(M) if P ∼= M as left R-modules
0 otherwise.

36. Let R be a commutative ring and M an R-module. Let

M⊗k = M ⊗ · · · ⊗M,

where there are k copies of M , and let S be the submodule of M⊗k generated
by all elements of the form m1 ⊗ · · · ⊗mk where mi = mj for some i 6= j.
Then Λk(M) = M⊗k/S is called an exterior algebra.
(a) Show that if M is free of rank n, then Λk(M) is free and

rank(Λk(M)) =
{(

n
k

)
if k ≤ n

0 if k > n.

(b) As a special case of part (a),

rank(Λn(M)) = 1.

Show that HomR(Λn(M), R) may be regarded as the space of determi-
nant functions on M .


