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”Being good in Mathematics is not about how much you know, it’s about how you

behave when you don’t know.” - Raoul Bott

1 Introduction

Let fn,k : (Cn, S) → (Cn+1, 0) with |S| = k be multigerms from the n-dimensional complex space

to n + 1 dimensional pointed complex space such that fn,k consists of k germs of immersions

fi, i = 1, . . . , k . For every subset I ⊂ {1, . . . , k} with |I| = k − 1 , the germs fi for i ∈ I meet

in general position in Cn+1 , so that the multigerms they define is stable, and
⋂
i∈I fi(Cn), is

a smooth manifold of dimension n − k + 2. The remaining germs fj , j /∈ I, is not in general

position with respect to the fi, i ∈ I but instead makes tangential contact of minimal order

with
⋂
i∈I fi(Cn). Of course, this description only makes sense (because of restriction of general

position) if k < n+2. The relation between fn,k and the branches fk is up to the choice of local

co-ordinates i. e. fk = fn,k ◦ φ where φ : Cn → Cn is a bi-holomorphic (or diffeomorphic) map.

My goal in this article is to study these multigerms and make a solid generalisation as much as

possible.

I have begun with studying conditions for meeting in general position and finally I could be

able to formulate one which was proved very helpful while making generalisation. One of my

ambition while doing this project has been to find some rigorous way to both - calculation of

Ae co-dimension and family of maps satisfying the above condition. Although, I agree with

Klien that mathematical ideas should be guided by intuition and not by rigour, but in my

opinion, the role of rigour in Mathematics is analogous to of that money in real life: it’s not

everything, of course, but living can be very difficult, in fact unmanageable, without it; a

sufficient amount is always needed to make life run smoothly. Following this philosophy, I

have formulated an equivalent condition for meeting in general position and have used ideas

to express the dependence among the entries of matrix representing θ(f), tf or ωf . These are

two, but I have pursued only one because the second one, although very promising in lower

dimension, lead to an infinite array of higher order tensors as the dimension increases. At the

end, I have made some observation and certain conjectures. These conjectures came to my

brain in the last moment, so I couldn’t have given much thought upon these and left as it came.

2 Some Basic Notions and Results

2.1 Transversality and General Position

We recall the definition of a family of manifolds meeting in general position :

A finite set {E1, E2, . . . , Er} of vector subspaces of a finite dimensional vector space V is said
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to be meeting in general position iff:

codim

r⋂
i=1

Ei =

r∑
i=1

codim Ei

Proposition 2.1. When r = 2 the condition of being in general position is same as E1 and E2

being transversal.

Proof. We have the following identity:

dimE1 + E2 = dimE1 + dimE2 − dim(E1 ∩ E2)

⇔ dimV − dimE1 + E2 = dimV − dimE1 + (dimV − dimE2)− (dimV − dim(E1 ∩ E2))

⇔ codim E1 + E2 = codim E1 + codim E2 − codim E1 ∩ E2 (2.1)

Now, if E1 and E2 meet in general position then

codim E1 ∩ E2 = codim E1 + codim E2

So, using 2.1 we get

codim E1 + E2 = 0

which is the same thing as:

E1 + E2 = V

We can retrace the set of argument backward to prove the converse.

In general:

A finite set {E1, E2, . . . , Er} of vector subspaces of a finite dimensional vector space V is said

to have an almost regular intersection of order k (with respect to V ) iff:

codim

r⋂
i=1

Ei =

r∑
i=1

codim Ei − k

When k = 0 we recover our definition of meeting in general position 1 Where codim E of a

vector subspace E of a finite dimensional vector space V equals dimV − dimE.

An equivalent formulation of meeting in general position is:

A finite set {E1, E2, . . . , Er} of vector subspaces of a finite dimensional vector space V is said

1some author also use the term regular intersection
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to be meeting in general position iff the natural map

V → V

E1
⊕ · · · ⊕ V

Er

is surjective.

Proposition 2.2. The two definitions for the subspaces {E1, E2, . . . , Er} of a finite dimensional

vector space V are equivalent.

Proof. Let πbe the natural map, that is:

π : V → V

E1
⊕ · · · ⊕ V

Er

x 7→ (x+ E1, . . . , x+ Er).

Claim: π is a linear map: obviously if x and y are two vectors in V then

π(x+ y) = ((x+ y) + E1, . . . , (x+ y) + Er)

π(ax) = (ax+ E1, . . . , ax+ Er)

but

(x+ y) + Ei = (x+ Ei) + (y + Ei) & ax+ Ei = a(x+ Ei).

Now, using rank-nullity theorem we have dimension of V equals rank of π plus nullity of π - the

dimension of kernel of π . Now, if x ∈ kerπ then,

π(x) = 0⇐⇒ x ∈
r⋂
i=1

Ei

which, in turn, implies:

kerπ =
r⋂
i=1

Ei

and, thus the nullity of π equals dim
⋂r
i=1Ei, that is, rank of π equals codim

⋂r
i=1Ei. Now, if

we assume the definition of general position using codimension then, considering that

dim(
V

E1
⊕ · · · ⊕ V

Er
) =

r∑
i=1

dim(
V

Ei
) =

r∑
i=1

codim Ei

Which, by above, equals the rank of π and hence π is surjective, and conversely.

There’s still another equivalent formulation of meeting in general position:

Proposition 2.3. A finite set {E1, E2, . . . , Er} of vector subspaces of a finite dimensional

vector space V is said to be meeting in general position iff E1 × · · · × Er meets the diagonal
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D = {(v1, . . . , vr) ∈ V r | v1 = · · · = vr} in V r transversally.

Proof. Let v = (v1, . . . , vr) ∈ V r and πi : V → V/Ei : x 7→ x+ Ei = x̄ , then v̄i is the image of

vi in V/Ei under πi . Therefore,

(v̄1, . . . , v̄r) ∈
V

Ei
⊕ · · · ⊕ V

Er

. By proposition 2.2

π : V → V

E1
⊕, . . . ,⊕ V

Er

is surjective. Hence, there exist x ∈ V such that πx = (v̄1, . . . , v̄r) , but this implies

(x+ E1, . . . , x+ Er) = (v̄1, . . . , v̄r)

Which means that x+Ei = vi+Ei that is, vi−x ∈ Ei. Thus, (v1−x, . . . , vr−x) ∈ E1×· · ·×Er
and hence

v = (v1, . . . , vr) = (v1 − x, . . . , vr − x) + (x, . . . , x)

and the latter is in D.

Now, if N is a manifold of dimension n, then at any point p in N the tangent space TpN is a

vector space isomorphic to Cn (or Rn in C∞ category) so, the definition of meeting in general

position naturally translates to manifolds:

Definition 2.4. Let {f i : Mi → N}i=1,...,r be a finite set of analytic (or smooth) functions then

for p ∈ N, {f i : Mi → N}i=1,...,r is said to be in general position at p if p ∈
⋂r
i=1 f

i and Tpf
i

meet in general position in TpN for every i = 1, . . . , r. {f i : Mi → N}i=1,...,r is said to be in

general position if they meet in general position for every p ∈
⋂r
i=1 f

i.

Proposition 2.5. Let f1 : M1 → N and f2 : M2 → N be two maps, then f1 and f2 meet in

general position iff ∀xi ∈Mi such that f1(x1) = f2(x2) , we have:

dx1f
1(Tx1M1) + dx2f

2(Tx2M2) = TpN

where p = f1(x1) = f2(x2).

2.2 Tangent Space to The Zero Set

Suppose F : Cn → C with no critical point in its zero set N = F−1(0). Then N is a regular

submanifold of Cn and thus a manifold in itself [1, Theorem-9.9]. For p ∈ N let Xp ∈ TpN , we

want to find the condition that Xp satisfies under the isomorphism TpCn ∼= Cn which contains

TpN as a vector subspace. So, let’s assume that {X1, . . . , Xn} is the standard coordinate on Cn

and γ = (γ1, . . . , γn) is a curve in N such that γ(0) = p and γ′(0) = Xp where p = (p1, . . . , pn)
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and Xp = (v1, . . . , vn). Since, γ is a curve in N , therefore

0 =
d

dt
(F (γ(t))) =

n∑
i=1

∂F

∂Xi
(γ(t))((γi)′(t))

at t = 0 :

0 =
n∑
i=1

∂F

∂Xi
(p)vi

which is the condition satisfied by any vector in TpN . Now, considering that Xp is a vector

starting at p , we can write (v1, . . . , vn) = (X1 − p1, . . . , Xn − pi), which means

n∑
i=1

∂F

∂Xi
(p)(Xi − pi) = 0 (2.2)

The expression 2.2 is the equation of the tangent space to N = F−1(0) at p. Hence, we have

the following result:

Proposition 2.6. For F : Cn → C of which 0 is a regular value, the points (X1, . . . , Xn) ∈ Cn

is in the tangent space of N = F−1(0) iff (X1, . . . , Xn) satisfies 2.2. So, we obtain the following

description of TpN :

TpN =

{
(X1, . . . , Xn) ∈ Cn |

n∑
i=1

∂F

∂Xi
(p)(Xi − pi) = 0

}

Theorem 2.7. Let F1, F2, . . . , Fk be functions from Cn to C (k < n), such that 0 is the regular

value of each of Fi then regular submanifolds F−1
1 (0), . . . , F−1

k (0) to meet in general position

at p ∈ ∩ki=1F
−1
i (0) if and only if ∇pF1, . . . ,∇pFk are linearly independent. Where ∇pFi =(

∂Fi
∂x1

(p), . . . , ∂Fi
∂xn (p)

)
stands for the gradient of the scaler field Fi : Cn → C evaluated at p.

Proof. ∇pF1, . . . ,∇pFk are linearly independent iff c1∇pF1 + · · · + ck∇pFk = 0 ⇔ c1 = · · · =

ck = 0 which is

c1


∂F1
∂x1

(p)
...

∂F1
∂xn (p)

+ · · ·+ ck


∂Fk
∂x1

(p)
...

∂Fk
∂xn (p)

 = 0⇔ c1 = · · · = ck = 0

which is equivalent to the fact that the n× k matrix

A =


∂F1
∂x1

(p) · · · ∂Fk
∂x1

(p)
...

. . .
...

∂F1
∂xn (p) · · · ∂Fk

∂xn (p)


has rank k.
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Now, let

Ei = {(x1, . . . , xn) | ∂Fi
∂x1

(p)(x1 − p1) + · · ·+ ∂Fi
∂xn

(p)(xn − pn) = 0}

where the constraint ∂Fi
∂x1

(p)(x1 − p1) + · · · + ∂Fi
∂xn (p)(xn − pn) = 0 can be recognised, by the

previous theorem, as the equation of the tangent space to the regular level set F
(
i − 1)(0) and

p = (p1, . . . , pn). Please note that all the Ei has codimension 1: since it’s the tangent space to

the level set which has dimension n − 1. Then a point (x1, . . . , xn) ∈ ∩ki=1 if and only if the

equations
∂Fi
∂x1

(p)(x1 − p1) + · · ·+ ∂Fi
∂xn

(p)(xn − pn) = 0

is satisfied for every i = 1, . . . , k that is if and only if the matrix

B =


∂F1
∂x1

(p) · · · ∂F1
∂xn (p)

... · · ·
...

∂Fk
∂x1

(p) · · · ∂Fk
∂xn (p)


has rank k , but the matrix B is nothing but AT and hence they have the same rank. Now,

since ∩ki=1Ei is the solution set of the above system of n variables in k unknown, it’s dimension

is n− k. So, the codimension of ∩ki=1Ei in Cn is k and therefore we have:

codim ∩ki=1Ei) =

k∑
i=1

codim Ei

2.3 Quick Revision of Singularity Theory

Let Opn be the vector space of monogerms with n variables and p components, i. e.

Opn = {f = (f1(x1, . . . , xn), . . . , fp(x1, . . . , xn)) | ∀i, f i =
∑

aj1,...,jn(x1)j1 . . . (xn)jn} (2.3)

where the sum in 2.3 is an infinite sum, i. e. each f i is a power series (or smooth functions if

the underlying domain is R) in the variables x1, . . . , xn and f : (Cn, x0) → (Cp, X0) is a germ

of mapping. When p = 1, O1
n = On is the ring of germs of functions in n - variables which is a

local ring; let M is the maximal ideal. So, it means that the set Opn is a free module of rank p

over On.

A multigerm is a germ of analytic (over C) or smooth (over R) map f = {f1, . . . , fk} :

(Cn, S) → (Cp, 0) where S = {x1, . . . , xk} ⊂ Cn. Each fi is called a branch of f .

Definition 2.8. Two germs f, g : (Cn, S) → (Cp, 0) are A equivalent (f ∼A g) if there

exists germs of bianalytic (diffeomorphism in case of R) maps φ : (Cn, S) → (Cn, S) and

ψ : (Cp, 0) → (Cp, 0) such that g = ψ ◦ f ◦ φ−1.

Remark 2.9. When ψ is identity map we would have right equivalence (f ∼R g) and left

Vaishampayan
Sticky Note
Latex error!

Vaishampayan
Sticky Note
Latex Error!

Vaishampayan
Sticky Note
Latex error!
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equivalence (f ∼L g) in the case when φ is the identity map. In fact, if we denote the group

Diff(Cn, S)×Diff(Cp, 0) by A then A = R×L.

Definition 2.10. An r - parameter unfolding of f : (Cn, S) → (Cp, 0) is a germ F : (Cn ×
Cr, S × {0}) → (Cp × Cr, 0) such that F (x, t) = (ft(x), t) subject to the condition f0(x) =

f(x) ∀x ∈ (Cn, S).

Definition 2.11. Two r - parameter unfoldings F,G of f are equivalent if there exists germs

of bi-analytic maps (or diffeomorphisms)

Φ : (Cn × Cr, S × {0}) → (Cn × Cr, S × {0})

and

Ψ : (Cp × Cr, 0) → (Cp × Cr, 0)

which are themselves unfoldings of the identity in Cn and Cp respectively, such that

G = Ψ ◦ F ◦ Φ−1

The unfolding F is trivial if it is equivalent to f × Id where f × Id : (x, t) 7→ (f(x), t). The map

germ f : (Cn, S) → (Cp, 0) is stable iff every unfolding of f is trivial.

Definition 2.12. Let F be an r - parameter unfolding of f and h : (Cd, 0) → (Cr, 0) : h(u) = t.

Then

G = h∗F : (Cn × Cd, 0) → (Cp × Cd, 0)

(x, u) 7→ (f(x, h(u)), u)

is a d-parameter unfolding of f called the pullback of F by h.

Definition 2.13. An unfolding F of f is Ad-versal if every other d parameter unfolding of f

is equivalent to h∗F for some base change map h : (Cd, 0) → (Cr, 0). A miniversal unfolding

is a versal unfolding with a minimum number of parameters.

Let θCn,S be the On module of germs (at S) of vector fields on Cn and θCp,0 is defined analo-

gously; for brevity, we will denote these by θn and θp. Let θ(f) be the On module of germs of

maps: f̄ : (Cn, S) → TCp such that πp ◦ f̄ = f where {TCp,Cp, πp} is the tangent bundle of

Cp.
TCn df //

πn

��

TCp

πp

��

f̄

==|||||||||

Cn f //

==||||||||
Cp

Therefore, θ(f) ∼= Opn⊕ · · · ⊕ Opn (k times - as many branches of germs are there - k = |S|.)
Now, f : (Cn, S) → (Cp, 0) induces a map f∗ : Op → On such that f∗ : h 7→ h ◦ f , that means,

θ(f) is an Op module via f∗. Define tf : θn → θ(f) as tf : ξ 7→ df ◦ ξ , where df : TCn → TCp
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is the component of the bundle map

f ′ = (f, df)(p, v) = (f(p), dpf(v))

and ωf : θp → θ(f) such that ωf : η → η ◦ f .

TCn df // TCp

Cn f //

ξ

OO

Cp

η

OO

The Ae tangent space TAef is defined as

TAef = tf(θn) + ωf(θp)

tf(θn) is an On submodule of θ(f), but, as we have mentioned above, it also has an Op module

structure, and similarly ωf(θp) is also a Op submodule via f∗. So, TAef is an Op module via

f∗.

Definition 2.14. The Ae codimension of a germ f, denoted as Ae−codim (f) , is the C vector

space dimension of

T 1f =
θ(f)

TAef
.

We will state (without proof) a very important theorem due to John Mather, which expresses

the stability of a germ in terms of it’s Ae codimension.

Theorem 2.15. (Mather’s infinitesimal criterion for stability) [2] A germ f : (Cn, S) → (Cp, 0)

is stable iff Ae − codim (f) = 0.

Let’s do the following example where we wish to illustrate a general principle of calculating

Ae − codim f which will be used in calculating the codimension of multigerms mentioned in

the introduction. Here, I must mention that the monomials xk do not generate the power series

in x but If a multi-germ f has isolated instability, then it has finite codimension, which means

that TAef ⊃ mk
nθ(f) for some finite k. It follows that we need not worry about infinite power

series: modulo TAef , every element of θ(f) can be represented by a polynomial map-germ, and

thus the monomials xα∂/∂yj generate the quotient θ(f)/TAef .

Example 2.16. The germs f : (C, 0) → (C, 0) such that x 7→ xn(n ∈ N) is stable if and only
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if n < 3.

TC df // TC

C f //

ξ

OO

C

η

OO

tf(ξ) = (df ◦ ξ) So, for ξ = ξ(x) ∂
∂x we have df(ξ) = df(ξ(x) ∂

∂x). But ξ is a vector field (a

section of the tangent bundle) i. e. ξ : C → TC such that ξ : p 7→ ξp ∈ TpC for every p ∈ C
i.e. ξ(p) = ξ(p) ∂

∂x Thus at every point p ∈ C, since df
∣∣
p

= dpf : TpC → Tf(p)C is linear, for

ξp ∈ TpC:

(df ◦ ξ)(p) = ξ(p)dpf(
∂

∂x
)

2 and if

dpf(
∂

∂x
) = A

∂

∂X

then applying X(= f(x)) both sides we get

A =
∂f

∂x

∣∣∣∣
p

As p varies, this becomes a function and thus:

df(ξ) = ξ(x)df(
∂

∂x
)

which by above becomes

df(ξ(x)
∂

∂x
) = ξ(x)

∂f

∂x

In general, for f : (Cn, S) → (Cp, 0) with f(x1, . . . , xn) = (f1, . . . , fp) and under the isomo-

prhism TpCn ∼= Cn , for ξ = (ξ1, . . . , ξn) we can prove in the same fashion

df :


ξ1

...

ξn

 7−→

∂f1

∂x1
· · · ∂f1

∂xn

...
. . .

...
∂fp

∂x1
· · · ∂fp

∂xn



ξ1

...

ξn

 (2.4)

which we will abbreviate as

df(ξ) = [Jf ]p×n[ξ]n×1

or even more concisely as

df : [ξ] 7−→ [Jf ][ξ] (2.5)

where [jf ] stands for the jacobian matrix of f . Coming back to our example, we see that

2a linear map is determined by it’s action on the basis elements
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tf([ξ]) = [nxn−1ξ(x)] and for a vector field η = [η(x)] on the target ωf([η]) = [(η ◦ f)(x)] So,

ωf : [η(x)] 7−→ [(η ◦ f)(x)] = [η(xn)]

Now θ(f) is a power series in one variable x which means it’s generated (over C) by the sequance

{xk} i. e. for {k = 0, 1, 2, . . . } i. e. every element of θ(f) is of the form
∑

k akx
k where all

ak might be non-zero 3 The operation tf and ω(f) have different generating sets: for tf it’s

{xn+k−1} and for ω(f) it’s {xnk} which is very easy to see. Thus in order to calculate the

Ae− codimension of f we would like to see that how much is the spread of TAef ,which is the

span of these two generating sets together, in θ(f). One nice way to do this is to see how many

elements of the generating set {xk} (call this set Θ) of θ(f) can be recollected back from the

span of {xn+k−1} (call this set T ) and {xkn} (call this set Ω(f)). From the span of T we get all

the terms of the set Θ whose power is greater than or equal to n− 1. So, what we don’t have

yet is the finite set Θ1 = {1, x, x2, . . . , xn−2} whose span is the quotient vector space V = SpCΘ
SpCT

and is of finite dimension n− 1

Theorem 2.17. Suppose T is a vector space and S1 and S2 are two subsets of V , and let 〈S〉
stands for the span of S over the same field, then

T

〈(S1 ∪ S2)〉
=

T
〈S1〉

〈S̄2〉

where S̄2 stands for set S2 modulo 〈S1〉.

So, we have Ω̄ = {1} and

T 1f =
V

Ω̄
= {x, x1, . . . , xn−2}

which has dimension n−2 thus if n > 3 the Ae− codim f is non-zero and hence it follows from

Theorem 2.15 that the germ is unstable. 4

Alternatively, assume that CN denote the set of all sequences in C , then there’s a natural

identification of the elements of O1 , the ring of power series in one variable over C , to the

elements of CN:

ψ : O1 → CN;
∑
n

anx
n 7−→ {an}

Under this identification, we can write a power series as as sequence (a0, a1, . . . , ak, . . . ), and

then we have:

Θ = {(a0, a1, . . . ) | ai ∈ C∀i}

T = {(x0, x1, . . . ) | xi = 0 ∀ i < n− 1}

Ω = {(x0, x1, . . . ) | xi = 0 ∀ i 6= 0 mod n}

We will abbreviate a power series, under this identification by {x}Thus,TandΩ are subspaces

3this is why we have chosen to call {xk} a generating set rather than a basis
4for n = 1 this formula doesn’t hold, rather in that case we have V = 0 where V is as in the example.
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of the vector space Θ. Choose an arbitrary element of Θ , say f = {ak} and in the direction of

Theorem 2.17, reduce it module T :

(a0, a1, . . . ) = (0, . . . , 0, an−1, an, . . . ) + (a0, . . . , an−2)

So, modulo T we get f = (a0, . . . , an−2) that is

V =
Θ

T
= {(a0, . . . , an−2) | ai ∈ C ∀ i = 0, . . . , n− 2}

which is a finite dimensional vector space over C. Similarly, if we reduce (a0, 0, . . . , 0, an, 0, . . . , 0, a2n, . . . )

modulo T , we get

Ω̄ = {(a0, 0, . . . , 0)}

which is a 1-dimensional subspace of V , and therefore, by Theorem 2.17 gives:

T 1f = {(0, a1, . . . , an−2) | ai ∈ C ∀ i = 1, . . . , n− 2}

and a basis of T 1f is the set {ei}i=1,...,n−2} where ei stands for the row vector with 1 at the

i position and zero otherwise, where i = 0, 1, 2, . . . Please note that under the identification

ψ the above basis of T 1f will correspond to {xi}. Let CN is as above, we define a map ”shift

operator”, denoted σ from CN to itself as follows:

σ : (a0, a1, a2, . . . ) 7−→ (0, a0, a1, . . . )

σ thus defined is linear and it’s composition by itself causes as many shifts as many times it’s

composed. So, now, we can write our set T (above) as: σn−2({xk}). It will simply our notation.

Another, very useful result is (again due to Mather) [3]:
Theorem 2.18. Let F : (Cn × Cr, S × 0) → (Cp × Cr, 0) be an r - parameter unfolding of the
germ f , such that F (x, t) = (ft(x), t) with f0(x) = f(x). Then f is a versal unfolding of f iff

TAef + SpC

{
∂ft
∂t1

, . . . ,
∂ft
∂tr

}
= θ(f)

An unfolding is miniversal if r = Ae − codim f
Definition 2.19. Let F : (Cn × Cr, S × 0) → (Cp × Cr, 0) be an r - parameter unfolding of
the germ f : (Cn, S) → (Cp, 0), such that F (x, t) = (ft(x), t) with f0(x) = f(x). Then, ft(x) is
called an r - parameter deformation of f . That is if πp : (Cp × Cr) → Cp is the projection
map ((x1, . . . , xp), (t1, . . . , tr)) 7→ (x1, . . . , xp) then the r - parameter deformation of f is given
by the composite πp ◦ F = ft(x).

In that case we would say that the r - parameter deformation ft(x) is induced from the r -
parameter unfolding F . For brevity, where there’s no scope of confusion, we would simply use
the phrase ”ft is the deformation of f induced from F” thus would drop the terms like parameter
and unfolding.
Definition 2.20. A deformation ft of f is called a versal deformation if it is induced from
a versal unfolding.



12

Referring to example 2.16, we have:

TAef + SpC
{
x, x2, . . . , xn−2} = θ(f)

Thus a miniversal deformation of f is an n− 2 parameter deformation

F (x, t1, . . . , tn−2) = ft(x) = (xn + tn−2x
n−2 + · · ·+ t1x)

where t stands for the vector (t1, . . . , tn−2) 5

3 the case when n = 1

Here, we have only one choice, namely, k = 2, since the maximum possible codimension of ∩Tpfi
is two, and since our germs are immerssions, the codimension of Tpfi is one. Therefore, if i > 2
germs will never meet in general position. So, let’s consider the situation when this is the case.
f1,2 : (C, {0, 0′}) → (C2, 0) can be parametrised as:{

f1 : x 7→ (x, 0)
f2 : x 7→ (x, x2)

f1 is clearly an immersion; in fact it’s an embedding of C in C2. To see that f2 is an immersion,
consider a point p ∈ C, then

dpf2 : TpC → Tf2(p)C2

p 7→ (1, 2p)

where, denoting the co-ordinates in the target as X1 and X2 6, the above means that for the
basic vector fields {d/dx} on the source - C and {∂/∂X1, ∂/∂X2} on the target - C2

dpf
2(
d

dx
) =

∂

∂X1
+ 2p

∂

∂X2

which means that dpf
2 has rank 1 for every p ∈ C . Hence, f2 is also an immersion.

If there is a point q ∈ C2 which is the intersection point of images of f1 and f2 then there exist
x1, x2 ∈ C such that f1(x1) = f2(x2) which means (x1, 0) = (x2, x

2
2) , which gives x2 = 0, x1 = 0.

Thus (0, 0) is the only point in f1 ∩ f2.

If two manifolds, (say) γ1 and γ2 ,need not be of same dimension, in the n - dimensional ambient
space admits global parametrisation γ1 = γ1(x1, . . . , xn1) and γ2 = γ2(y1, . . . , yn2) (say) then
finding their point of intersection is same as solving the system of equation (γ1

1 , . . . , γ
n
1 ) =

(γ1
2 , . . . , γ

n
2 ) 7 However, most of the time, one ends up solving the same equation after eliminating

sufficient number of variables as the manifolds would have given in terms of co-ordinates in the
target space. So, it’s better to eliminate the parameters and find the equation, if possible. For
instance, in our case, the image of f1 is given by the equation X2 = 0 8 and the image of f2 by
the equation X2 = X1 ; solving we get (X1, X2) = (0, 0).

5we will always follow the convention to denote the co-ordinates by superscripts and branches of multigerms
by subscript, except in the case of parameter space co-ordinates will be denoted by subscript.

6{1C2 , X1, X2} is the standard chart on C2 ; we will follow the convention that lowercase letters are co-ordinates
on the source and the uppercase letter are co-ordinates on the target.

7γ1 and γ2 are maps in to n spaces and therefore have n component functions.
8this is an abbreviation for {(X1, X2) ∈ C2 | X2 = 0}
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Now, using proposition 2.6, we have, for p = (p1, p2) ∈ f1 ∩ f2 and F = X2 − (X1)2 (for the
image set of f2),

TpF =

{
(X1, X2) ∈ C2 | ∂F

∂X
(p)(X1 − p1) +

∂F

∂Y
(p)(X2 − p2)

}
Since, O = (0, 0) is the only point in the intersection, we get:

TOf2 = TOF = {(X1, X2) | X2 = 0}

For the image of f1, since it is itself a linear subspace, we have

TOf1 = {(X1, X2) | X2 = 0}

which is same as TOf2. Thus we see that at (0, 0) the two curves fails to meet in general position,
as required by the condition.

Using the notations of section 2.3, let ξ = (ξ1, ξ2) ∈ θ1 then ξ = (a(x) ∂
∂x , b(x) ∂

∂x) and, and

tf(ξ) = (df1 ◦ ξ1, df2 ◦ ξ2)

tf(a(x), b(x)) =

([
1
0

] [
a(x)

] [ 1
2x

] [
b(x)

] )
=

(
a(x) b(x)

0 2xb(x)

)

and for η =

[
η1(X1, X2)
η2(X1, X2)

]
we have

ωf(η) =

(
η1(x, 0) η1(x, x2)
η2(x, 0) η2(x, x2)

)

Now, as in section-2.3, the set θf can be represented as a 2 × 2 matrix, each of whose entry
is a power series in x. A generating set, using the Mather-Gaffney criterion for the finite Ae
co-dimension, for θf is:

{xke11, x
ke12, x

ke21, x
ke22}

where eij is the usual matrix units which form a basis for the space Mm×n
9. Using this

generating set
tf = 〈{xke11, x

ke12 + xk+1e22}〉

where 〈S〉 means span of S for any set S.10 In the generating set of two variables η has a

generating set of the form {ek,l1,1 +ek,l1,2, e
k,l
2,1 +ek,l2,2}. Let’s choose η as the monomial η1(X1, X2) =

(X1)k(X2)l then after composing with f we get for l 6= 0

(
0 x1+2l

0 0

)
if we choose k = 1 and(

0 x2l

0 0

)
if we choose k = 0. Therfore, we have have got every odd and non-zero even powers

9we will also write xkylei,j as ek,li,jsometimes
10We can write tf as: [∑

k akx
k ∑

k bkx
k

0
∑

k akx
k+1

]
=
∑
k

ak

[
xk 0
0 0

]
+
∑
k

bk

[
0 xk

0 xk+1

]
and similarly for ω(f)
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of x at (1,2). We get

(
1 1
0 0

)
when l = 0, k = 0, but using tf we get

(
1 0
0 0

)
Therefore, we

get xke1,2, we already have xke1,1 from tf . Similarly, using the same monomial for η2 we get

for l 6= 0 entries of the type

(
0 0
0 x1+2l

)
if k = 1 and of the type

(
0 0
0 x2l

)
when k = 0, and(

0 0
1 1

)
when k = 0, l = 0. Therefore, we have got xk+1e2,2 i.e. entries with non-zero powers

of x at (2,2) together with e2,1 + e2,2. Now using the vector field of the type η1 = 0 and

η2(X1, X2) = (X1)k we get entries of the type

(
0 0
xk xk

)
, but for k > 0 we have xke2,2 from the

above discussion, therefore we get xk+1e2,1. Therefore, among the generating sets of θ we have
got everything except x0e2,1 = e2,1 and x0e2,2 = e2,2 but these are not linearly independent in
T 1f since e2,1 + e2,2 is in TAef . Hence, we have got:

TAef1,2 +

{(
0 0
0 1

)}
= T 1f1,2

Now, using the identification of O with CN, let’s denote

Θ =

{[
X11 X12

X21 X22

]}
where each Xij is a sequence in C i. e.

Xij = ((x11)0, (x11)1, (x11)2, . . . )

under which we have

T =

{[
X11 X12

0 σ(X12)

]}
and

Ω =

{[
X11 X11

X21 X21

]}
To see this, let η1(X1, X2) =

∑
k,l akl(X

1)k(X2)l then, at (1,1) we have (a00, a10, . . . , ak0, . . . )
and at (2,2) we would choose l = 0 to get the same sequence. Let’s start with an arbitrary
element

A =

[
A11 A12

A21 A22

]
of Θ and reduce step by step, first modulo 〈Ω〉. We can write P as:[

A11 A11

A21 A22

]
+

[
0 A12 −A11

0 A22 −A21

]
So,

P̄ =

[
0 X12 −X11

0 X22 −X21

]
and reducing a member of T we get

T̄ =

{[
0 X12 −X11

0 σ(X12)

]}
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Now P̄ is clearly same as the the following set:

Q̄ =

{[
0 X
0 Y

]}
and the members of T̄ are matrices of the form:{[

0 X
0 σ(X +B)

]}
for some matrix B. So, we can write Ā as:[

0 X
0 σ(X +B)

]
+

[
0 0
0 Y − σ(X +B)

]
Which is a set of the form: {[

0 0
0 a

]}
which is a 1-dimensional subspace of M2×2 has a basis as

[
0 0
0 1

]
. Therefore:

TAef + SpC

{[
0 0
0 1

]}
= T 1f

Now, using Theorem 2.18, a miniversal deformation of f1,2 can be given as:

F1,2(x, t) =

{
f1 : x 7→ (x, 0)
f2 : x 7→ (x, x2 + t)

The equation of the first image is X2 = 0 as before, and the equation of the second image is a
family of curves parametrised by t : X2 = (X1)2 + t which is just the translates of the previous
curve. A real picture of which will be represented by a translates of the parabola Y = X2 in
the XY -plane. The parabola intersects the X-axis, transversally, at two points if t < 0 and not
otherwise. However, the complex picture will be different: There are two intersection points for
every value of t but 0. At these points p = (±i

√
t, 0) the equation of tangent is:

(X2 − 0)− 2i
√
t(X1 −

√
t) & (X2 − 0) + 2i

√
t(X1 +

√
t)

which is transverse to the curve given by X1 = 0.

4 The case n = 2

4.1 n = 2, k = 2

A parametrisation for f2,2 can be given by the following:{
f1 : (x1, x2) 7→ (x1, x2, 0)
f2 : (x1, x2) 7→ (x1, x2, (x1)2 + (x2)2)

is clearly an immersion 11, to see that f2 is an embedding, let p = (a, b) ∈ C2 , then,

dpf2 : TpC2 → Tf2(p)C3

11just like the case n = 1 this is an embedding of C2 into C3
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is given by
Xp 7→ (Jpf2)Xp

where Jpf2 is the jacobian matrix of f2 at p, given by:

Jpf2 =

 1 0
0 1
2a 2b


It is apparent from the expression of Jpf2 that this matrix has rank 2 for every value of a and
b and hence f2 is a immersion.

In order to find the intersection point of the images of f1 and f2 let’s write the equation of the
images of f1 and f2 :

f1(C2) = {(X1, X2, X3, ) | X3 = 0}

f2(C2) = {(X1, X2, X3) | X3 = (X1)2 + (X2)2}

Solving the two system of equations

X3 = 0, X3 = (X1)2 + (X2)2

over C we get
f1 ∩ f2 = {(X1, X2, 0) | X2 = ±iX1}

which we would abbreviate as: {(a, ia, 0)}where it is understood that a ∈ C and i =
√

(−1).

The tangent at any point of the image of f1 is the same as the image and hence given by the set
of points in C3 specified by the equation X3 = 0. To find the tangent space at any point of the
image of f2 let’s write the equation of this as F (X1, X2, X3) = 0 where F ≡ (X1)2 +(X2)2−X3

, so that image of f2 is now given by the zero set of the function F . For the moment, let’s
denote F−1(0) (or the image of f2) by N , then, for q ∈ C3 the tangent vector Xq ∈ TqN will
be given by:

Xq = v1 ∂

∂X1
+ v2 ∂

∂X2
+ v3 ∂

∂X3

which we will write as 〈v1, v2, v3〉 under the isomorphism TqN ∼= C3. Now, assume that γ =
(γ1, γ2, γ3) is a curve in N = F−1(0) such that γ(0) = q and γ′(0) = Xq then:

d

dt
(F (γ(t))) =

∂F

∂X1
(γ(t))(γ′1(t)) +

∂F

∂X2
(γ(t))(γ′2(t)) +

∂F

∂X3
(γ(t))(γ′3(t)) = 0

Since, Xq ∈ TqN we can write the above expression at t = 0 as

∂F

∂X1
(q)(X1 − q1) +

∂F

∂X2
(q)(X2 − q2) +

∂F

∂X3
(q)(X3 − q3) = 0

where q = (q1, q2, q3) For q ∈ f1 ∩ f2 we have q2 = iq1, q3 = 0 , the equation of tangent space at
q is (setting q1 = a )

2a(X1 − a) + 2ia(X2 − ia)− 1(X3 − 0) = 0

For a = 0 this gives X3 = 0 as the equation of the tangent plane, which is same as the equation
of the tangent plane at (0, 0, 0) to the image of f1, and, thus f1 and f2 doesn’t meet in general
position at (0, 0, 0). For any other point of intersection a 6= 0 and hence the two loci meet in
general position.
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Now, θf2,2 = θf1⊕θf2 which is generated by the elements of the type (x1)m(x2)nei,j ; for brevity,
we will write xmynei,j as em,ni,j . Therefore, the set of generators for θf2,2 will be

{em,n1,1 , e
m,n
1,2 , e

m,n
2,1 , e

m,n
2,2 , e

m,n
3,1 , e

m,n
3,2 }

Now, for ξ ∈ θC2,S such that ξ = ξ1 ⊕ ξ2 where ξi = (ai(x
1, x2), bi(x

1, x2))

tf(ξ) =

1 0
0 1
0 0

(a1(x1, x2)
b1(x1, x2)

)
,

 1 0
0 1

2x1 2x2

(a2(x1, x2)
b2(x1, x2)

)
which gives:

tf(ξ) =

a1(x1, x2) a2(x1, x2)
b1(x1, x2) b2(x1, x2)

0 2xa2(x1, x2) + 2yb2(x1, x2)


which has a generating set of the form

{em,n1,1 , e
m,n
2,1 , e

1,2m,n + em+1,n
3,2 , em,n2,2 + em,n+1

3,2 }

and for η = (η1(X1, X2, X3), η2(X1, X2, X3), η3(X1, X2, X3)) ∈ θC3,0 we have

ω(f)(η) =

η1(x1, x2, 0) η1(x1, x2, X3)
η2(x1, x2, 0) η2(x1, x2, X3)
η3(x1, x2, 0) η3(x1, x2, X3)


where X3 = (x1)2 + (x2)2, which has the generating set borrowed from the matrix before it’s
composed with f :

{em,n1,1 + em,n1,2 , e
m,n
2,1 + em,n2,2 , e

m,n
3,1 + em,n3,2 }

Now, in the span of tf and ωf which is TAef , we already have em,n1,1 and em,n2,1 from tf , using

ωf we get em,n1,2 and em,n2,2 using which with tf we get em+1,n
3,2 that is at (3,2) we have everything

but monomial of the form x0yk. Since, em,n3,1 + em,n3,2 is in the generating set of ωf we get em+1,n
3,1

and similarly we get em,n+1
3,1 which means that at (3,1) we get everything but constant terms,

and the same is true for (3,2). Therefore it seems that the elements:0 0
0 0
1 0

 &

0 0
0 0
0 1


forms a basis for the space θ(f)f/TAef but they are not linearly independent since their sum
is the matrix 0 0

0 0
1 1


which is in TAef if we choose η3(X1, X2, X3) = 1 and therefore, we have, instead:

TAef +


0 0

0 0
0 1

 = T 1f

Hence, a miniversal deformation for f2,2 can be given, using Theorem 2. 18, as follows:

F1,2(x1, x2, t) =

{
f1 : (x1, x2) 7→ (x1, x2, 0)
f2 : (x1, x2) 7→ (x1, x2, (x1)2 + (x2)2 + t)

which is again translates of the surface given by the equation X3 = (X1)2 + (X2)2.
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4.2 n = 2, k = 3

- A parametrisation of f2,3 can be given as:
f1 : (x1, x2) 7−→ (x1, x2, 0)
f2 : (x1, x2) 7−→ (x1, 0, x2)
f3 : (x1, x2) 7−→ (x1, x2 − (x1)2,−x2 − (x1)2)

Another parametrisation of the same is:
g1 : (x1, x2) 7−→ (x1, x2,−x2)
g2 : (x1, x2) 7−→ (x1, x2, x2)
g3 : (x1, x2) 7−→ (x1, x2, (x1)2)

Denote the former by f and the latter by g, then these two parametrisation are indeed right-left
equivalent: set a multigerm of diffeomorphism φ−1 : (C2, S) → (C2, S)

(x1, x2) 7→ (x1, 1
2x

2)
(x1, x2) 7→ (x1,−1

2x
2)

(x1, x2) 7→ (x1, x2)

and define the germ of diffeomorphism ψ : (C3, 0) → (C3, 0) as:

ψ : (X1, X2, X3) 7−→ (X1, X2 −X3,−X2 −X3)

Action of ψ on the image of g is:

(X1, X2,−X2) 7→ (X1, 2X2, 0)
(X1, X2, X2) 7→ (X1, 0,−2X2)

(X1, X2, (X1)2) 7→ (X1, X2 − (X1)2,−X2 − (X1)2)

thus we eventually have;
ψ ◦ g ◦ φ = f

Given two map germs f : (Cn, 0) → (Cp, 0) and g : (Cn, 0) → (Cp, 0) is there any way, other
than the direct computation (since, it can be ardently tiresome) to decide that these two are
left-right equivalent?

Or alternatively we could ask for a sufficient condition which would determine that the two germs
are not right-left (or any other type) equivalent. For instance, if the rank of f is not same as
the rank of g then the two germs can never be A (or R or L) equivalent. Since, at any point
p ∈ Cn and with the germ of diffeomorphisms φ : (Cn, 0) → (Cn, 0) and ψ : (Cp, 0) → (Cp, 0)
such that

g(p) = ψ ◦ f ◦ φ−1(p)

we also have, by the chain rule,

dpg = dg(φ−1(p))ψ ◦ dφ−1(p)f ◦ dpφ−1

and since φ and ψ are diffeomorphisms their differentials are isomorphisms which would have
no effect on the rank of f i. e. f and g have the same rank. Is the converse true? Consider
f : (C, 0) → (C, 0), x 7→ x2 and g : (C, 0) → (C, 0), x 7→ x3 then they both have the rank zero
at x = 0 and one at every other point, i.e. they have the same rank at every point x ∈ C Are
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f and g right-left equivalent? We will answer this question, together with related theories,
in a later section, for now, let me demonstrate a special case of this problem by showing that
the two parametrisation for f2,3 above is not right equivalent via a linear transformation.

Suppose, if possible, there exist a linear map

ψ : C3 → C3 taking X 7−→ AX

where A is 3× 3 matrix, such that g = ψ ◦ f . Then we must have:

g1 = ψ ◦ f1, g2 = ψ ◦ f2, g3 = ψ ◦ f3

which means
dg1 = dψdf1, dg2 = dψdf2, dg3 = dψdf3

but ψ is linear, therefore, dψ = A, where A is as above. Hence,

dg1 = Adf1, dg2 = Adf2, dg3 = Adf3

dg1 = Adf1 implies: 1 0
0 1
0 −1

 =

a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3

1 0
0 1
0 0


which gives

a1,1 = 1 a2,1 = 0 a3,1 = 0
a1,2 = 0 a2,2 = 1 a3,2 = −1

Using these values in A, dg2 = Adf2 we get1 0
0 1
0 1

 =

1 0 a1,3

0 1 a2,3

0 −1 a3,3

1 0
0 0
0 1


which gives

a1,3 = 0 a2,3 = 1 a3,3 = 1

So, by now, i. e. after solving these set of simple equations, we get

A =

1 0 0
0 1 1
0 −1 1


But

Adf3 :

1 0 0
0 1 1
0 −1 1

 1 0
−2x1 1
−2x1 −1


=

 1 0
−4x1 0

0 −2

 6= dg3

for any point in the domain, since

dg3 =

 1 0
0 1

2x 0


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Therefore we saw that this is not possible to achieve the second parametrisation for f2,3 from
the parametrisation only using the diffeomorphism given by the linear map in the target. This’s
true that in general, derivatives will always be given by the form dg = AdfB where A is the
Jacobian of the diffeomorphism in the target and B in the source, but the system of equation
forces us to solve a large number of equations, which has to be checked at everypoint in order
to find a point where this system comes out as an inconsistent system; another possibility is to
find out the condition under which the system is inconsistent, but again this would require an
enormous amount of labour.

Using the first parametrisation, we see that the image of the first germ f1 is the set of points
of C3 given by the equation X3 = 0 and that of f2 is X2 = 0 which are embeddings of C2 in
C3. Moreover, these are linear subspaces of C3 and hence the tangent space at any point will
coincide with the space itself. The image set of f3 is given by the equation X3 + X2 + (X1)2,
at any point p = (p1, p2) ∈ C2 we have:

dpf3([v1, v2]T ) = [Jpf3]
∣∣
p[v

1, v2]T

where the superscript t stands for transpose. But

[Jpf3]

∣∣∣∣∣∣p =

 1 0
0 1

2p1 0


which clearly has rank 2 no matter what the point p is. Hence, f3 is also an immersion. Image
of f1 and f2 intersect along the set {(X1, X2, X3) | X3 = 0 = X2} which is the set of points
{(X1, 0, 0)} along which the two curves meet in general position. Let’s denote the image of f3

by the equation
F = X3 +X2 + (X1)2

the by proposition 2.6 the equation of tangent at p = (p1, p2, p3) is

2p1(X1 − p1) + (X2 − p2) + (X3 − p3) = 0

Now
f1 ∩ f3 = {(±i

√
X2, X2, 0)} & f2 ∩ f3 = {(±i

√
X3, 0, X3)}

The equation of tangents at these points are, respectively

±2i
√
p2(X1 ∓ i

√
p2) + (X2 − p2) +X3 = 0

and
±2i
√
p3(X1 ∓ i

√
p3) +X2 + (X3 − p3) = 0

which, respectively, meet the curves X3 = 0 and X2 = 0 transversally. O = (0, 0, 0) is the only
point in f1 ∩ f2 ∩ f3. At O the equation of tangent to f3 is X2 +X3 = 0. Let

E1 = {(X1, X2, 0)}
E2 = {(X1, 0, X3)}
E3 = {(X1, X2,−X2)}

Please note that E1, E2 and E3 are the set specified by the tangent spaces (at O) of the image set
of germs f1, f2 , and f3 respectively. E1 and E2 are spanned by {e1, e2} and {e1, e3} respectively,
and therefore have codimensions 1. (X1, X2,−X2) ∈ E3 can be written as

(X1, X2,−X2) = X1(1, 0, 0) +X2(0, 1,−1)
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i. e. a basis for E3 is {e1, e2 − e3}, and, thus, E3 too has codimension 1. Now

E1 ∩ E2 ∩ E3 = {(X1, 0, 0)}

which has codimension 2, i. e.

codim E1 ∩ E2 ∩ E3 6= codim E1 + codim E2 + codim E3

Hence, at O the three germs don’t meet in general position. Let’s use the first parametrisation
to compute Ae codimension, since we have already proved that they are right-left equivalent
the outcome would be same. So, we have:

f1 : (x1, x2) 7−→ (x1, x2, 0)
f2 : (x1, x2) 7−→ (x1, 0, x2)
f3 : (x1, x2) 7−→ (x1, x2 − (x1)2,−x2 − (x1)2)

θ(f) = θ(f1) ⊕ θ(f2) ⊕ θ(f3) is generated (since the Ae co-dimension is finite) by the set

{ek,li,j | k, l ∈ N&1 ≤ i, j ≤ 3} If we get ek,li,j ∀ k, l ∈ N we will sometimes denote it by Oi,j .

For ξ = ξ1 ⊕ ξ2 ⊕ ξ3 ∈ TC2 where ξi = (ai(x), bi(x))T we have tf(ξ), where x = (x1, x2)

df2,3 ◦ ξ =

1 0
0 1
0 0

[a1(x)
b1(x)

] 1 0
0 0
0 1

[a2(x)
b2(x)

]  1 0
−2x1 1
−2x −1

[a3(x)
b3(x)

]
after simplifying we get

df2,3 ◦ ξ =

a1(x) a2(x) a3(x)
b1(x) 0 −2x1a3(x) + b3(x)

0 b2(x) −2x1a3(x)− b3(x)


So, an arbitrary element of tf(ξ) can be written as:a1(x) 0 0

0 0 0
0 0 0

+

0 a2(x) 0
0 0 0
0 0 0

+

 0 0 0
b1(x) 0 0

0 0 0

+

0 0 0
0 0 0
0 b2(x) 0

+

0 0 a3(x)
0 0 −2x1a3(x)
0 0 −2x1a3(x)

+

0 0 0
0 0 b3(x)
0 0 −b3(x)


Therefore it has the generating set of the form

T = {ek,l1,1, e
k,l
1,2, e

k,l
2,1, e

k,l
3,2, e

k,l
1,3 − 2ek+1,l

2,3 − 2ek+1,l
3,3 , ek,l2,3 − e

k,l
3,3}

Please note that we already have got O1,1,O1,2,O2,1 and O3,2 from tf.

For η = (η1(X), η2(X), η3(X))T ∈ θC3,0 we get

ωf(η) = η ◦ f2,3 =

η1(x1, x2, 0) η1(x1, 0, x2) η1(x1, x2 − (x1)2,−x2 − (x1)2)
η2(x1, x2, 0) η2(x1, 0, x2) η2(x1, x2 − (x1)2,−x2 − (x1)2)
η3(x1, x2, 0) η3(x1, 0, x2) η3(x1, x2 − (x1)2,−x2 − (x1)2)


If we choose η(X) such that η1(X) = (X1)k i. e. independent of X2 and X3 and η2(X) =
η3(X) = 0 then we get

ωf(η)

(x1)k (x1)k (x1)k

0 0 0
0 0 0





22

but because we have (x1)k (x1)k 0
0 0 0
0 0 0


from tf we get every power of x1 at (1,3) i. e. (x1)ke1,3 . Now, let’s choose η1(X) =
(X1)kX2, and η2(X) = η3(X) = 0 which would give

ωf(η) =

(x1)kx2 0 (x1)kx2 − (x1)k+2

0 0 0
0 0 0


but since we have gotO1,1 from tf and (x1)ke1,3 from the argument made in the last sentence, we
get (x1)kx2e1,3. Now assume that we have got (x1)k(x2)le1,3 for every l1 < l, then after expand-

ing using the binomial theorem and using the deduction from the last sentence, we get ek,li,3 for

every l by induction. Therefore, we have got O1,3 . Now, using this with ek,l1,3−2ek+1,l
2,3 −2ek+1,l

3,3 we

get −2ek+1,l
2,3 −2ek+1,l

3,3 or (after absorbing the minus sign and 2) ek+1,l
2,3 +ek+1,l

3,3 which together with

ek,l2,3 − e
k,l
3,3 would give ek+1,l

2,3 and ek+1,l
3,3 That means, we have got O2,3−{1, (x2), (x2)2, . . . } and

O3,3−{1, (x2), (x2)2, . . . } Now using the vector field of the type η1(X) = η3(X) = 0 and η2(X) =
(X2)l and using the fact that we have O2,1 and O2,3−{1, (x2), (x2)2, . . . } and binomial expan-
sion, we get O2,3−1, using which with O2,1 we get O2,2−1 as well. Similarly, using the vector
field of the type η1(X) = η2(X) = 0 and η3(X) = (X3)l and with similar argument we get
O3,3−1 and O3,1−1. So, by now, we have got O1,1 O1,2 O1,3

O2,1 O2,2−1 O2,3−1
O3,1−1 O3,2 O3,3−1


Therefore,

TAef2,3 +


0 0 0

0 1 0
0 0 0

 ,

0 0 0
0 0 1
0 0 0

 ,

0 0 0
0 0 0
1 0 0

 ,

0 0 0
0 0 0
0 0 1

 = T 1f2,3

But 0 0 0
0 1 0
0 0 0

 ,

0 0 0
0 0 1
0 0 0

 ,

0 0 0
0 0 0
1 0 0

 ,

0 0 0
0 0 0
0 0 1


are not linearly independent, since, if we choose a vector field of the type η2(X) = 1, η1(X) =
η3(X) = 0 and using the fact that we have O2,1 from tf we have0 0 0

0 1 0
0 0 0

+

0 0 0
0 0 1
0 0 0

 =

0 0 0
0 1 1
0 0 0

 ∈ TAef2,3

Similarly using the vector field of the type η1(X) = η2(X) = 0, η3(X) = 1 ans using the fact
that we have O3,2 from tf we get0 0 0

0 0 0
0 0 1

+

0 0 0
0 0 0
1 0 0

 =

0 0 0
0 0 0
1 0 1

 ∈ TAef2,3
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But, then, since we have ek,l2,3 − e
k,l
3,3 among the generators of tf we see that0 0 0

0 0 1
0 0 0

−
0 0 0

0 0 0
0 0 1

 =

0 0 0
0 0 1
0 0 −1

 ∈ TAef2,3

Hence, we get

TAef2,3 +


0 0 0

0 0 0
0 0 1

 = T 1f2,3

proving that f2,3 has Ae co-dimension 1.

In the light of theorem 2.19, a miniversal deformation of f2,3 can be given by

F2,3(x1, x2, t) =


f1 : (x1, x2) 7−→ (x1, x2, 0)
f2 : (x1, x2) 7−→ (x1, 0, x2)
f3 : (x1, x2) 7−→ (x1, x2 − (x1)2,−x2 − (x1)2 + t)

which is again a family of translates of the original curve, since X3 +X2 = −(X1)2 + t

5 A Step Towards Generalisation

5.1 n = 3, k =2

f3,2 can be parametrised as:{
f1 : (x1, x2, x3) 7−→ (x1, x2, x3, 0)
f2 : (x1, x2, x3) 7−→ (x1, x2, x3, (x1)2 + (x2)2 + (x3)2)

Being embedding of C3 into C4 f1 is clearly an immersion. And to see that f2 is an immersion,
we write down it’s Jacobian: 

1 0 0
0 1 0
0 0 1

2x1 2x2 2x3


which has rank 3 and therefore it’s an immerssion.

The multigerm represent the following reducible curve in C4

{(X1, X2, X3, X4) ∈ C4 | X4(X4 − (X1)2 − (X2)2 − (X3)2) = 0}

So, the image of f2 is given by the equation

F := X4 − (X1)2 − (X2)2 − (X3)2 = 0

For a point p = (p1, p2, p3, p4) ∈ F−1(0) the equation of tangent at p is given by:

−2p1(X1 − p1)− 2p2(X2 − p2)− 2p3(X3 − p3) + (X4 − p4) = 0
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which is transverse to the set given by X4 = 0 for every point p 6= (0, 0, 0, 0). At (0, 0, 0, 0) it
fails to meet the the curve X4 = 0 in general position, as required.

TC3
df3,2 // TC4

C3 f

3,2
//

ξ

OO

C4

η

OO

where ξ = (ξ1, ξ2) ∈ θC3,0 ⊕ θC3,0. We assume the usual generating set for θ(f) : {em,n,pi,j }. For

ξ =

a1 a2

b1 b2
c1 c2


where each ai, bi, ci are power series in x1, x2, x3, we get:

tf(ξ) =


a1 a2

b1 b2
c1 c2

0 2x1a2 + 2x2b2 + 2x3c2


and for η(X1, X2, X3, X4) = (η1, η2, η3, η4)T we get

ωf(η) =


η1(x1, x2, x3, 0) η1(x1, x2, x3, X4)
η2(x1, x2, x3, 0) η2(x1, x2, x3, X4)
η3(x1, x2, x3, 0) η3(x1, x2, x3, X4)
η4(x1, x2, x3, 0) η4(x1, x2, x3, X4)


For such a subspace a general generating set i. e. one considering it as a function of co-ordinates
in the target is

{em,n,p,q1,1 + em,n,p,q1,2 , em,n,p,q2,1 + em,n,p,q2,2 , em,n,p,q3,1 + em,n,p,q3,2 , em,n,p,q4,1 + em,n,p,q4,2 }

.

From tf we already have em,n,p1,1 , em,n,p2,1 , e3,1m,n,p. Choosing a vector field of the type η1 =

η1(X1, X2, X3), η2 = η3 = η4 = 0 and using the result stated in the last sentence, we also get
em,n,p1,2 , em,n,p2,2 , em,n,p3,2 which, using the fact that em,n,p1,2 +em+1,n,p

4,2 is among the generators of tf we

have em+1,n,p
4,2 and similarly we get em,n+1,p

4,2 and em,n,p+1
4,2 as well. Therefore, we get everything

but constants at (4,2), and the same for (4,1) after using the contribution from ωf . So, the
missing elements are : e4,1 and e4,2, but we have e4,1 +e4,2 after setting η1 = η2 = η3 = 0, η4 = 1.
Therefore:

TAef3,2 +


0 0
0 0
0 0
0 1

 = T 1f3,2

Therefore, a miniversal deformation of f3,2 can be given by

F3,2(x1, x2, x3, t) =

{
f1,t : (x1, x2, x3) 7−→ (x1, x2, x3, 0)
f2,t = (x1, x2, x3) 7−→ (x1, x2, x3, (x1)2 + (x2)2 + (x3)2 + t)
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5.2 n = 3, k = 3

A parametrisation for f3,3 can be given as:
f1 : (x1, x2, x3) 7−→ (x1, x2, x3,−x3)
f2 : (x1, x2, x3) 7−→ (x1, x2, x3, x3)
f3 : (x1, x2, x3) 7−→ (x1, x2, x3, (x1)2 + (x2)2)

Let p = (p1, p2, p3) ∈ C3 be an arbitrary point. dpf1 is given by the matrix (jacobian)

Jpf1 =


1 0 0
0 1 0
0 0 1
0 0 −1


which has rank 3 irrespective of the value of p, and therefore is an immersion. Similarly, we
have

Jpf2 =


1 0 0
0 1 0
0 0 1
0 0 −1


of rank 3 irrespective of what p is, and hence f2 is an immersion. For f3 we get

Jpf3 =


1 0 0
0 1 0
0 0 1

2x1 2x2 0


the upper 3× 3 matrix is a constant matrix of rank 3, and hence f3 is also an immersion.

The multigerm f3,3 is the parametric representation of {(X1, X2, X3, X4) | (X4 + X3)(X4 −
X3)(X4 − (X1)2 − (X2)2) = 0} ⊂ C4 which means the image of the first branch f1 is given by:

{(X1, X2, X3, X4) | (X4 +X3) = 0}

which is a linear subspace, and therefore, the equation of the tangent space at any point p =
(p1, p2, p3, p4) will be X4 +X3 − p4 − p3 = 0. Same is true for the set

{(X1, X2, X3, X4) | (X4 −X3) = 0}

which is the image of the second branch f2 , having the equation of the tangent space at p as
X4 −X3 − p4 + p3 = 0 The set {(X1, X2, X3, X4) | (X4 − (X1)2 − (X2)2) = 0} can be written
as F ( − 1)(0) where

F = X4 − (X1)2 − (X2)2

and therefore by proposition-2.6 the equation of tangent space at any point p = (p1, p2, p3, p4)
is given by

−2p1(X1 − p1)− 2p2(X2 − p2) + (X4 − p4) = 0

Now,
∩3
i=1fi = {(X1, X2, X3, X4) | X3 = X4 = 0&X2 = ±X1}
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which we will abbreviate as {X1,±X1, 0, 0)} then for p = (a,±ia, 0, 0) ∈ ∩3
i=1fi we have the

equation of tangent space to f3 at p is

−2a(X1 − a)∓ 2a(X2 ∓ ia) +X4 = 0

that to f1 is:
X4 +X3 = 0

and to f2 is
X4 −X3 = 0

Let
E1 = {(X1, X2, X3, X4) | X4 +X3 = 0}

E2 = {(X1, X2, X3, X4) | X4 −X3 = 0}

E3 = {(X1, X2, X3, X4) | −2a(X1 − a)∓ 2a(X2 ∓ ia) +X4 = 0}

then E1, E2, E3 all have codimension 1 since they are restricted by one linear equation (so that
the value of one can be substituted in terms of others.) For a 6= 0 (which is same thing as
p 6= (0, 0, 0, 0)) we get

E1 ∩ E2 ∩ E3 = {(X1, X2, X3, X4) | X3 = X4 = 0&X1 +X2 = a}

which has codimension 3, and hence, the germs meet in general position for p ∈ ∩fi, p 6=
(0, 0, 0, 0). For p = (0, 0, 0, 0) we get

E3 = {(X1, X2, X3, X4) | X4 = 0}

which means
E3 ⊂ E1 ∩ E2 = {(X1, X2, X3, X4) | X3 = X4 = 0}

which has codimension 2 instead of 3, and hence the germs don’t meet in general position.

In order to demonstrate the Ae - co-dimension of f3,3 we will use the another right-left equivalent
parametrisation:

f1 : (x1, x2, x3) 7−→ (x1, x2, x3, 0)
f2 : (x1, x2, x3) 7−→ (x1, x2, 0, x3)
f3 : (x1, x2, x3) 7−→ (x1, x2, x3 − (x1)2 − (x2)2,−x3 − (x1)2 − (x2)2)

Using this parametrisation, it will follow from a result in the next following subsection that f3,3

indeed have Ae co-dimension 1.

5.3 n = 3, k = 4

A parametrisation for f3,4 can be given by:
f1 : (x1, x2, x3) 7−→ (x1, x2, x3, 0)
f2 : (x1, x2, x3) 7−→ (x1, x2, 0, x3)
f3 : (x1, x2, x3) 7−→ (x1, 0, x2, x3)
f4 : (x1, x2, x3) 7−→ (x1, x2, x3 − x2,−x3 − (x1)2)
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Being embeddings of C3 into C4 f1, f2 & f3 are clearly immersions; at any point p = (p1, p2, p3) ∈
C3, we have:

Jpf4 =


1 0 0
0 1 0
0 −1 1
−2p1 0 −1


which have rank 3 irrespective of the value of p1 (hence p) and, for this reason, f4 is an immersion
as well.

The image of this multigerms is the set

{(X1, X2, X3, X4) | X4X3X2(X4 +X3 +X2 + (X1)2) = 0}

where X4 = 0 is the equation of the image of f1, X3 = 0 is the equation of the image of f2,
X2 = 0 is the equation of the image of f3, and the image of f4 is given by the equation

X4 +X3 +X2 + (X1)2 = 0

Note that (0, 0, 0, 0) is the only point in ∩4
i=1fi

At any point P = (P 1, P 2, P 3, P 4) ∈ C4 the tangent space to the image of f1, f2, & f3 is given
by (Proposition 2.6) X4 − P 4 = 0, X3 − P 3 = 0 and X2 − P 2 = 0 respectively; the tangent
space to the image of f4 is given by

2P 1(X1 − P 1) + (X2 − P 2) + (X3 − P 3) + (X4 − P 4)

In the light of Theorem 2.7, the normals at P = (P 1, P 2, P 3, P 4) are (0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, 0)
and (2P 1, 1, 1, 1). Consider the matrix

0 0 0 −2P 1

1 0 0 1
0 1 0 1
0 0 1 1


each of which column is formed by the normals mentioned above. This matrix has rank 3 when
P 1 equals zero, i.e. at (0, 0, 0, 0) the curves do not meet in general position since the normals are
not linearly independent. However, if we take any three of them then they are clearly linearly
independent since the matrices: 

0 0 0
1 0 0
0 1 0
0 0 1




0 0 −2P 1

1 0 1
0 1 1
0 0 1




0 0 −2P 1

1 0 1
0 0 1
0 1 1




0 0 −2P 1

0 0 1
1 0 1
0 1 1


has rank 3 in each case, no matter what the value of P is.
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5.4 for arbitrary n and k

Let, fn,k : Cn → Cn+1 be multigerms of co-dimension 1 which satisfied all the properties men-
tioned in Introduction; we would like to develop an algorithm to achieve such branches f1, . . . , fk
with the help of Theorem 2.7. Let’s start with the case when k = 2 : we will choose f1 as any embedding
Let’s choose a very simple one as other examples in the text:

f1 : (x1, . . . , xn) 7−→ (x1, . . . , xn, 0)

In order to find f2 we will express the image of f1 as the zero set and use Theorem 2.7.

The equation of the image of f1 is F1 ≡ Xn+1 = 0, therefore, at any point p = (p1, . . . , pn+1) ∈
Cn+1,∇pF1 = (0, . . . , 0, 1) Now we want to choose F2such thatF−1

2 (0) ⊂ Cn+1 is a regular
submanifold and the vector ∇pF2 = (∂F2

∂x1
(p), . . . , ∂F2

∂xn+1 (p)) is linearly independent of the vector
∇pF1 = (0, . . . , 0, 1) , or in other words the (n+ 1)× 2 matrix (∇pF1,∇pF2) has the rank 2 at
every point of F−1

1 (0) ∩ F−1
2 (0) except O = (0, . . . , 0).

(∇pF1,∇pF2) =

0 ∂F2
∂x1

(p)
...

...

1 ∂F2
∂xn+1(p)


A simple choice would be ∂F2

∂xn+1 (p) = −1 and ∂F2

∂xi
(p) = 2pi Solving this system of equation and

using the fact that O ∈ F−1
2 (0) we get:

F2 = −Xn+1 + (Xn)2 + · · ·+ (x1)2

Now we need to find a parametrisation f2 of F−1
2 (0) which is an immersion, and the multigerm

fn,2 thus obtained has Ae co-dimension 1.

LetM,N be C∞ or analytic manifolds, then the image f(M) of every embedding f : M → N is a
regular submanifold of N , and conversely every regular submanifold of N is the image of some
embedding, namely the inclusion. Although, this is not true that every regular submanifold
admits a global parametrisation from Cn or Rn (we assume that the submanifold is locally
euclidean of dimension n) which is an immersion? Sphere is such an example, which can be
given as f−1(0) where F : (x1)2 + · · ·+ (xn)2 − 1, but we are dealing with a neighaborhood of
O = (0, . . . , 0) and by the definition of manifold we always have such a parametrisation which
is given by a diffeomorphism from a neighaborhood U of O and hence, an immersion.

So, in the above case, a parametrisation for F−1
2 (0) can be given by

f2 : (x1, . . . , xn) 7−→ (x1, . . . , xn, (x1)2 + · · ·+ (xn)2)

which has Jacobian at any point q ∈ Cn as the matrix having rows containing 1 in ith position,
and therefore it’s an immersion.

To see that fn,2 thus defined as:{
f1 : (x1, . . . , xn) 7−→ (x1, . . . , xn, 0)
f2 : (x1, . . . , xn) 7−→ (x1, . . . , xn, (x1)2 + · · ·+ (xn)2)

has Ae co-dimension 1, let’s recall that θ(f) will be generated by elements of the type ek1,...,kni,j =

(x1)k1 . . . (xn)knei,j where ki ∈ N. Let ξ = (ξ1, ξ2) ∈ θn,{0,0} and ξi = (a1,i(x
1, . . . , xn), . . . , an,i(x

1, . . . , xn))T
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be the vector field in the source of ith branch of the multigerm, then tf(ξ) is
a1,1(x1, . . . , xn) a1,2(x1, . . . , xn)

...
...

an,1(x1, . . . , xn) an,2(x1, . . . , xn)
0 2x1a1,2 + · · ·+ 2xnan,2


thus tf is generated by the set

{ek1,...,kn1,1 , . . . , ek1,...,knn,1 } ∪ {ek1,...,kn1,2 + ek1+1,k2,...,kn
n+1,2 , . . . ek1,...,knn,2 + ek1,...,kn+1

n+1,2 }

and for η = (η1(X1, . . . , Xn+1), . . . , ηn+1(X1, . . . , Xn+1))T we have ωf(η) η1(x1, . . . , xn, 0) η1(x1, . . . , xn, Xn+1)
...

...
ηn+1(x1, . . . , xn, 0) ηn+1(x1, . . . , xn, Xn+1)


which, with the generating set for tf gives every element of the generating set except at (n +
1, 1) and at (n + 1, 2) where using the dependence relation from tf we have everything except

constants, and therefore, just like previous cases with two branches, a basis for θ(f)
TAefn,2

is en+1,2

i. e.

TAefn,2 +

0 0
...

...
0 1

 = T 1fn,2

In this case when n = 2 there’s a result due to David Mond [4] which guarantees that the
converse is also true. [3, Example 2.0.19]
Conjecture 5.1. If gn,2 is a bigerms from Cn to Cn+1 which satisfies all the conditions above,
with the first branch g1 : (x1, . . . , xn) 7−→ (x1, . . . , xn, 0) same as the first branch of our f1 then
gn,2 ∼A fn,2 that is they are left-right equivalent.

Now, suppose k = 3.We will choose f1 : (x1, . . . , xn) 7−→ (x1, . . . , xn, 0) and f2 : (x1, . . . , xn) 7−→
(x1, . . . , 0, xn) with equations of the image set F1 : Xn+1 = 0 and F2 : Xn = 0 respectively. We
want to choose F3 : Cn+1 → C such that at any point p = (p1, . . . , pn+1) other than (0, . . . , 0)
the vectors ∇pF3, (0, . . . , 0, 1)and(0, . . . , 1, 0) are linearly independent, i. e. the matrix

0 0 ∂F3
∂x1

(p)
...

. . .
...

0 1 ∂F3
∂xn (p)

1 0 ∂F3
∂xn+1 (p)


has rank 3 when p 6= O = (0, . . . , 0) and fails to have rank 3 at O. Such a function can be given
if we choose

∇pF3 = (2p1, 2p2, . . . , 1, 1)T

for in that case

M = (∇pF1,∇pF2,∇pF3) =


0 0 2p1

...
. . .

...
0 1 1
1 0 1


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Then we can see that M has the desired property, and, then

F3 : (X1)2 + · · ·+ (Xn−1)2 +Xn +Xn+1

and a parametrisation for F3 can be given as:

f3 : (x1, . . . , xn) 7−→ (x1, . . . , xn−1, xn − (x1)2 − · · · − (xn−1)2,−xn − (x1)2 − · · · − (xn−1)2)

i. e. Xi = xi ∀ 1 ≤ i ≤ (n − 1) and Xn = xn−1, xn − (x1)2 − · · · − (xn−1)2 and Xn+1 =
−xn−1, xn − (x1)2 − · · · − (xn−1)2

f3 is clearly an immersion, because for any point p = (p1, . . . , pn) ∈ Cn we have:

Jpf3 =


1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

−2x1 −2x2 · · · −2xn−1 1
−2x1 −2x2 · · · −2xn−1 −1


which has rank n, at any point p. Now, let ek1,...,kni,j stands for the monomial (x1)k1 . . . (xn)kn

at (i, j) position of n × 3 matrix, then since the multigerm is of finite co-dimension θ(fn,3) =

θ(f1)⊕ θ(f2)⊕ θ(f3) has {ek1,...,kni,j } as it’s generating set.

For ξ = ξ1 ⊕ ξ2 ⊕ ξ3 where ξi = (a1,i, . . . , an,i)
T we get

tf(ξ) =


a1,1 a1,2 a1,3

...
. . .

...
an−1,1 an−1,2 an−1,3

an,1 0 −2
∑n−1

i=1 x
iai,3 + an,3

0 an,2 −2
∑n−1

i=1 x
iai,3 − an,3


and for η(X) = (η1(X), . . . , ηn+1(X)) we get

ωf(η) =

 η1(x1, . . . , xn, 0) η1(x1, . . . , 0, xn) η1(x1, . . . , Xn, Xn+1)
...

. . .
...

ηn+1(x1, . . . , xn, 0) ηn+1(x1, . . . , 0, xn) ηn+1(x1, . . . , Xn, Xn+1)


Just like the case of f2,3 we can decompose an element of tf to see that it has a generating set

of the form {ek1,...,kni,1 1 ∀ i | i 6= n + 1} ∪ {ek1,...,kni,2 ∀ i | i 6= n} ∪ {ek1,...,kni,3 − 2ek1,...,ki+1,...,kn
n,3 −

2ek1,...,ki+1,...,kn
n+1,3 | 1 ≤ i ≤ n − 1} ∪ {ek1,...,knn,3 − ek1,...,knn+1,3 }. Thus we see that we already have

O1,1,O1,2, . . .On−1,1,On−1,2 from tf . Choosing, η(X) such that η1(X) = (X1)k1 and others as
zero, we see, after using the fact that we have O1,1 and O1,2, that we have all the powers of x1 at
(1,3), and similarly using the vector field of the type η1(X) = (Xi)ki , η2(x) = · · · = ηn+1(x) = 0
we see that we have all the positive integral exponents of Xi, i = 1, . . . , n. Now, choosing
η1(X) = (X1)k1 . . . (Xn−1)kn−1Xn, η2 = · · · = ηn+1 = 0 we get

(x1)k1 . . . (xn−1)kn−1xn 0 (x1)k1 . . . (xn−1)kn−1xn −
∑n−1

i=1 (x1)k1 . . . (xi)ki+2 . . . (xn−1)kn−1

0 0 0
...

. . .
...

0 0 0


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Now, using the fact that we have all the exponents of xi for i = 1, . . . , n−1 and O1,1 we get that
we have (x1)k1 . . . (xn−1)kn−1xn at (1,3), therefore we can apply induction just as in previous sec-

tions to get O1,3. Similarly, we also get O2,3, . . . ,On−1,3, using what we get −2ek1,...,ki+1,...,kn
n,3 −

2ek1,...,ki+1,...,kn
n+1,3 , which after absorbing −2 gives ek1,...,ki+1,...,kn

n,3 + ek1,...,ki+1,...,kn
n+1,3 . Since, we also

have ek1,...,knn,3 − ek1,...,knn+1,3 from tf we get ek1,...,ki+1,...,kn
n,3 as well as ek1,...,ki+1,...,kn

n,3 , and since this
is true for every i = 1, . . . , n− 1 at (n, 3), we get everything except the exponents of xn. Now
using a vector field of the type ηn(X) = (Xn)kn , kn > 0, ηi(X) = 0 if i 6= n and the fact that

we have On,1 together with the availability of ek1,...,ki+1,...,kn
n,3 for every i = 1, . . . , n − 1 we also

get (xn)kn , kn 6= 0 and similarly for (n+1, 3). Proceeding as in the subsection f2,3 we get:
O1,1 O1,2 O1,3

...
...

...
On,1 On,2−{1} On,3−{1}

On+1,1−{1} On+1,2 On+1,3−{1}


Let ei,j denotes the standard matrix units i.e. 1 at (i,j) and 0 otherwise, then we see that we
have got everything except en,2, en,3, en+1,1&en+1,3, but since, en,2 + en,3 ∈ TAefn,3 because
we can choose η(X) with ηn(X) = 1 and others as zero, which with On,1 from tf will give
en,2 + en,3. Similarly, en+1,1 + en+1,3 ∈ TAefn,3, and en,3 − en+1,3 ∈ tf ⊂ TAefn,3. Therefore,
we get

TAefn,3 +

0 0 0
...

...
...

0 0 1

 = T 1fn,3

and hence, fn,3 is of Ae co-dimension 1. We seek something analogus to Mond’s result in this
case as well:
Conjecture 5.2. If gn,3 is a bigerms from Cn to Cn+1 which satisfies all the conditions
above, with the first branch g1 : (x1, . . . , xn) 7−→ (x1, . . . , xn, 0) and also the second branch
g2 : (x1, . . . , xn) 7−→ (x1, . . . , 0, xn) i. e. same as the first and second branch of our fn,3 then
gn,3 ∼A fn,3 that is they are left-right equivalent.

We have seen in both the cases fn,2 and fn,3 that if we use this algorithm to find out the
required multigerm then how the analogous results in lower dimension have been proved a
guide in calculating Ae co-dimension. In fact, we could observe that the last rows looked
similar. Therefore:
Conjecture 5.3. Assume k < n, suppose we have proved that the multigerms fn−1,k found
using the algorithm above has Ae co-dimension 1, then the multigerm fn,k (found using the
same algorithm) also have Ae co-dimension 1.

6 Conclusion

Let me begin this section with some observation. First is in the direction of seeking some
analogue of theorem 2.7 in arbitrary case: let E1, . . . , Ek be vector subspaces of an n-dimensional
vector space n, and assume that Ei = SpC{v1,i, . . . , vmi,i}, then
Conjecture 6.1. E1, . . . , Ek meet in general position if and only if {v1,i∧· · ·∧vmi,i} are linearly

independent in
∧N n where N is the maximum of the dimensions of Ei.

If this is not true, is this true when each Ei is of dimension n and the dimension of the ambient
space is n+ 1?
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Second is the following observation: consider the real picture of the miniversal deformation of
the multigerm f1,2 {

f1 : (x) 7−→ (x, 0)
f2 : (x) 7−→ (x, x2 + t)

which represents the curve X(Y −X2 − t) = 0 As t varies the parabola shifts from downward
to upward. For t < 0 it encloses a non-zero area with the X − axis i. e. the image of the
first branch, which vanishes when t = 0 and in the real case there’s no intersection for t > 0
but if we consider this phenomenon over C then the point of singularity is charecterised by the
vanishing of the measure. In general, if we have a differential 2-form defined on our manifolds
we can talk about such phenomenon in general as well.

Coming back to the the problem of right-left equivalence, it’s not difficult to see that the Ae
co-dimension is invariant under the left-right equivalence, but sadly, this’s not the complete
invarient. In dimension 1, this’s true because of the following theorem:
Theorem 6.2. Let f : C → C is holomorphic w = f(z), and for z0 ∈ C the first k−1 derivatives
of f(z) vanish at z0 but fk(z0) 6= 0 then there exists biholomorphic change of variables z̄ : C → C
and w̄ : C → C such that in new variables we have w̄ = (z̄)k.

A proof can be found in [5]. So, even if we don’t want to use the fact that x 7→ x2 and x 7→ x3

have different Ae co-dimension, we can see that they are not right-left equivalent. In fact, our
result about Ae co-dimension of the map x 7→ xn together with the above theorem states

If f : (C, 0) → (C, 0) is a monogerm with Ae co-dimension k, then f is right-left equivalent to
xk+2

Sadly, there’s no such classification in higher dimension. Let me end this article by mentioning
that all the conjectures made in the last section is an approach to find a normal form for Ae
co-dimension 1 multigerm with the condition mentioned in the introduction.

”Make things as simple as possible, but not simpler.” - Einstein
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