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Introduction

1 Special Lagrangian m-folds (SL m-folds) are a distinguished
class of real m-dimensional minimal submanifolds which may
be defined in Cm or in Calabi-Yau m-folds, or more generally
in almost Calabi-Yau m-folds.

2 Having a good understanding of the singularities of special
Lagrangian submanifolds will be essential in clarifying the
SYZ-conjecture on the mirror symmetry of Calabi-Yau 3-folds
and also in connection of recent work of Zaslow and
Truemann in the paper Cubic Planar Graph and Legendrian
Surface Theory.
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SL submanifolds in Cm

Let Cm ∼= R2m have complex coordinates (z1, . . . , zm). Define a
metric g , Kahler form ω, and complex volume form θ on Cm by:

g = |dz1|2 + · · ·+ |dzm|2, ω =
i

2
(dz1 ∧ dz̄1 + · · ·+ dzm ∧ dz̄m)

θ = dz1 ∧ · · · ∧ dzm

Then Re(θ) and Im(θ), are real m-forms on Cm, both calibrations.
Recall: φ, a closed k-form on a manifold M, is a calibration on M
if for every oriented k-plane V on M we have φ|V ≤ volV . Said
differently, φ|V = α.volV for some α ∈ R with α ≤ 1. For N, an
oriented k-submanifold of M, each tangent space TxN for x ∈ N is
an oriented tangent k-plane. We say that N is a calibrated
submanifold or φ-submanifold if φ|TxN = volTxN .
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Definition: Let L be an oriented real m-submanifold of Cm. We
call L a special Lagrangian Submanifold of Cm, or SL m-fold for
short, if L is calibrated w.r.t Re(θ) in the sense of above.

Proposition: Let L be a real m-dimensional submanifold of Cm.
Then L admits an orientation making it into an SL m-fold if and
only if ω|L ≡ 0 and Im(θ)|L ≡ 0. More generally, it admits an
orientation making it into an SL m-fold with phase e iψ if and only
if ω|L ≡ 0 and (cosψIm(θ)− sinψRe(θ))|L ≡ 0

Thus special Lagrangian submanifolds are Lagrangian submanifolds
satisfying the extra condition Im(θ)|L = 0.

Also note that L is an SL m-fold with phase e iψ if and only if

e
−iψ
m L is an SLm − fold with phase 1. So, studying SL m-fold with

phase 1 suffices.
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Examples

Let C2 has complex cordinates (z0, z1) with z0 = x0 + ix1 and
z1 = x2 + ix3. Let us denote the corresponding complex structure
on R4 by J0. Then:

g = dx0
2 + · · ·+ dx3

2, ω = dx0 ∧ dx1 + dx2 ∧ dx3,

Re(θ) = dx0 ∧ dx2 − dx1 ∧ dx3, Im(θ) = dx0 ∧ dx3 + dx1 ∧ dx2

Now define a different set of complex coordinates (w1,w2) by
w1 = x0 + ix2, w2 = x1 − ix3, and denote the corresponding
complex structure on R4 by J. We notice, ω− iIm(θ) = dw1 ∧ dw2.

Thus L ⊂ R4 is special Lagrangian if and only if and only if
(dw1 ∧ dw2)|L ≡ 0. But this holds if and only if L is a holomorphic
curve w.r.t the complex coordinates (w1,w2) or L is a
J-holomorphic curve. This means that SL 2-folds are already well
understood.
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SL submanifolds in Cm as graphs
Let f : Rm → R be smooth, and define

Γf = {(x1 + i
∂f

∂x1
(x1, . . . , xm), . . . , xm + i

∂f

∂xm
(x1, . . . , xm))}

Then Γf is a smooth real m-dimensional submanifold of Cm, with
ω|Γf

≡ 0. Identifying Cm ∼= R2m ∼= Rm × (Rm)∗, we may regard Γf

as the graph of the 1-form df of Rm, so that Γf is the graph of a
closed 1-form. Locally, but not globally, every Lagrangian
submanifold arise in this way.

Now, Γf is special Lagrangian m-fold if and only if Im(θ)|Γf
≡ 0.

This is not difficult to see that Im(θ)|Γf
≡ 0 if and only if

Im detC(Im + i Hess f ) ≡ 0 on Rm

where Hess f of f is the m ×m matrix ( ∂2f
∂xi∂xj

)mi ,j=1 of real

functions on Rn.
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This is a nonlinear second-order elliptic partial differential equation
upon the function f : Rm → R.

It is known that if f is a global solution to this p.d.e. satisfying
one of several extra conditions, related to convexity or order of
growth, then f must be a quadratic polynomial, so that Γf is a real
affine m-plane in Cm.
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Deformations of SL m-fold

We begin with investigating deformations of SL m-fold in Cm. So,
let L0 be a special Lagrangian submanifold in Cm. We are
interested in the family of special Lagrangian deformations of L0 i.
e. special Lagrangian submanifolds L that are close to L0 in a
suitable sense.

Locally, every special Lagrangian m-folds look like Rm in Cm.
Therefore, their deformations should also locally look like the
deformation of Rm in Cm. So, we would like to know what SL
m-folds L in Cm close to Rm look like.

Since Rm in Cm is the graph Γf associated to the function f ≡ 0,
a graph Γf will be close to Rm if the function f and its derivatives
are small. But, then Hess f is small and

Im detC(Im + i Hess f ) = Tr Hess f + higher order terms

by approximating the LHS by its linearization.
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Thus when second derivatives of f are small, Γf is Lagrangian if
and only if Tr Hess f ≡ 0. But, Tr Hess f = ∂2f

(∂x1)2 + · · ·+ ∂2f
(∂xm)2 ,

which is nothing but −∆f , where ∆ is the Laplacian on Rm.

Hence small Lagrangian deformations of Rm in Cm are
parametrized by suitable harmonic functions on Rm. Now, since Γf

can also be viewed as the graph of df in Rm × (Rm)∗ we could
have instead parametrised by df for corresponding f and f being
harmonic implies d∗df = ∆f = 0. So we state:

Small special Lagrangian deformations of a special
Lagrangian m-fold L are approximately parametrized by
closed and coclosed 1-forms α on L.
This is the basic idea behind McLean’s theorem that we are going
to discuss now, but first let us define SL m-fold in the general
setting.
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SL m-fold in (almost) Calabi-Yau m-fold
Let m ≥ 2. An almost Calabi-Yau m-fold is a quadraple
(M, J, ω, θ) such that (M, J) is a compact m-dimensional complex
manifold, is the Kahler form of a Kahler metric g on M, and θ is
a non-vanishing holomorphic (m, 0) form on M.

We call (M, J, ω, θ) a Calabi-Yau m-fold if in addition ω and θ
satisfy

ωm/m! = (−1)m(m−1)/2(i/2)mθ ∧ θ̄

Then for every x ∈ M there exists an isomorphism TxM ∼= Cm

that identifies gx , ωx and θx with that of Cm discussed above. We
then define

Definition: With M as above, let N be a real m-dimensional
submanifold of M. We call N a special Lagrangian submanifold if
ω|N ≡ θ|N ≡ 0. It then follows that Re(θ)|N is a nonvanishing
m-form on N, making it orientable with a unique orientation in
which Re(θ)|N is positive.
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Deformations of compact SL m-folds

We state the following result due to McLean:

Theorem: Let N be a compact SL m-fold in an almost Calabi-Yau
m-fold (M, J, ω, θ). Then the moduli space MN of special
Lagrangian deformations of N is a smooth manifold of dimension
b1(N), the first Betti number of N.

The proof follows from the discussion in the flat case above and
the Lagrangian neighborhood theorem after a bit of modification
since (M, ω) is also a symplectic manifold.
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Singularities of SL m-folds

General singularities of SL m-folds can be very bad and difficult to
study. Therefore we would like to restrict ourselves to a class of SL
m-folds with well behaved singularities i.e. those with finite
codimension in the space of all SL m-folds. Sl m-folds with isolated
conical singularities are one such candidate. That is we consider an
SL m-fold X in an almost Calabi-Yau m-fold M with singularities
at x1, . . . , xn in M such that there exists special Lagrangian cones
Ci in TxiM

∼= Cm with Ci − {0} non-singular and X approaches Ci

near xi in some appropriate sense (asymptotic C 1).

So, for that reason, we are now going to discuss special
Lagrangian cones in Cm. These are SL m-folds C in Cm which is
invariant under the dilation C 7→ tC for t > 0 and is generally
singular at their vertex 0. Where tC = {tx : x ∈ C}.
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Special Lagrangian Cones

Let C be a closed SL cone in Cm with an isolated singularity at 0.
Consider Σ = C ∩ S2m−1. Then Σ is a compact, nonsingular
(m-1)-submanifold of S2m−1. In fact, Σ is Legendrian w.r.t
standard contact form on S2m−1 coming from ω.

Let g ′ be the restriction of g to Σ, and set C ′ = C − {0}. Define
i : Σ× (0,∞)→ Cm by i(σ, r) = rσ. Then I has image C ′. By an
abuse of notation, we identify C ′ by Σ× (0,∞) using i. The cone
metric on C ′ ∼= Σ× (0,∞) is g = i∗(g) = dr2 + r2g ′.
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Harvey-Lawson Cone

Here is a family of special Lagrangian cone constructed by Harvey
and Lawson. Form m ≥ 3 define

Cm
HL = {(z1, . . . , zm) : im+1z1 . . . zm ∈ [0,∞), |z1| = · · · = |zm|}

Then Cm
HL is a special Lagrangian cone in Cm with an isolated

singularity at 0, and Σ = Cm
HL ∩ S2m−1 is an (m − 1) torus Tm−1.



One central problem in Singularity Theory is to study the effect on
the singularity under deformation. We saw above that such
deformations are parametrised in terms of harmonic functions.
However, to be well defined on C we need a homogenous harmonic
functions on Cn, C ′ in particular. There has been plenty of works
in this direction, exploring questions concerning stability and
obstruction to existence of such a singularity, both separate and
well-developed sub-branches in itself. However, we are going to
wrap-up this talk with a brief about the SYZ conjecture, and
Zaslow’s and Treumann’s work mentioned in the introduction.



SYZ Conjecture

Let X , X̂ be mirror Calabi-Yau 3-folds. There is a compact 3
manifold B and continuous, surjective f : X → B and f̂ : X̂ → B
such that

1 for b in a dense B0 ⊂ B, the fibres f −1(b) and f̂ −1(b) are
dual SL 3-Tori T 3 in X , X̂ respectively.

2 for b /∈ B0, f −1(b) and f̂ −1(b) are singular SL 3-folds in X , X̂ .

We call f , f̂ special Lagrangian fibrations, and ∆ = B \ B0 the
discriminant.



Harvey-Lawson cone as foam.

Let D3 be a 3-dimensional ball. A foam in D3 is a stratified subset
F 2 ⊂ F 1 ⊂ F ⊂ D3 satisfying certain conditions that are
topological analogue for Plateau conditions for soap bubbles. A
foam gives a regular cell-complex structure on D3, whose dual
complex is a ”tetrahedronation” of D3 in the similar way a planar
trivalent graphs give triangulation.

Recall, a HL 3-cone is a cone over a two torus with a conic
singularity at the origin. The Harvey-Lawson cone is therefore a
singular Lagrangian filling of the Legendrian surface associated to
the tetrahedron.
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”Mathematics should be learnt very much like languages. Fluency
will come slowly, over a period of time.” T. W. Frankel


