Legendrian Weaves and TQFT with decorations

Amit Kumar

Department of Mathematics Louisiana State University Baton Rouge

AMS Spring Sectional Meeting, April 15

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Motivation

Let

$$K_4 = \langle a, b, c \mid a^2 = b^2 = c^2 = 1, c = ab
angle$$

 and

$$A = \mathbb{Z}[K_4]$$

equipped with the multiplication

$$\mu: A \otimes A \rightarrow A$$

given by

Diagrammatically μ is represented as

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

We define a pairing

 $\beta: A \otimes A \to \mathbb{Z}$

 $1\otimes 1, a\otimes a, b\otimes b, c\otimes c\mapsto 1_{\mathbb{Z}}$; 0 otherwise

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

and extended linearly.

We define a pairing

$$\beta: A \otimes A \to \mathbb{Z}$$

 $1\otimes 1, a\otimes a, b\otimes b, c\otimes c\mapsto 1_{\mathbb{Z}}$; 0 otherwise

and extended linearly.

Diagrammatically β is represented as

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

and a co-pairing

 $\gamma: \mathbb{Z} \to A \otimes A$; $1_{\mathbb{Z}} \mapsto a \otimes a + b \otimes b + c \otimes c$

represented diagrammatically as:

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Remark: β is associative but **NOT** non-degenerate!

and a co-pairing

 $\gamma: \mathbb{Z} \to A \otimes A$; $1_{\mathbb{Z}} \mapsto a \otimes a + b \otimes b + c \otimes c$

represented diagrammatically as:

Remark: β is associative but **NOT** non-degenerate!

Nonetheless, we get a co-multiplication

 $\Delta: A \to A \otimes A \quad ; \quad 1 \mapsto a \otimes a + b \otimes b + c \otimes c$

 $a \mapsto b \otimes c + c \otimes b, \quad b \mapsto c \otimes a + a \otimes c, \quad c \mapsto a \otimes b + b \otimes a$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

represented diagrammatically as

Now, consider the following example

This trivalent graph should correspond to a linear map $\psi : \mathbb{Z} \to \mathbb{Z}$. So, there exists an integer *n* such that $\phi(v) = nv$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

represented diagrammatically as

Now, consider the following example

This trivalent graph should correspond to a linear map $\psi : \mathbb{Z} \to \mathbb{Z}$. So, there exists an integer *n* such that $\phi(v) = nv$.

Question: How is this *n* related to the above graph?

Let's calculate using the following dissection

which correspond to the map

$$\mathbb{Z} \xrightarrow{\gamma} A \otimes A \xrightarrow{id \otimes \Delta} A \otimes A \otimes A \otimes A \xrightarrow{\mu \otimes id} A \otimes A \xrightarrow{\beta} \mathbb{Z}$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Let's calculate using the following dissection

which correspond to the map

$$\mathbb{Z} \xrightarrow{\gamma} A \otimes A \xrightarrow{id \otimes \Delta} A \otimes A \otimes A \otimes A \xrightarrow{\mu \otimes id} A \otimes A \xrightarrow{\beta} \mathbb{Z}$$

This gives

$$1_{\mathbb{Z}} \stackrel{\gamma}{
ightarrow} \mathsf{a} \otimes \mathsf{a} + \mathsf{b} \otimes \mathsf{b} + \mathsf{c} \otimes \mathsf{c}$$

evaluating separately

$$a \otimes a \stackrel{id \otimes \Delta}{\to} a \otimes (b \otimes c + c \otimes b) = a \otimes b \otimes c + a \otimes c \otimes b \stackrel{\mu \otimes id}{\to} c \otimes c + b \otimes b$$
$$c \otimes c + b \otimes b \stackrel{\beta}{\to} 1 + 1 = 2$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Let's calculate using the following dissection

which correspond to the map

$$\mathbb{Z} \xrightarrow{\gamma} A \otimes A \xrightarrow{id \otimes \Delta} A \otimes A \otimes A \otimes A \xrightarrow{\mu \otimes id} A \otimes A \xrightarrow{\beta} \mathbb{Z}$$

This gives

$$1_{\mathbb{Z}} \stackrel{\gamma}{
ightarrow} \mathsf{a} \otimes \mathsf{a} + \mathsf{b} \otimes \mathsf{b} + \mathsf{c} \otimes \mathsf{c}$$

evaluating separately

$$a \otimes a \stackrel{id \otimes \Delta}{\to} a \otimes (b \otimes c + c \otimes b) = a \otimes b \otimes c + a \otimes c \otimes b \stackrel{\mu \otimes id}{\to} c \otimes c + b \otimes b$$
$$c \otimes c + b \otimes b \stackrel{\beta}{\to} 1 + 1 = 2$$

and using the symmetry we see that $\chi = 6$ which is the number of 3-edge coloring for the theta graph.

This is going to be the case provided one could make sense of the diagrammatic representation above as a tensor category: the boundary of a graph only makes sense when it is embedded as a 1-skeleton of a CW complex.

(Meta)Theorem: Under the above representation of this tensor category, a planar trivalent graph Γ correspond to a linear map $\psi : \mathbb{Z} \to \mathbb{Z}$ with the property

$$\psi(1) = \#\{3 - \text{edge coloring of } \Gamma\}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Let $N \in \mathbb{N}$. An *N*-graph *G* on Σ is a collection of *N* objects, a surface Σ - the zeroth object in the collection, and N - 1 trivent graphs $G_1, \ldots G_{n-1}$ embedded on Σ but subject to the following conditions:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Let $N \in \mathbb{N}$. An *N*-graph *G* on Σ is a collection of *N* objects, a surface Σ - the zeroth object in the collection, and N - 1 trivent graphs $G_1, \ldots G_{n-1}$ embedded on Σ but subject to the following conditions:

1 edges of the graph G_i is labelled with the transposition $\tau_i \in S_N$. (recall $\tau_i = (i, i + 1)$.)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Let $N \in \mathbb{N}$. An *N*-graph *G* on Σ is a collection of *N* objects, a surface Σ - the zeroth object in the collection, and N - 1 trivent graphs $G_1, \ldots G_{n-1}$ embedded on Σ but subject to the following conditions:

- **1** edges of the graph G_i is labelled with the transposition $\tau_i \in S_N$. (recall $\tau_i = (i, i + 1)$.)
- 2 if |i j| > 2 then G_i and G_j don't interact, or the interaction will be a virtual crossing.

Let $N \in \mathbb{N}$. An *N*-graph *G* on Σ is a collection of *N* objects, a surface Σ - the zeroth object in the collection, and N - 1 trivent graphs $G_1, \ldots G_{n-1}$ embedded on Σ but subject to the following conditions:

- **1** edges of the graph G_i is labelled with the transposition $\tau_i \in S_N$. (recall $\tau_i = (i, i + 1)$.)
- 2 if |i j| > 2 then G_i and G_j don't interact, or the interaction will be a virtual crossing.
- **3** if |i j| = 1 then the graphs G_i and G_j only intersect at a vertex in a hexagonal manner, e. g.

Let $N \in \mathbb{N}$. An *N*-graph *G* on Σ is a collection of *N* objects, a surface Σ - the zeroth object in the collection, and N - 1 trivent graphs G_1, \ldots, G_{n-1} embedded on Σ but subject to the following conditions:

- **1** edges of the graph G_i is labelled with the transposition $\tau_i \in S_N$. (recall $\tau_i = (i, i + 1)$.)
- 2 if |i j| > 2 then G_i and G_j don't interact, or the interaction will be a virtual crossing.
- **3** if |i j| = 1 then the graphs G_i and G_j only intersect at a vertex in a hexagonal manner, e. g.

Let $N \in \mathbb{N}$. An *N*-graph *G* on Σ is a collection of *N* objects, a surface Σ - the zeroth object in the collection, and N - 1 trivent graphs G_1, \ldots, G_{n-1} embedded on Σ but subject to the following conditions:

- **1** edges of the graph G_i is labelled with the transposition $\tau_i \in S_N$. (recall $\tau_i = (i, i + 1)$.)
- 2 if |i j| > 2 then G_i and G_j don't interact, or the interaction will be a virtual crossing.
- **3** if |i j| = 1 then the graphs G_i and G_j only intersect at a vertex in a hexagonal manner, e. g.

Example: A 4-graph with $\Sigma = \mathbb{S}^2$.

Figure: Notice that $G_1(\text{blue})$ and G_3 (yellow) intersect **virtually**. Source: 'Legendrian Weaves' Casals-Zaslow

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Legendrian Weaves: Construction of the wavefront

Let G be an N-graph on Σ . It allows us to assign a Legendrian surface $\Lambda(G)$ in $(J^1\Sigma, \alpha)$ by associating singularities A_1^2 to the edges of the graph, and using the fact both D_4^- and A_1^3 are uniquely determined by their A_1^2 front singularities. The local germs of these singularities and the Legendrian front projection $\Pi: J^1\Sigma \to \Sigma \times \mathbb{R}$ allow us to assign this Legendrian to the wavefront $W(G) \subset \Sigma \times \mathbb{R}$ coming from G as follows, and then gluing these local wavefronts:

Legendrian Weaves: Construction of the wavefront

Let G be an N-graph on Σ . It allows us to assign a Legendrian surface $\Lambda(G)$ in $(J^1\Sigma, \alpha)$ by associating singularities A_1^2 to the edges of the graph, and using the fact both D_4^- and A_1^3 are uniquely determined by their A_1^2 front singularities. The local germs of these singularities and the Legendrian front projection $\Pi: J^1\Sigma \to \Sigma \times \mathbb{R}$ allow us to assign this Legendrian to the wavefront $W(G) \subset \Sigma \times \mathbb{R}$ coming from G as follows, and then gluing these local wavefronts:

Braid closure and Casals-Zaslow construction

Figure: Positive(top) and Negative (bottom) Trefoil

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Hexagonal vertex, Yang-Baxter and RD-III

Figure: together with their reflections

Decoration with K_4 and graph coloring

 $\mathcal{O} \mathcal{O} \mathcal{O}$

TQFT with decoration: Prototypical Example

Figure: coloring of graph induces coloring of region

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

э

Thank You!

Jet Space

Given a manifold M, let λ be the Louville form on T^*M , then the 1 - Jet spaces, denoted, $J^1M := T^*M \times \mathbb{R}$ has a contact structure given by the 1-form $\alpha = dz - \lambda$. Where z is the co-ordinate on \mathbb{R}

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Jet Space

Given a manifold M, let λ be the Louville form on T^*M , then the 1 - Jet spaces, denoted, $J^1M := T^*M \times \mathbb{R}$ has a contact structure given by the 1-form $\alpha = dz - \lambda$. Where z is the co-ordinate on \mathbb{R}

Convention: For our purpose M will be a surface Σ .

Example: For $M = \mathbb{R}^2_{(x_1, x_2)}, J^1 M \cong \mathbb{R}^5_{(x_1, x_2, y_1, y_2, z)}$ with the contact structure $\xi_{std} = \ker (dz - y_1 dx_1 - y_2 dx_2).$

This example is important since because of *Darboux's Theorem* that's how our $J^{1}\Sigma$ looks like locally (in a Darboux's chart.)

Definition: A surface $\Lambda(C)$ in $J^1\Sigma$ (i .e. a 2 - dimensional submanifold of $J^1\Sigma$) is called *Legendrian* if for all $p \in \lambda(C), T_p\Lambda(C) \subset \xi_p$.

Arnold's Theorem

The Legendrian fibration $\Pi : \mathbb{R}^5 \to \mathbb{R}^3$,

 $\Pi(x_1, x_2, y_1, y_2, z) \rightarrow (x_1, x_2, z)$ allows us to assign a legendrian surface $\Lambda(C)$ in the domain of Π to a singular surface C in \mathbb{R}^3 . Where

 $y_1 = x_1 - \text{slope of the tangent plane} - T_{(x_1, x_2, z)}C$, and

 $y_2 = x_2$ - slope of the tangent plane - $T_{(x_1, x_2, z)}C$

i.e. in a local parametrisation (u, v, z(u, v)) of the surface C, $y_1 = \partial_u z(u, v)$ and $y_2 = \partial_v z(u, v)$.

Theorem(Arnold): (Singularities of spatial fronts) A generic front in 3 - space has the following singularities:

- (semicubic) Cuspidal edge (A_2) .
- **2** swallowtails (A_3) .

3 points of transversal self-intersection (A_1^2, A_1A_2, A_1^3) .

Other than these three there are two unstable singularities: D_4^+ and (very important for our purpose) D_4^- .

Figure: Generic Singularities

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Figure: D_4^- , wild potato chips

and then gluing these local wavefronts. More precisely for an open cover $\{U_i\}$ of Σ , the local wavefront is constructed in $U_i \times \mathbb{R}$ as above (note that $U_i \cong \mathbb{D}^2$) which are targents of front projections in the Darboux chart $(J^1\Sigma, \alpha) \cong (J^1\mathbb{D}^2, \xi_{std})$.

Definition: Let G be an N-graph on Σ , the Legendrian weave

$$\Lambda(G) \subset (J^1\Sigma, \alpha)$$

is the embedded Legendrian surface whose wavefront $W(G) \subset \Sigma \times \mathbb{R}$ is obtained by weaving the wavefronts $\Sigma \times \{1\} \cup \cdots \cup \Sigma \times \{N\} \subset \Sigma \times \mathbb{R}$ according to the local patterns.

Here are examples of Reidemeister moves - 0, I, II, and III:

Figure: Together with their reflections

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

Decoration with general group : \mathbb{Z}_2

Figure: relations

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Thank You!