Special Lagrangian Geometry

Amit Kumar

Department of Mathematics Louisiana State University Baton Rouge

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Introduction

● Special Lagrangian *m*-folds (SL *m*-folds) are a distinguished class of real *m*-dimensional minimal submanifolds which may be defined in C^m or in Calabi-Yau *m*-folds, or more generally in almost Calabi-Yau *m*-folds.

Introduction

- Special Lagrangian *m*-folds (SL *m*-folds) are a distinguished class of real *m*-dimensional minimal submanifolds which may be defined in C^m or in Calabi-Yau *m*-folds, or more generally in almost Calabi-Yau *m*-folds.
- Plaving a good understanding of the singularities of special Lagrangian submanifolds will be essential in clarifying the SYZ-conjecture on the mirror symmetry of Calabi-Yau 3-folds and also in connection of recent work of Zaslow and Truemann in the paper Cubic Planar Graph and Legendrian Surface Theory.

SL submanifolds in \mathbb{C}^m

Let $\mathbb{C}^m \cong \mathbb{R}^{2m}$ have complex coordinates (z_1, \ldots, z_m) . Define a metric g, Kahler form ω , and complex volume form θ on \mathbb{C}^m by:

SL submanifolds in \mathbb{C}^m

Let $\mathbb{C}^m \cong \mathbb{R}^{2m}$ have complex coordinates (z_1, \ldots, z_m) . Define a metric g, Kahler form ω , and complex volume form θ on \mathbb{C}^m by:

$$egin{aligned} g &= |dz_1|^2 + \cdots + |dz_m|^2, \qquad \omega = rac{i}{2} (dz_1 \wedge dar{z}_1 + \cdots + dz_m \wedge dar{z}_m) \ heta &= dz_1 \wedge \cdots \wedge dz_m \end{aligned}$$

SL submanifolds in \mathbb{C}^m

Let $\mathbb{C}^m \cong \mathbb{R}^{2m}$ have complex coordinates (z_1, \ldots, z_m) . Define a metric g, Kahler form ω , and complex volume form θ on \mathbb{C}^m by:

$$g = |dz_1|^2 + \dots + |dz_m|^2, \qquad \omega = \frac{i}{2}(dz_1 \wedge d\overline{z}_1 + \dots + dz_m \wedge d\overline{z}_m)$$

 $heta = dz_1 \wedge \dots \wedge dz_m$

Then $Re(\theta)$ and $Im(\theta)$, are real *m*-forms on \mathbb{C}^m , both calibrations. **Recall:** ϕ , a closed *k*-form on a manifold *M*, is a *calibration* on *M* if for every oriented *k*-plane *V* on *M* we have $\phi|_V \leq vol_V$. Said differently, $\phi|_V = \alpha .vol_V$ for some $\alpha \in \mathbb{R}$ with $\alpha \leq 1$. For *N*, an oriented *k*-submanifold of *M*, each tangent space $T_X N$ for $x \in N$ is an oriented tangent *k*-plane. We say that *N* is a calibrated submanifold or ϕ -submanifold if $\phi|_{T_XN} = vol_{T_XN}$.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Proposition: Let *L* be a real *m*-dimensional submanifold of \mathbb{C}^m . Then *L* admits an orientation making it into an *SL m*-fold if and only if $\omega|_L \equiv 0$ and $Im(\theta)|_L \equiv 0$. More generally, it admits an orientation making it into an *SL m*-fold with phase $e^{i\psi}$ if and only if $\omega|_L \equiv 0$ and $(\cos\psi Im(\theta) - \sin\psi Re(\theta))|_L \equiv 0$

Proposition: Let *L* be a real *m*-dimensional submanifold of \mathbb{C}^m . Then *L* admits an orientation making it into an *SL m*-fold if and only if $\omega|_L \equiv 0$ and $Im(\theta)|_L \equiv 0$. More generally, it admits an orientation making it into an *SL m*-fold with phase $e^{i\psi}$ if and only if $\omega|_L \equiv 0$ and $(\cos\psi Im(\theta) - \sin\psi Re(\theta))|_L \equiv 0$

Thus special Lagrangian submanifolds are Lagrangian submanifolds satisfying the extra condition $Im(\theta)|_L = 0$.

Proposition: Let *L* be a real *m*-dimensional submanifold of \mathbb{C}^m . Then *L* admits an orientation making it into an *SL m*-fold if and only if $\omega|_L \equiv 0$ and $Im(\theta)|_L \equiv 0$. More generally, it admits an orientation making it into an *SL m*-fold with phase $e^{i\psi}$ if and only if $\omega|_L \equiv 0$ and $(\cos\psi Im(\theta) - \sin\psi Re(\theta))|_L \equiv 0$

Thus special Lagrangian submanifolds are Lagrangian submanifolds satisfying the extra condition $Im(\theta)|_L = 0$.

Also note that *L* is an *SL m*-fold with phase $e^{i\psi}$ if and only if $e^{\frac{-i\psi}{m}}L$ is an *SLm* – fold with phase 1. So, studying *SL m*-fold with phase 1 suffices.

Examples

Let \mathbb{C}^2 has complex cordinates (z_0, z_1) with $z_0 = x_0 + ix_1$ and $z_1 = x_2 + ix_3$. Let us denote the corresponding complex structure on \mathbb{R}^4 by J_0 . Then:

$$g = dx_0^2 + \cdots + dx_3^2, \qquad \omega = dx_0 \wedge dx_1 + dx_2 \wedge dx_3,$$

 $Re(\theta) = dx_0 \wedge dx_2 - dx_1 \wedge dx_3,$

$$\mathit{Im}(heta) = \mathit{dx}_0 \wedge \mathit{dx}_3 + \mathit{dx}_1 \wedge \mathit{dx}_2$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Examples

Let \mathbb{C}^2 has complex cordinates (z_0, z_1) with $z_0 = x_0 + ix_1$ and $z_1 = x_2 + ix_3$. Let us denote the corresponding complex structure on \mathbb{R}^4 by J_0 . Then:

 $g = dx_0^2 + \cdots + dx_3^2$, $\omega = dx_0 \wedge dx_1 + dx_2 \wedge dx_3$,

 $Re(\theta) = dx_0 \wedge dx_2 - dx_1 \wedge dx_3, \quad Im(\theta) = dx_0 \wedge dx_3 + dx_1 \wedge dx_2$

Now define a different set of complex coordinates (w_1, w_2) by $w_1 = x_0 + ix_2$, $w_2 = x_1 - ix_3$, and denote the corresponding complex structure on \mathbb{R}^4 by *J*. We notice, $\omega - ilm(\theta) = dw_1 \wedge dw_2$.

Examples

Let \mathbb{C}^2 has complex cordinates (z_0, z_1) with $z_0 = x_0 + ix_1$ and $z_1 = x_2 + ix_3$. Let us denote the corresponding complex structure on \mathbb{R}^4 by J_0 . Then:

 $g = dx_0^2 + \cdots + dx_3^2, \qquad \omega = dx_0 \wedge dx_1 + dx_2 \wedge dx_3,$

 $Re(\theta) = dx_0 \wedge dx_2 - dx_1 \wedge dx_3, \quad Im(\theta) = dx_0 \wedge dx_3 + dx_1 \wedge dx_2$

Now define a different set of complex coordinates (w_1, w_2) by $w_1 = x_0 + ix_2$, $w_2 = x_1 - ix_3$, and denote the corresponding complex structure on \mathbb{R}^4 by *J*. We notice, $\omega - ilm(\theta) = dw_1 \wedge dw_2$.

Thus $L \subset \mathbb{R}^4$ is special Lagrangian if and only if and only if $(dw_1 \wedge dw_2)|_L \equiv 0$. But this holds if and only if L is a *holomorphic curve* w.r.t the complex coordinates (w_1, w_2) or L is a *J-holomorphic curve*. This means that SL 2-folds are already well understood.

SL submanifolds in \mathbb{C}^m as graphs

Let $f : \mathbb{R}^m \to \mathbb{R}$ be smooth, and define

$$\Gamma_f = \{ (x_1 + i \frac{\partial f}{\partial x_1}(x_1, \dots, x_m), \dots, x_m + i \frac{\partial f}{\partial x_m}(x_1, \dots, x_m)) \}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

SL submanifolds in \mathbb{C}^m as graphs

Let $f : \mathbb{R}^m \to \mathbb{R}$ be smooth, and define

$$\Gamma_f = \{ (x_1 + i \frac{\partial f}{\partial x_1}(x_1, \dots, x_m), \dots, x_m + i \frac{\partial f}{\partial x_m}(x_1, \dots, x_m)) \}$$

Then Γ_f is a smooth real *m*-dimensional submanifold of \mathbb{C}^m , with $\omega|_{\Gamma_f} \equiv 0$. Identifying $\mathbb{C}^m \cong \mathbb{R}^{2m} \cong \mathbb{R}^m \times (\mathbb{R}^m)^*$, we may regard Γ_f as the graph of the 1-form df of \mathbb{R}^m , so that Γ_f is the graph of a closed 1-form. Locally, but not globally, every Lagrangian submanifold arise in this way.

SL submanifolds in \mathbb{C}^m as graphs

Let $f : \mathbb{R}^m \to \mathbb{R}$ be smooth, and define

$$\Gamma_f = \{ (x_1 + i \frac{\partial f}{\partial x_1}(x_1, \dots, x_m), \dots, x_m + i \frac{\partial f}{\partial x_m}(x_1, \dots, x_m)) \}$$

Then Γ_f is a smooth real *m*-dimensional submanifold of \mathbb{C}^m , with $\omega|_{\Gamma_f} \equiv 0$. Identifying $\mathbb{C}^m \cong \mathbb{R}^{2m} \cong \mathbb{R}^m \times (\mathbb{R}^m)^*$, we may regard Γ_f as the graph of the 1-form df of \mathbb{R}^m , so that Γ_f is the graph of a closed 1-form. Locally, but not globally, every Lagrangian submanifold arise in this way.

Now, Γ_f is special Lagrangian m-fold if and only if $Im(\theta)|_{\Gamma_f} \equiv 0$. This is not difficult to see that $Im(\theta)|_{\Gamma_f} \equiv 0$ if and only if

Im
$$det_{\mathbb{C}}(I_m + i \text{ Hess } f) \equiv 0$$
 on \mathbb{R}^m

where Hess f of f is the $m \times m$ matrix $\left(\frac{\partial^2 f}{\partial x_i \partial x_j}\right)_{i,j=1}^m$ of real functions on \mathbb{R}^n .

This is a *nonlinear* second-order elliptic partial differential equation upon the function $f : \mathbb{R}^m \to \mathbb{R}$.

・ロト・日本・ヨト・ヨー うへの

This is a *nonlinear* second-order elliptic partial differential equation upon the function $f : \mathbb{R}^m \to \mathbb{R}$.

It is known that if f is a global solution to this p.d.e. satisfying one of several extra conditions, related to convexity or order of growth, then f must be a quadratic polynomial, so that Γ_f is a real affine m-plane in \mathbb{C}^m .

Deformations of SL m-fold

We begin with investigating deformations of SL m-fold in \mathbb{C}^m . So, let L_0 be a special Lagrangian submanifold in \mathbb{C}^m . We are interested in the family of special Lagrangian deformations of L_0 i. e. special Lagrangian submanifolds L that are close to L_0 in a suitable sense.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Deformations of SL m-fold

We begin with investigating deformations of SL m-fold in \mathbb{C}^m . So, let L_0 be a special Lagrangian submanifold in \mathbb{C}^m . We are interested in the family of special Lagrangian deformations of L_0 i. e. special Lagrangian submanifolds L that are close to L_0 in a suitable sense.

Locally, every special Lagrangian m-folds look like \mathbb{R}^m in \mathbb{C}^m . Therefore, their deformations should also locally look like the deformation of \mathbb{R}^m in \mathbb{C}^m . So, we would like to know what SL m-folds L in \mathbb{C}^m close to \mathbb{R}^m look like.

Deformations of SL m-fold

We begin with investigating deformations of SL m-fold in \mathbb{C}^m . So, let L_0 be a special Lagrangian submanifold in \mathbb{C}^m . We are interested in the family of special Lagrangian deformations of L_0 i. e. special Lagrangian submanifolds L that are close to L_0 in a suitable sense.

Locally, every special Lagrangian m-folds look like \mathbb{R}^m in \mathbb{C}^m . Therefore, their deformations should also locally look like the deformation of \mathbb{R}^m in \mathbb{C}^m . So, we would like to know what SL m-folds L in \mathbb{C}^m close to \mathbb{R}^m look like.

Since \mathbb{R}^m in \mathbb{C}^m is the graph Γ_f associated to the function $f \equiv 0$, a graph Γ_f will be close to \mathbb{R}^m if the function f and its derivatives are small. But, then Hess f is small and

Im $det_{\mathbb{C}}(I_m + i \text{ Hess } f) = \text{Tr Hess } f + \text{higher order terms}$

by approximating the LHS by its linearization.

Thus when second derivatives of f are small, Γ_f is Lagrangian if and only if Tr Hess $f \equiv 0$. But, Tr Hess $f = \frac{\partial^2 f}{(\partial x_1)^2} + \cdots + \frac{\partial^2 f}{(\partial x_m)^2}$, which is nothing but $-\Delta f$, where Δ is the Laplacian on \mathbb{R}^m .

Thus when second derivatives of f are small, Γ_f is Lagrangian if and only if Tr Hess $f \equiv 0$. But, Tr Hess $f = \frac{\partial^2 f}{(\partial x_1)^2} + \cdots + \frac{\partial^2 f}{(\partial x_m)^2}$, which is nothing but $-\Delta f$, where Δ is the Laplacian on \mathbb{R}^m .

Hence small Lagrangian deformations of \mathbb{R}^m in \mathbb{C}^m are parametrized by suitable harmonic functions on \mathbb{R}^m . Now, since Γ_f can also be viewed as the graph of df in $\mathbb{R}^m \times (\mathbb{R}^m)^*$ we could have instead parametrised by df for corresponding f and f being harmonic implies $d^*df = \Delta f = 0$. So we state:

Thus when second derivatives of f are small, Γ_f is Lagrangian if and only if Tr Hess $f \equiv 0$. But, Tr Hess $f = \frac{\partial^2 f}{(\partial x_1)^2} + \cdots + \frac{\partial^2 f}{(\partial x_m)^2}$, which is nothing but $-\Delta f$, where Δ is the Laplacian on \mathbb{R}^m .

Hence small Lagrangian deformations of \mathbb{R}^m in \mathbb{C}^m are parametrized by suitable harmonic functions on \mathbb{R}^m . Now, since Γ_f can also be viewed as the graph of df in $\mathbb{R}^m \times (\mathbb{R}^m)^*$ we could have instead parametrised by df for corresponding f and f being harmonic implies $d^*df = \Delta f = 0$. So we state:

Small special Lagrangian deformations of a special Lagrangian m-fold L are approximately parametrized by closed and coclosed 1-forms α on L. This is the basic idea behind McLean's theorem that we are going to discuss now, but first let us define SL m-fold in the general setting.

Let $m \ge 2$. An almost Calabi-Yau m-fold is a quadraple (M, J, ω, θ) such that (M, J) is a compact m-dimensional complex manifold, is the Kahler form of a Kahler metric g on M, and θ is a non-vanishing holomorphic (m, 0) form on M.

Let $m \ge 2$. An almost Calabi-Yau m-fold is a quadraple (M, J, ω, θ) such that (M, J) is a compact m-dimensional complex manifold, is the Kahler form of a Kahler metric g on M, and θ is a non-vanishing holomorphic (m, 0) form on M.

We call (M, J, ω, θ) a *Calabi-Yau m-fold* if in addition ω and θ satisfy

$$\omega^m/m! = (-1)^{m(m-1)/2} (i/2)^m \theta \wedge \bar{\theta}$$

Let $m \ge 2$. An almost Calabi-Yau m-fold is a quadraple (M, J, ω, θ) such that (M, J) is a compact m-dimensional complex manifold, is the Kahler form of a Kahler metric g on M, and θ is a non-vanishing holomorphic (m, 0) form on M.

We call (M, J, ω, θ) a *Calabi-Yau m-fold* if in addition ω and θ satisfy

$$\omega^m/m! = (-1)^{m(m-1)/2} (i/2)^m \theta \wedge \bar{\theta}$$

Then for every $x \in M$ there exists an isomorphism $T_x M \cong \mathbb{C}^m$ that identifies g_x, ω_x and θ_x with that of \mathbb{C}^m discussed above. We then define

Let $m \ge 2$. An almost Calabi-Yau m-fold is a quadraple (M, J, ω, θ) such that (M, J) is a compact m-dimensional complex manifold, is the Kahler form of a Kahler metric g on M, and θ is a non-vanishing holomorphic (m, 0) form on M.

We call (M, J, ω, θ) a *Calabi-Yau m-fold* if in addition ω and θ satisfy

$$\omega^m/m! = (-1)^{m(m-1)/2} (i/2)^m \theta \wedge \bar{\theta}$$

Then for every $x \in M$ there exists an isomorphism $T_x M \cong \mathbb{C}^m$ that identifies g_x, ω_x and θ_x with that of \mathbb{C}^m discussed above. We then define

Definition: With *M* as above, let *N* be a real m-dimensional submanifold of *M*. We call *N* a *special Lagrangian submanifold* if $\omega|_N \equiv \theta|_N \equiv 0$. It then follows that $Re(\theta)|_N$ is a nonvanishing m-form on N, making it orientable with a unique orientation in which $Re(\theta)|_N$ is positive.

Deformations of compact SL m-folds

We state the following result due to McLean:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Deformations of compact SL m-folds

We state the following result due to McLean:

Theorem: Let N be a compact SL m-fold in an almost Calabi-Yau m-fold (M, J, ω, θ) . Then the moduli space \mathcal{M}_N of special Lagrangian deformations of N is a smooth manifold of dimension $b^1(N)$, the first Betti number of N.

Deformations of compact SL m-folds

We state the following result due to McLean:

Theorem: Let N be a compact SL m-fold in an almost Calabi-Yau m-fold (M, J, ω, θ) . Then the moduli space \mathcal{M}_N of special Lagrangian deformations of N is a smooth manifold of dimension $b^1(N)$, the first Betti number of N.

The proof follows from the discussion in the flat case above and the Lagrangian neighborhood theorem after a bit of modification since (M, ω) is also a symplectic manifold.

Singularities of SL m-folds

General singularities of SL m-folds can be very bad and difficult to study. Therefore we would like to restrict ourselves to a class of SL m-folds with well behaved singularities i.e. those with finite codimension in the space of all SL m-folds. SI m-folds with *isolated conical singularities* are one such candidate. That is we consider an SL m-fold X in an almost Calabi-Yau m-fold M with singularities at x_1, \ldots, x_n in M such that there exists special Lagrangian cones C_i in $T_{x_i}M \cong \mathbb{C}^m$ with $C_i - \{0\}$ non-singular and X approaches C_i near x_i in some appropriate sense (asymptotic C^1).

Singularities of SL m-folds

General singularities of SL m-folds can be very bad and difficult to study. Therefore we would like to restrict ourselves to a class of SL m-folds with well behaved singularities i.e. those with finite codimension in the space of all SL m-folds. SI m-folds with *isolated conical singularities* are one such candidate. That is we consider an SL m-fold X in an almost Calabi-Yau m-fold M with singularities at x_1, \ldots, x_n in M such that there exists special Lagrangian cones C_i in $T_{x_i}M \cong \mathbb{C}^m$ with $C_i - \{0\}$ non-singular and X approaches C_i near x_i in some appropriate sense (asymptotic C^1).

So, for that reason, we are now going to discuss **special** Lagrangian cones in \mathbb{C}^m . These are SL m-folds C in \mathbb{C}^m which is invariant under the dilation $C \mapsto tC$ for t > 0 and is generally singular at their vertex 0. Where $tC = \{t\mathbf{x} : \mathbf{x} \in C\}$.

Special Lagrangian Cones

Let C be a closed SL cone in \mathbb{C}^m with an isolated singularity at 0. Consider $\Sigma = C \cap S^{2m-1}$. Then Σ is a compact, nonsingular (m-1)-submanifold of S^{2m-1} . In fact, Σ is Legendrian w.r.t standard contact form on S^{2m-1} coming from ω .

Let C be a closed SL cone in \mathbb{C}^m with an isolated singularity at 0. Consider $\Sigma = C \cap S^{2m-1}$. Then Σ is a compact, nonsingular (m-1)-submanifold of S^{2m-1} . In fact, Σ is Legendrian w.r.t standard contact form on S^{2m-1} coming from ω .

Let g' be the restriction of g to Σ , and set $C' = C - \{0\}$. Define $i : \Sigma \times (0, \infty) \to \mathbb{C}^m$ by $i(\sigma, r) = r\sigma$. Then \Im has image C'. By an abuse of notation, we identify C' by $\Sigma \times (0, \infty)$ using i. The cone metric on $C' \cong \Sigma \times (0, \infty)$ is $g = i^*(g) = dr^2 + r^2g'$.

Here is a family of special Lagrangian cone constructed by Harvey and Lawson. Form $m \ge 3$ define

$$C_{HL}^{m} = \{(z_1, \ldots, z_m) : i^{m+1}z_1 \ldots z_m \in [0, \infty), |z_1| = \cdots = |z_m|\}$$

Then C_{HL}^m is a special Lagrangian cone in \mathbb{C}^m with an isolated singularity at 0, and $\Sigma = C_{HL}^m \cap S^{2m-1}$ is an (m-1) torus T^{m-1} .

One central problem in *Singularity Theory* is to study the effect on the singularity under deformation. We saw above that such deformations are parametrised in terms of harmonic functions. However, to be well defined on C we need a *homogenous harmonic functions* on \mathbb{C}^n , C' in particular. There has been plenty of works in this direction, exploring questions concerning *stability* and *obstruction* to existence of such a singularity, both separate and well-developed sub-branches in itself. However, we are going to wrap-up this talk with a brief about the SYZ conjecture, and Zaslow's and Treumann's work mentioned in the introduction.

SYZ Conjecture

Let X, \widehat{X} be mirror Calabi-Yau 3-folds. There is a compact 3 manifold B and continuous, surjective $f: X \to B$ and $\widehat{f}: \widehat{X} \to B$ such that

1 for b in a dense $B_0 \subset B$, the fibres $f^{-1}(b)$ and $\hat{f}^{-1}(b)$ are dual SL 3-Tori T^3 in X, \hat{X} respectively.

2 for $b \notin B_0$, $f^{-1}(b)$ and $\hat{f}^{-1}(b)$ are singular SL 3-folds in X, \hat{X} . We call f, \hat{f} special Lagrangian fibrations, and $\Delta = B \setminus B_0$ the discriminant.

Harvey-Lawson cone as foam.

Let D^3 be a 3-dimensional ball. A **foam** in D^3 is a stratified subset $F^2 \subset F^1 \subset F \subset D^3$ satisfying certain conditions that are topological analogue for Plateau conditions for soap bubbles. A foam gives a regular cell-complex structure on D^3 , whose dual complex is a "tetrahedronation" of D^3 in the similar way a planar trivalent graphs give triangulation.

Harvey-Lawson cone as foam.

Let D^3 be a 3-dimensional ball. A **foam** in D^3 is a stratified subset $F^2 \subset F^1 \subset F \subset D^3$ satisfying certain conditions that are topological analogue for Plateau conditions for soap bubbles. A foam gives a regular cell-complex structure on D^3 , whose dual complex is a "tetrahedronation" of D^3 in the similar way a planar trivalent graphs give triangulation.

Recall, a HL 3-cone is a cone over a two torus with a conic singularity at the origin. The Harvey-Lawson cone is therefore a singular Lagrangian filling of the Legendrian surface associated to the tetrahedron.

"Mathematics should be learnt very much like languages. Fluency will come slowly, over a period of time." T. W. Frankel

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ