Legendrian Weaves and TQFT with decorations

Amit Kumar

Department of Mathematics
Louisiana State University
Baton Rouge
AMS Spring Sectional Meeting, April 15

Motivation

Let

$$
K_{4}=\left\langle a, b, c \mid a^{2}=b^{2}=c^{2}=1, c=a b\right\rangle
$$

and

$$
A=\mathbb{Z}\left[K_{4}\right]
$$

equipped with the multiplication

$$
\mu: A \otimes A \rightarrow A
$$

given by

$$
\begin{array}{llll}
1 \otimes 1 \mapsto 0 & 1 \otimes a \mapsto a & 1 \otimes b \mapsto b & 1 \otimes c \mapsto c \\
a \otimes 1 \mapsto a & a \otimes a \mapsto 0 & a \otimes b \mapsto c & a \otimes c \mapsto b \\
b \otimes 1 \mapsto b & b \otimes a \mapsto c & b \otimes b \mapsto 0 & b \otimes c \mapsto a \\
c \otimes 1 \mapsto c & c \otimes a \mapsto b & c \otimes b \mapsto a & c \otimes c \mapsto 0
\end{array}
$$

Diagrammatically μ is represented as

We define a pairing

$$
\begin{gathered}
\beta: A \otimes A \rightarrow \mathbb{Z} \\
1 \otimes 1, a \otimes a, b \otimes b, c \otimes c \mapsto 1_{\mathbb{Z}} ; 0 \text { otherwise }
\end{gathered}
$$

and extended linearly.

We define a pairing

$$
\begin{gathered}
\beta: A \otimes A \rightarrow \mathbb{Z} \\
1 \otimes 1, a \otimes a, b \otimes b, c \otimes c \mapsto 1_{\mathbb{Z}} ; 0 \text { otherwise }
\end{gathered}
$$

and extended linearly.

Diagrammatically β is represented as

and a co-pairing

$$
\gamma: \mathbb{Z} \rightarrow A \otimes A \quad ; \quad 1_{\mathbb{Z}} \mapsto a \otimes a+b \otimes b+c \otimes c
$$

represented diagrammatically as:

Remark: β is associative but NOT non-degenerate!
and a co-pairing

$$
\gamma: \mathbb{Z} \rightarrow A \otimes A \quad ; \quad 1_{\mathbb{Z}} \mapsto a \otimes a+b \otimes b+c \otimes c
$$

represented diagrammatically as:

Remark: β is associative but NOT non-degenerate!
Nonetheless, we get a co-multiplication

$$
\begin{gathered}
\Delta: A \rightarrow A \otimes A \quad ; \quad 1 \mapsto a \otimes a+b \otimes b+c \otimes c \\
a \mapsto b \otimes c+c \otimes b, \quad b \mapsto c \otimes a+a \otimes c, \quad c \mapsto a \otimes b+b \otimes a
\end{gathered}
$$

represented diagrammatically as

Now, consider the following example

This trivalent graph should correspond to a linear map $\psi: \mathbb{Z} \rightarrow \mathbb{Z}$. So, there exists an integer n such that $\phi(v)=n v$.
represented diagrammatically as

Now, consider the following example

This trivalent graph should correspond to a linear map $\psi: \mathbb{Z} \rightarrow \mathbb{Z}$. So, there exists an integer n such that $\phi(v)=n v$.

Question: How is this n related to the above graph?

Let's calculate using the following dissection

which correspond to the map

$$
\mathbb{Z} \xrightarrow{\gamma} A \otimes A \xrightarrow{i d \otimes \Delta} A \otimes A \otimes A \xrightarrow{\mu \otimes i d} A \otimes A \xrightarrow{\beta} \mathbb{Z}
$$

Let's calculate using the following dissection

which correspond to the map

$$
\mathbb{Z} \xrightarrow{\gamma} A \otimes A \xrightarrow{i d \otimes \Delta} A \otimes A \otimes A \xrightarrow{\mu \otimes i d} A \otimes A \xrightarrow{\beta} \mathbb{Z}
$$

This gives

$$
1_{\mathbb{Z}} \xrightarrow{\gamma} a \otimes a+b \otimes b+c \otimes c
$$

evaluating separately
$a \otimes a \xrightarrow{i d \otimes \Delta} a \otimes(b \otimes c+c \otimes b)=a \otimes b \otimes c+a \otimes c \otimes b \xrightarrow{\mu \otimes i d} c \otimes c+b \otimes b$

$$
c \otimes c+b \otimes b \xrightarrow{\beta} 1+1=2
$$

Let's calculate using the following dissection

which correspond to the map

$$
\mathbb{Z} \xrightarrow{\gamma} A \otimes A \xrightarrow{i d \otimes \Delta} A \otimes A \otimes A \xrightarrow{\mu \otimes i d} A \otimes A \xrightarrow{\beta} \mathbb{Z}
$$

This gives

$$
1_{\mathbb{Z}} \xrightarrow{\gamma} a \otimes a+b \otimes b+c \otimes c
$$

evaluating separately
$a \otimes a \xrightarrow{i d \otimes \Delta} a \otimes(b \otimes c+c \otimes b)=a \otimes b \otimes c+a \otimes c \otimes b \xrightarrow{\mu \otimes i d} c \otimes c+b \otimes b$

$$
c \otimes c+b \otimes b \xrightarrow{\beta} 1+1=2
$$

and using the symmetry we see that $\chi=6$ which is the number of 3-edge coloring for the theta graph.

TQFT with decoration

This is going to be the case provided one could make sense of the diagrammatic representation above as a tensor category: the boundary of a graph only makes sense when it is embedded as a 1-skeleton of a CW complex.
(Meta)Theorem: Under the above representation of this tensor category, a planar trivalent graph 「 correspond to a linear map $\psi: \mathbb{Z} \rightarrow \mathbb{Z}$ with the property

$$
\psi(1)=\#\{3-\text { edge coloring of } \Gamma\}
$$

N-graphs

Let $N \in \mathbb{N}$. An N-graph G on Σ is a collection of N objects, a surface Σ - the zeroth object in the collection, and $N-1$ trivent graphs $G_{1}, \ldots G_{n-1}$ embedded on Σ but subject to the following conditions:

N-graphs

Let $N \in \mathbb{N}$. An N-graph G on Σ is a collection of N objects, a surface Σ - the zeroth object in the collection, and $N-1$ trivent graphs $G_{1}, \ldots G_{n-1}$ embedded on Σ but subject to the following conditions:
(1) edges of the graph G_{i} is labelled with the transposition $\tau_{i} \in S_{N}$. (recall $\tau_{i}=(i, i+1)$.)

N-graphs

Let $N \in \mathbb{N}$. An N-graph G on Σ is a collection of N objects, a surface Σ - the zeroth object in the collection, and $N-1$ trivent graphs $G_{1}, \ldots G_{n-1}$ embedded on Σ but subject to the following conditions:
(1) edges of the graph G_{i} is labelled with the transposition $\tau_{i} \in S_{N}$. (recall $\tau_{i}=(i, i+1)$.)
(2) if $|i-j|>2$ then G_{i} and G_{j} don't interact, or the interaction will be a virtual crossing.

N-graphs

Let $N \in \mathbb{N}$. An N-graph G on Σ is a collection of N objects, a surface Σ - the zeroth object in the collection, and $N-1$ trivent graphs $G_{1}, \ldots G_{n-1}$ embedded on Σ but subject to the following conditions:
(1) edges of the graph G_{i} is labelled with the transposition $\tau_{i} \in S_{N}$. (recall $\tau_{i}=(i, i+1)$.)
(2) if $|i-j|>2$ then G_{i} and G_{j} don't interact, or the interaction will be a virtual crossing.
(3) if $|i-j|=1$ then the graphs G_{i} and G_{j} only intersect at a vertex in a hexagonal manner, e. g.

N -graphs

Let $N \in \mathbb{N}$. An N-graph G on Σ is a collection of N objects, a surface Σ - the zeroth object in the collection, and $N-1$ trivent graphs $G_{1}, \ldots G_{n-1}$ embedded on Σ but subject to the following conditions:
(1) edges of the graph G_{i} is labelled with the transposition $\tau_{i} \in S_{N}$. (recall $\tau_{i}=(i, i+1)$.)
(2) if $|i-j|>2$ then G_{i} and G_{j} don't interact, or the interaction will be a virtual crossing.
(3) if $|i-j|=1$ then the graphs G_{i} and G_{j} only intersect at a vertex in a hexagonal manner, e. g.

N -graphs

Let $N \in \mathbb{N}$. An N-graph G on Σ is a collection of N objects, a surface Σ - the zeroth object in the collection, and $N-1$ trivent graphs $G_{1}, \ldots G_{n-1}$ embedded on Σ but subject to the following conditions:
(1) edges of the graph G_{i} is labelled with the transposition $\tau_{i} \in S_{N}$. (recall $\tau_{i}=(i, i+1)$.)
(2) if $|i-j|>2$ then G_{i} and G_{j} don't interact, or the interaction will be a virtual crossing.
(3) if $|i-j|=1$ then the graphs G_{i} and G_{j} only intersect at a vertex in a hexagonal manner, e. g.

Example: A 4-graph with $\Sigma=\mathbb{S}^{2}$.

Figure: Notice that G_{1} (blue) and G_{3} (yellow) intersect virtually. Source: 'Legendrian Weaves' Casals-Zaslow

Legendrian Weaves: Construction of the wavefront

 Let G be an N-graph on Σ. It allows us to assign a Legendrian surface $\Lambda(G)$ in $\left(J^{1} \Sigma, \alpha\right)$ by associating singularities A_{1}^{2} to the edges of the graph, and using the fact both D_{4}^{-}and A_{1}^{3} are uniquely determined by their A_{1}^{2} front singularities. The local germs of these singularities and the Legendrian front projection $\Pi: J^{1} \Sigma \rightarrow \Sigma \times \mathbb{R}$ allow us to assign this Legendrian to the wavefront $W(G) \subset \Sigma \times \mathbb{R}$ coming from G as follows, and then gluing these local wavefronts:
Legendrian Weaves: Construction of the wavefront

 Let G be an N-graph on Σ. It allows us to assign a Legendrian surface $\Lambda(G)$ in $\left(J^{1} \Sigma, \alpha\right)$ by associating singularities A_{1}^{2} to the edges of the graph, and using the fact both D_{4}^{-}and A_{1}^{3} are uniquely determined by their A_{1}^{2} front singularities. The local germs of these singularities and the Legendrian front projection $\Pi: J^{1} \Sigma \rightarrow \Sigma \times \mathbb{R}$ allow us to assign this Legendrian to the wavefront $W(G) \subset \Sigma \times \mathbb{R}$ coming from G as follows, and then gluing these local wavefronts:

Braid closure and Casals-Zaslow construction

Example

Figure: Positive(top) and Negative (bottom) Trefoil

Hexagonal vertex, Yang-Baxter and RD-III

Figure: together with their reflections

Decoration with K_{4} and graph coloring

$$
\begin{aligned}
& k_{y}:=\left\langle a, b, c \mid a^{2}=b^{2}=c^{2}=1, c=a b\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \widetilde{R}_{R_{y}}:=R_{k_{y}} \cup\left\{\square_{a=a} \square_{b=b} \square_{c=c}\right\}
\end{aligned}
$$

TQFT with decoration: Prototypical Example

Figure: coloring of graph induces coloring of region

Thank You!

Jet Space

Given a manifold M, let λ be the Louville form on $T^{*} M$, then the 1 - Jet spaces, denoted, $J^{1} M:=T^{*} M \times \mathbb{R}$ has a contact structure given by the 1 -form $\alpha=d z-\lambda$. Where z is the co-ordinate on \mathbb{R}

Jet Space

Given a manifold M, let λ be the Louville form on $T^{*} M$, then the 1 - Jet spaces, denoted, $J^{1} M:=T^{*} M \times \mathbb{R}$ has a contact structure given by the 1 -form $\alpha=d z-\lambda$. Where z is the co-ordinate on \mathbb{R}

Convention: For our purpose M will be a surface Σ.
Example: For $M=\mathbb{R}_{\left(x_{1}, x_{2}\right)}^{2}, J^{1} M \cong \mathbb{R}_{\left(x_{1}, x_{2}, y_{1}, y_{2}, z\right)}^{5}$ with the contact structure $\xi_{s t d}=\operatorname{ker}\left(d z-y_{1} d x_{1}-y_{2} d x_{2}\right)$.

This example is important since because of Darboux's Theorem that's how our $J^{1} \Sigma$ looks like locally (in a Darboux's chart.)

Definition: A surface $\Lambda(C)$ in $J^{1} \Sigma$ (i .e. a 2 -dimensional submanifold of $J^{1} \Sigma$) is called Legendrian if for all $p \in \lambda(C), T_{p} \wedge(C) \subset \xi_{p}$.

Arnold's Theorem

The Legendrian fibration $\Pi: \mathbb{R}^{5} \rightarrow \mathbb{R}^{3}$,
$\Pi\left(x_{1}, x_{2}, y_{1}, y_{2}, z\right) \rightarrow\left(x_{1}, x_{2}, z\right)$ allows us to assign a legendrian surface $\Lambda(C)$ in the domain of Π to a singular surface C in \mathbb{R}^{3}. Where

$$
\begin{gathered}
y_{1}=x_{1}-\text { slope of the tangent plane }-T_{\left(x_{1}, x_{2}, z\right)} C, \text { and } \\
y_{2}=x_{2}-\text { slope of the tangent plane }-T_{\left(x_{1}, x_{2}, z\right)} C
\end{gathered}
$$

i.e. in a local parametrisation $(u, v, z(u, v))$ of the surface C, $y_{1}=\partial_{u} z(u, v)$ and $y_{2}=\partial_{v} z(u, v)$.
Theorem(Arnold): (Singularities of spatial fronts) A generic front in 3 - space has the following singularities:
(1) (semicubic) Cuspidal edge $\left(A_{2}\right)$.
(2) swallowtails $\left(A_{3}\right)$.
(3) points of transversal self-intersection $\left(A_{1}^{2}, A_{1} A_{2}, A_{1}^{3}\right)$.

Other than these three there are two unstable singularities: D_{4}^{+}and (very important for our purpose) D_{4}^{-}.

Figure: Generic Singularities

Figure: D_{4}^{+}

Figure: D_{4}^{-}, wild potato chips
and then gluing these local wavefronts. More precisely for an open cover $\left\{U_{i}\right\}$ of Σ, the local wavefront is constructed in $U_{i} \times \mathbb{R}$ as above (note that $U_{i} \cong \mathbb{D}^{2}$) which are targents of front projections in the Darboux chart $\left(J^{1} \Sigma, \alpha\right) \cong\left(J^{1} \mathbb{D}^{2}, \xi_{s t d}\right)$.
Definition: Let G be an N-graph on Σ, the Legendrian weave

$$
\Lambda(G) \subset\left(J^{1} \Sigma, \alpha\right)
$$

is the embedded Legendrian surface whose wavefront $W(G) \subset \Sigma \times \mathbb{R}$ is obtained by weaving the wavefronts $\Sigma \times\{1\} \cup \cdots \cup \Sigma \times\{N\} \subset \Sigma \times \mathbb{R}$ according to the local patterns.

Here are examples of Reidemeister moves - 0, I, II, and III:

Figure: Together with their reflections

Decoration with general group : \mathbb{Z}_{2}

$$
\mathbb{Z}_{2}:=\left\langle a \mid a^{2}=1\right\rangle \quad a:=
$$

$$
a^{3}=a
$$

Figure: relations

Thank You!

