SUPERCONDUCTIVITY NEAR THE NORMAL STATE IN A
HALF-PLANE UNDER THE ACTION OF A PERPENDICULAR
ELECTRIC CURRENT AND AN INDUCED MAGNETIC FIELD,
PART II: THE LARGE CONDUCTIVITY LIMIT

YANIV ALMOG†, BERNARD HELFFER‡, AND XING-BIN PAN§

Abstract. We consider the linearized Ginzburg–Landau equation in the half-plane, in the presence of an electric current, perpendicular to the boundary, and the magnetic field it induces. In a previous work we considered the same problem in the limit of small normal conductivity. In the present contribution we consider the large normal conductivity limit, which is more frequently encountered in experiments than the other limit. Like in the previous work we obtain an approximation of the critical current where the normal state loses its stability. We find that this critical current is determined by the ground state of the anharmonic oscillator.

Key words. superconductivity, critical current, critical magnetic field, anharmonic oscillator

AMS subject classifications. 82D55, 35B25, 35B40, 35Q55

DOI. 10.1137/110860598

1. Introduction.

1.1. Former results. Consider a superconductor placed at a temperature lower than the critical one. If an electric current is applied through the sample it will induce a magnetic field, and as is well-understood from numerous experimental observations, a sufficiently strong current will force the superconductor to arrive at the normal state. If the current is then lowered, the normal state will lose stability and the sample will become superconducting again. In addition to experimental observations a similar pattern of behavior has been obtained theoretically by analyzing the stability of the normal state for the time-dependent Ginzburg–Landau system, but with the induced magnetic field neglected [14, 3].

In a previous contribution [4] we analyzed the stability of the normal state in the presence of an electric current which induces a magnetic field but in the absence of boundaries. We offered an analysis of a two-dimensional setting, i.e., in \(\mathbb{R}^2 \), which is the simplest case where one can consider the effect of a magnetic field induced by a current with boundary effects ignored. We found in [4] that the normal state is always stable, irrespective of current intensity. This result is in line with those obtained for a reduced model where the induced magnetic field has been neglected [14, 3].

The effect of boundaries in the absence of a magnetic field was first analyzed by considering a one-dimensional problem on \(\mathbb{R}_+ \) with a Dirichlet boundary condition.
which stands for a normal/superconducting interface [14, 3]. Due to the boundary's effect the normal state loses its stability for currents that are weaker than a certain critical value. It has been proved in [3] that the critical current for a large bounded three-dimensional domain is bounded from above by the one-dimensional value. Furthermore, for currents below the critical one a short-time instability was proved [3]. (The question of whether the normal state is unstable for such domains and currents is still open.)

In another contribution [5] we introduced the effect of boundaries in the limit of small normal conductivity. We showed that it has a similar effect to the one found in [14, 3], i.e., the normal state loses its stability for currents lower than a critical value. Moreover, it was found that as the normal conductivity tends to 0, the critical current converges to the value obtained for the simplified model, where the magnetic field is neglected [14, 3, 18, 19, 20].

Assuming that a magnetic field described by \(H^c \) is perpendicularly applied to the sample, the time-dependent Ginzburg–Landau system can be written as follows (see, for instance, [6, 7, 8, 10, 14, 21, 23]):

\[
\begin{align*}
\partial_t \psi + i \kappa \Phi \psi &= \nabla^2 \kappa \psi + \kappa^2 (1 - |\psi|^2) \psi \quad \text{in } \mathbb{R}_+ \times \mathbb{R}^2_+, \\
\kappa^2 \text{curl}^2 \mathbf{A} + \sigma (\partial_t \mathbf{A} + \nabla \Phi) &= \kappa \text{Im} (\bar{\psi} \nabla_{\kappa} \mathbf{A} \psi) + \kappa^2 \text{curl} \mathbf{H}^c \quad \text{in } \mathbb{R}_+ \times \mathbb{R}^2_+, \\
\psi &= 0, \\
- \frac{\sigma}{\kappa^2} \frac{\partial \Phi}{\partial \nu} &= J \quad \text{on } \partial \mathbb{R}^2_+,
\end{align*}
\]

where \(\psi \) is the order parameter, \(\mathbf{A} \) is the magnetic potential, \(\Phi \) is the electric potential, the Ginzburg–Landau parameter of the superconductor is denoted by \(\kappa \), the normal conductivity of the sample is denoted by \(\sigma \), the magnitude of the dimensionless electric current is denoted by \(J \), and the magnetic field is symbolized by \(\mathbf{H}^c \). The half-plane \(\mathbb{R}^2_+ \) is defined in the following manner:

\[
\mathbb{R}^2_+ = \{(x, y) \in \mathbb{R}^2 : y > 0\}.
\]

The triplet \((\psi, \mathbf{A}, \Phi)\) should also satisfy an initial condition at \(t = 0 \).

A solution \((\psi, \mathbf{A}, \Phi)\) is called a normal state solution if \(\psi \equiv 0 \). From (1.1) we see that if \((0, \mathbf{A}, \Phi)\) is a time-independent normal state solution, then \((\mathbf{A}, \Phi)\) satisfies the following equation:

\[
\kappa^2 \text{curl}^2 \mathbf{A} + \sigma \nabla \Phi = \kappa^2 \text{curl} \mathbf{H}^c \quad \text{in } \mathbb{R}^2_+.
\]

By taking the divergence of (1.2) we obtain

\[
\begin{align*}
\Delta \Phi &= 0 \quad \text{in } \mathbb{R}^2_+, \\
\frac{\partial \Phi}{\partial \nu} &= - \frac{\kappa^2 J}{\sigma} \quad \text{on } \partial \mathbb{R}^2_+.
\end{align*}
\]

Since we expect solutions of (1.3) to represent the electric potential at the normal state near the boundary of a large bounded domain, we look for solutions with bounded gradient (or \(|\nabla \Phi| \in L^\infty(\mathbb{R}^2_+) \)). Assuming that the current is of constant magnitude \(J \) along \(\partial \mathbb{R}^2_+ \) and that its direction is always perpendicular to it, we obtain that the unique solution (up to an additive constant) which obeys these assumption is given by

\[
\Phi = \frac{\kappa^2 J}{\sigma} y.
\]

Assuming further that the applied magnetic field is, like the current, of constant magnitude as well, we obtain

\[
\mathbf{H}^c = h \hat{\mathbf{i}}_z
\]

throughout the entire sample. Here \(\hat{\mathbf{i}}_x, \hat{\mathbf{i}}_y, \) and \(\hat{\mathbf{i}}_z \) denote the canonical basis in \(\mathbb{R}^3 \).
Hence, we consider an applied magnetic field which is perpendicular to the sample. Under these additional assumptions, (1.2) admits the following solution:

\[A = \frac{1}{2J} (Jx + h)^2 \hat{i}_y. \]

Thus, \((0, A, \Phi)\) is a normal state solution of (1.1). Note that the magnetic field

\[H = \text{curl} A = (Jx + h) \hat{i}_z \]

is the sum of the constant applied magnetic field \(h \hat{i}_z\) and a linear term induced by the electric current.

The linearization of (1.1) near the normal state solution \((0, A, \Phi)\) obtained above yields a linear equation

\[\begin{cases} \partial_t \psi + \frac{\kappa^3 Jy}{\sigma} \psi = \Delta \psi - \frac{J}{2} (Jx + h)^2 \partial_y \psi - (\frac{\kappa J}{2})^2 (Jx + h)^4 \psi + \kappa^2 \psi & \text{in } \mathbb{R}_+ \times \mathbb{R}^2_+, \\ \psi = 0 & \text{on } \partial \mathbb{R}^2_+. \end{cases} \]

Applying the transformation

\[(t, x, y) \to \left(t, x - \frac{h}{J}, y \right) \]

we obtain

\[\begin{cases} \partial_t \psi + \frac{\kappa^3 Jy}{\sigma} \psi = \Delta \psi - i\kappa J x^2 \partial_y \psi - \left(\frac{\kappa J}{2} \right)^2 x^4 - \kappa^2 \psi & \text{in } \mathbb{R}_+ \times \mathbb{R}^2_+, \\ \psi = 0 & \text{on } \partial \mathbb{R}^2_+. \end{cases} \]

We assume \(J > 0 \) in what follows. Otherwise we may consider the complex conjugate of (1.6). Hence, we can rescale \(x, y, \) and \(t \) by applying

\[t \to (\kappa J)^{2/3} t, \quad (x, y) \to (\kappa J)^{1/3} (x, y), \]

yielding

\[\begin{cases} \partial_t u = -(A_{0,c} - \lambda) u & \text{in } \mathbb{R}_+ \times \mathbb{R}^2_+, \\ u = 0 & \text{on } \partial \mathbb{R}^2_+, \end{cases} \]

where \(A_{0,c} \) is the differential operator defined by

\[A_{0,c} = D_x^2 + \left(D_y - \frac{1}{2} x^2 \right)^2 + ic y \]

with

\[D_x = -i \partial_x, \quad D_y = -i \partial_y, \quad c \in \mathbb{R}_+, \]

and

\[c = \frac{\kappa^2}{\sigma}, \quad \lambda = \lambda_0 = \frac{\kappa^{4/3}}{J^{2/3}} \equiv u(x, y, t) = \psi((\kappa J)^{-1/3} x, (\kappa J)^{-1/3} y, (\kappa J)^{-2/3} t). \]

The operator \(A_{0,0} \) will be denoted by \(A_0 \) for simplicity.
While the operator $A_{0,c}$ is defined on smooth functions only, we have already proved in [5] that it can be extended into an operator A^+_c whose domain is given by

\begin{equation}
D(A^+_c) = \{ u \in \tilde{V} : A^+_c u \in L^2(\mathbb{R}^2_+, \mathbb{C}) \},
\end{equation}

where

\[\tilde{V} = H^1_{0, \text{max}}(\mathbb{R}^2_+, \mathbb{C}) \cap L^2(\mathbb{R}^2_+, y \, dx \, dy), \]

$L^2(\mathbb{R}^2_+, \mathbb{C})$ denotes the L^2 space of complex-valued functions, and $H^1_{0, \text{max}}(\mathbb{R}^2_+, \mathbb{C})$ is the closure of $C^\infty_0(\mathbb{R}^2_+, \mathbb{C})$ under the norm

\[u \mapsto \sqrt{\|u\|_2^2 + \|D_x u\|_2^2 + \left\| \left(D_y - \frac{x^2}{2} \right) u \right\|_2^2}. \]

Here and hereafter $\| \cdot \|_2$ and $\langle \cdot, \cdot \rangle_2$ denote the L^2 norm and inner product on \mathbb{R}^2_+:

\[\|u\|_2 = \|u\|_{L^2(\mathbb{R}^2_+)} = \left(\int_{\mathbb{R}^2_+} |u|^2 \, dx \, dy \right)^{1/2}, \quad \langle u, v \rangle_2 = \int_{\mathbb{R}^2_+} u \overline{v} \, dx \, dy. \]

The L^2 norms and the associated inner products in both $L^2(\mathbb{R}^k)$ and $L^2(\mathbb{R}^k, \mathbb{C})$ are denoted by $\| \cdot \|_{L^2(\mathbb{R}^k)}$ and $\langle \cdot, \cdot \rangle_{L^2(\mathbb{R}^k)}$.

Once the definition of the extended operator A^+_c has been formulated, we may write

\begin{equation}
A^+_c = D_x^2 + \left(D_y - \frac{x^2}{2} \right)^2 + icy.
\end{equation}

Note that A^+_c is not self-adjoint. Furthermore, we have that

\[(A^+_c)^* = A^+_c. \]

In the present contribution we analyze the spectrum of A^+_c, denoted by $\sigma(A^+_c)$, in the limit $c \to 0$. The following proposition has already been stated in [5].

Proposition 1.1. For any $c \neq 0$, A^+_c has a compact resolvent. Moreover, if $E_0(s)$ denotes the ground state energy of the anharmonic oscillator

\begin{equation}
M_s := -\frac{d^2}{dx^2} + \left(\frac{x^2}{2} + s \right)^2,
\end{equation}

and if

\begin{equation}
E^*_0 = \inf_{s \in \mathbb{R}} E_0(s),
\end{equation}

then

\begin{equation}
\sigma(A^+_c) \subset \{ \lambda \in \mathbb{C}, \Re \lambda \geq E^*_0 \}.
\end{equation}

1.2. Main result. Our main result is the following theorem.

Theorem 1.2. There exists $c_0 > 0$ such that if $0 < |c| \leq c_0$, then

\[\sigma(A^+_c) \neq \emptyset. \]
Furthermore, there exists \(\mu(c) \in \sigma(A_c^+) \) which admits, as \(c \to 0 \), the following expansion:

\[
\mu(c) = E_0^* + |c|^{2/3} \lambda_2 + o(|c|^{2/3}),
\]

where \(E_0^* \) is introduced in (1.15) and \(\lambda_2 \) is a spectral invariant which will be given by (3.24).

Remark 1.3. We expect that \(\mu(c) \) corresponds to the eigenvalue with smallest real part. Note further that the proof we bring for (1.17) provides a more precise error estimate for it.

Recalling the relation between the real parameters \(\lambda, \sigma, \text{and} \kappa \) given in (1.11), in conjunction with (1.16) and (1.17) (and the argument used in [5, before (1.20)]), we can estimate the critical current.

Corollary 1.4. Let \(J_c \) denote the critical current such that for \(|J| < J_c \) in (1.7), the normal state is unstable. Then for all \(|c| \leq c_0 \) we have

\[
\frac{\kappa^2}{(E_0^*)^{3/2}} \left(1 - \frac{3\lambda_2}{2E_0^*}|c|^{2/3} + o\left(|c|^{2/3}\right) \right) \leq J_c \leq \frac{\kappa^2}{(E_0^*)^{3/2}}.
\]

From the above and the results in [5], we thus learn that

\[
J_c \sim \frac{\kappa^2}{(E_0^*)^{3/2}} \text{ as } c \to 0, \quad \frac{J_c}{\sigma} \sim \frac{|a_1|}{2} \text{ as } c \to \infty,
\]

where \(a_1 \) is the rightmost zero point of the Airy function [1]. Hence, the critical current is determined to the leading order in the limit \(c \to 0 \) by setting \(c = 0 \) in (1.10). In contrast, in the limit \(c \to \infty \) the leading order is obtained by erasing the magnetic potential \(x^2/2 \) from (1.10). In the language of physics, the normal state loses its stability in the large conductivity limit \((\sigma \to \infty, \text{i.e.,} c \to 0) \) since the magnetic field generated by the current reaches a critical level, whereas in the small conductivity limit \((\sigma \to 0, \text{i.e.,} c \to \infty) \) it is the drop in the electric potential that produces the instability. Nevertheless, although (1.18) is highly intuitive from a physical point of view, considerable effort is necessary, as can be seen later, to derive it even formally.

Since a standard perturbation expansion fails near the boundary \(\partial \mathbb{R}^2_+ = \{x, y\colon y = 0\} \), we first need to derive the behavior of eigenfunctions of \(A_c^+ \) in the region \(y = \mathcal{O}(1) \). We obtain this behavior in section 2. In section 3 we obtain an approximation for an eigenvalue and an eigenfunction formally, relying on the results of section 2. Section 4 includes some preliminary estimates we need in order to prove the formal expansion. In section 5, we prove the “outer” expansion, i.e., the behavior of the eigenmode in the region \(y = \mathcal{O}(|c|^{-1/3}) \), whereas in section 6 we prove some “inner” estimates in the region \(y = \mathcal{O}(1) \). Finally, in section 7 we complete the proof of (1.17).

2. The boundary layer. Consider the operator \(A_c^+ \) defined in (1.13). Let \((\lambda, v) \) denote an eigenpair, i.e., an eigenvalue \(\lambda \) of \(A_c^+ \) and one corresponding eigenfunction \(v \). For bounded \(y \) and small \(c \), it appears reasonable to estimate \((\lambda, v) \) by \((E_0^*, u) \), where \(E_0^* \) is the bottom of the spectrum of the self-adjoint operator \(A_0^+ \) (which is defined in (1.13) by setting \(c = 0 \) and \(\lambda = E_0^* \)), and \(u(x, y) = \phi^*(x) \exp(is^*y) \) is an associated \(L^\infty \) “eigenfunction.”

In this section we obtain an auxiliary result that provides us with the asymptotic behavior of \(u \) as \(y \to \infty \). In addition, with the notation introduced around (1.15), let \(E_0(s) \) and \(E_1(s) \) denote the first and second eigenvalues of the operator \(\mathcal{M}_s \) (see
Let s^* be the unique point where $E_0(s)$ is minimal (cf. [13])

\[(1.14)\]

\[E_0(s^*) = E_0^*.\]

Let $\phi_0(x, s)$ denote the corresponding normalized positive eigenfunction associated with $E_0(s)$, i.e.,

\[(1.15)\]

\[M_s \phi_0(x, s) = E_0(s) \phi_0(x, s), \quad \|\phi_0(\cdot, s)\|_{L^2(\mathbb{R})} = 1.\]

Set

\[(2.2)\]

\[\phi^*(x) = \phi_0(x, s^*)\]

and

\[E_1^* = \inf_{s \in \mathbb{R}} E_1(s).\]

As in section 1 we use \hat{i}_x and \hat{i}_y to denote the unit vectors in the positive x- and y-axes. For convenience, we introduce a new A_0^{new} deduced from A_0 by using a conjugation by $\exp(i y s^*)$:

\[(2.3)\]

\[A_0^{\text{new}} := - \left(\nabla - i \left(\frac{x^2}{2} + s^* \right) \hat{i}_y \right)^2.\]

To simplify notation, we omit from now on the reference "new" and write simply A_0. In the following we denote by $S(\mathbb{R}, \mathbb{C})$ the space of smooth, rapidly decreasing, complex-valued functions on \mathbb{R}.

Theorem 2.1. Let $f \in S(\mathbb{R}, \mathbb{C})$. Then there exists a unique pair $(u, \alpha) \in H^2_{\text{loc}}(\mathbb{R}^2_+, \mathbb{C}) \times \mathbb{C}$ such that

(i) u satisfies

\[(2.5a)\]

\[(A_0 - E_0^*) u = 0 \quad \text{in } \mathbb{R}^2_+, \]

\[(2.5b)\]

\[u = f \quad \text{on } \partial \mathbb{R}^2_+. \]

(ii) $u - \alpha \phi^* \in L^2(\mathbb{R}^2_+, \mathbb{C})$ and for any $k \geq 1$, there exists a constant $C(k) > 0$ such that, for $y \geq 1$,

\[(2.5c)\]

\[\|u(\cdot, y) - \alpha \phi^*(\cdot)\|_{L^2(\mathbb{R})} \leq \frac{C(k)}{y^k}.\]

To prove the existence of a solution for (2.5) we convert it first to an inhomogeneous problem in $H^2_{\text{loc}}(\mathbb{R}^2_+, \mathbb{C})$ with trace 0 at $y = 0$. To this end we define the cutoff function $\chi \in C^\infty(\mathbb{R}, [0, 1])$ such that

\[(2.6)\]

\[\chi(y) = \begin{cases} 1 & \text{if } y < 1, \\ 0 & \text{if } y > 2. \end{cases} \]

Then set

\[(2.7)\]

\[u = w + \chi(y) f(x). \]
For the equivalent inhomogeneous problem we thus look for \(w \in H^2_{\text{loc}}(\mathbb{R}^2_+, \mathbb{C}) \) and \(\alpha \in \mathbb{C} \), which satisfy

\[
\begin{cases}
(A_0 - E^*_0)w = g & \text{in } \mathbb{R}^2_+,
\vspace{1em}
w = 0 & \text{on } \partial \mathbb{R}^2_+,
\end{cases}
\]

together with (2.5c). One can obtain the precise form of \(g \) by substituting (2.7) into (2.5a). Nevertheless, in what follows, we need only the fact that \(g \in L^2(\mathbb{R}^2_+, \mathbb{C}) \) and that it is supported on the set

\[
\{(x, y) \in \mathbb{R}^2 : 0 < y < 2\}.
\]

Let \(S_R = \mathbb{R} \times (0, R) \) and set \(A^R_0 \) to be the Dirichlet realization (obtained by application of the Lax–Milgram theorem) in \(S_R \) of the differential operator

\[- \left(\nabla - i \left(\frac{x^2}{2} + s^* \right) \right) \hat{i}_y \]

We construct such a function \(w \) which solves (2.8) for some \(\alpha \in \mathbb{C} \) as a limit, as \(R \) tends to infinity, of solutions \(w^R \) in the domain of \(A^R_0 \) of

\[
(A^R_0 - E^*_0)w^R = g.
\]

We first need to make the obvious observation that solutions for (2.9) do exist for \(R \geq 2 \).

Lemma 2.2. Given \(g \in L^2(\mathbb{R}^2_+, \mathbb{C}) \) which vanishes on \(\mathbb{R}^2_+ \setminus S_2 \), there exists, for all \(R \geq 2 \), a unique solution \(w^R \) in \(L^2(S_R, \mathbb{C}) \) for (2.9).

Proof. It is easy to show using, for instance, Theorem 4 in [17] and the compactness of \([0, R]\) that the Dirichlet realization \(A^R_0 \) of \(A_0 \) in \(S_R \) has a compact resolvent and hence has a discrete spectrum lying in \(\mathbb{R}_+ = \{ x \in \mathbb{R} : x \geq 0 \} \). We introduce

\[
\mu_0(R) = \inf_{R > 0} \sigma(A^R_0).
\]

To complete the proof of the lemma we now show that

\[
\mu_0(R) > E^*_0 \quad \text{for all } R > 0.
\]

As a quick aside, we mention that by domain monotonicity and comparison with the problem in \(\mathbb{R}^2 \) it easily follows that \(\mu_0(R) \) is decreasing with \(R \) and that

\[
\mu_0(R) \geq E^*_0 \quad \text{for all } R > 0.
\]

Furthermore, strict monotonicity can be proved employing the Hadamard formula (which provides an explicit expression for \(\mu'_0(R) \)). Below we give a direct proof, avoiding the use of the Hadamard formula.

Denote by \(w_0 \) the eigenfunction of \(A^R_0 \) associated with \(\mu_0(R) \) with unity \(L^2 \) norm. Clearly,

\[
0 = \langle w_0, (A_0 - \mu_0)w_0 \rangle_{L^2(S_R)}
\]

\[
= \left\| \left(\nabla - i \left(\frac{x^2}{2} + s^* \right) \right) \hat{i}_y \right\|_{L^2(S_R)}^2 \mu_0(R)\|w_0\|_{L^2(S_R)}^2.
\]
Then set

\[
\hat{w}_0(x, y) = \begin{cases}
 w_0(x, y) & \text{if } 0 < y < R, \\
 0 & \text{otherwise},
\end{cases}
\]

and let its partial Fourier transform in \(y \) be given by

\[
\hat{\hat{w}}_0(x, s) = \mathcal{F}[\hat{w}_0] = \frac{1}{\sqrt{2\pi}} \int_0^R w_0(x, y)e^{-isy}dy.
\]

Moreover since \(w_0 \in H^1_{0, \text{mag}}(\mathcal{S}_R) \) we have that \(\hat{\partial}_y w_0(x, s) = is\hat{w}_0 \). Hence in terms of the partial Fourier transform, (2.11) takes the form

\[
\int_{\mathbb{R}^2} \left\{ |\hat{w}'_0|^2 + \left(\frac{x^2}{2} + s^* + s \right)^2 |\hat{\hat{w}}_0|^2 - \mu_0(R)|\hat{w}_0|^2 \right\} dxds = 0,
\]

where \(\hat{w}'_0 = \partial \hat{w}_0 / \partial x \).

Next we set

\[
W(s) = \| \hat{w}_0(\cdot, s) \|_{L^2(\mathbb{R})} \neq 0.
\]

Since

\[
\int_{\mathbb{R}} \left\{ |\hat{w}'_0|^2 + \left(\frac{x^2}{2} + s^* + s \right)^2 |\hat{\hat{w}}_0|^2 \right\} dx \geq E_0(s^* + s)W^2(s),
\]

we have that

\[
\int_{\mathbb{R}} [E_0(s^* + s) - \mu_0(R)]W^2(s) \, ds \leq 0.
\]

From the above inequality and the fact (cf. [13]) that \(E_0(s) \) has a unique minimum \(E_0^* \) at \(s^* \), we see that

\[
(E_0^* - \mu_0(R)) \int_{\mathbb{R}} W^2(s) \, ds < \int_{\mathbb{R}} [E_0(s^* + s) - \mu_0(R)]W^2(s) \, ds \leq 0.
\]

Hence, \(\mu_0(R) > E_0^* \) and the lemma is proved. \(\square \)

Next we prove some bounds on \(w^R \) that are uniform in \(R \).

Lemma 2.3. There exists a constant \(C > 0 \) such that for any \(R \geq 2 \) and \(q \in L^2(\mathbb{R}^2_+, \mathbb{C}) \) which vanishes on \(\mathbb{R}^2_+ \setminus \mathcal{S}_2 \), the solution \(w^R \) of (2.9) admits the following decomposition:

\[
w^R(x, y) = v^R(x, y) + b^R_R(y)\phi^*(x),
\]

where \(\phi^* \) is given in (2.3) and \(v^R \) and \(b^R_R \) satisfy the estimates

\[
\| v^R \|_{L^2(\mathcal{S}_R)} \leq C \| g \|_{L^2(\mathcal{S}_2)},
\]

\[
\| b^R_R \|_{L^2(0, R)} \leq C \| g \|_{L^2(\mathcal{S}_2)}.
\]

Furthermore,

\[
\| \partial w^R / \partial x \|_{L^2(\mathcal{S}_R)} \leq C \| g \|_{L^2(\mathcal{S}_2)},
\]

\[
\| \partial w^R / \partial y \|_{L^2(\mathcal{S}_R)} \leq C \| g \|_{L^2(\mathcal{S}_2)},
\]

\[
\| \partial w^R / \partial x \|_{L^2(\mathcal{S}_R)} \leq C \| g \|_{L^2(\mathcal{S}_2)},
\]

\[
\| \partial w^R / \partial y \|_{L^2(\mathcal{S}_R)} \leq C \| g \|_{L^2(\mathcal{S}_2)},
\]

\[
\| \partial w^R / \partial x \|_{L^2(\mathcal{S}_R)} \leq C \| g \|_{L^2(\mathcal{S}_2)},
\]

\[
\| \partial w^R / \partial y \|_{L^2(\mathcal{S}_R)} \leq C \| g \|_{L^2(\mathcal{S}_2)},
\]

\[
\| \partial w^R / \partial x \|_{L^2(\mathcal{S}_R)} \leq C \| g \|_{L^2(\mathcal{S}_2)},
\]

\[
\| \partial w^R / \partial y \|_{L^2(\mathcal{S}_R)} \leq C \| g \|_{L^2(\mathcal{S}_2)},
\]
and, for all $L \geq \max\{1, 2\sqrt{s}\}$,

\[(2.14e) \quad \left\| \frac{\partial w^R}{\partial y} \right\|_{L^2((-L,L) \times (0,R))} \leq C L^2 \|g\|_{L^2(S_2)}.
\]

Finally, for all $l > 0$, we have

\[(2.14f) \quad \|w^R\|_{L^2(S_1)} \leq C (1 + l^{3/2}) \|g\|_{L^2(S_2)}.
\]

Proof. The construction of v^R and b_R will be provided in Step 4 below. Let $R > 2$. To simplify our notation we drop the superscript R throughout the proof. For instance, w^R is denoted by w.

Multiplying \((2.9)\) by \hat{w} and integrating over S_R yields

\[(2.15) \quad \left\| \left(\nabla - i \left[\frac{x^2}{2} + s^* \right] i_y \right) w \right\|_{L^2(S_R)}^2 - E_0^* \|w\|_{L^2(S_R)}^2 = \text{Re} \langle w, g \rangle_{L^2(S_2)}.
\]

The right-hand term is an integral over S_l because g is supported only there. Denote by $\hat{w}(x,s)$ the partial Fourier transform of $w(x,y)$ as defined above. In Fourier space, the above identity takes the form

\[(2.16) \quad \|\hat{w}'\|^2_{L^2(\mathbb{R}^2)} + \left\| \left[\frac{x^2}{2} + s^* + s \right] \hat{w} \right\|_{L^2(\mathbb{R}^2)}^2 - E_0^* \|\hat{w}\|^2_{L^2(\mathbb{R}^2)} = \text{Re} \langle \hat{w}, \hat{g} \rangle_{L^2(\mathbb{R}^2)}.
\]

We next introduce the following orthogonal decomposition in $L^2(\mathbb{R}^2, \mathbb{C})$ for \hat{w}:

\[(2.17) \quad \begin{cases} \hat{w}(x,s) = \hat{w}_{||,s}(x,s) + \hat{w}_{\perp, s}(x,s), \\ \hat{w}_{||,s}(x,s) = \hat{b}(s^* + s) \phi_0(x, s^* + s), \\ \hat{b}(s^* + s) = 1_{[-1,1]}(s) \langle \hat{w}(. , s), \phi_0(., s^* + s) \rangle_{L^2(\mathbb{R})}, \end{cases}
\]

where $1_{[-1,1]}(s)$ is the characteristic function of the interval $[-1,1]$. The notation $\hat{w}_{\perp, s}$ and $\hat{w}_{||, s}$ indicates the orthogonality of the two components in $L^2(\mathbb{R}, \mathbb{C})$ for all $s \in [-1,1]$, i.e.,

\[(2.18) \quad \int_{\mathbb{R}} \hat{w}_{||,s}(x,s) \overline{\hat{w}_{\perp,s}(x,s)} \, dx = 0.
\]

We save the notation w_{\perp} and $w_{||}$ for a different type of decomposition employed in section 5. Since $\hat{w}_{||, s}(x,s)$ is supported in $\mathbb{R} \times [-1,1]$, we obtain using \((2.18)\) that

\[(2.19) \quad \int_{\mathbb{R}^2} \left| \hat{w}_{||, s} + \hat{w}_{\perp, s} \right|^2 \, dx \, ds = \int_{\mathbb{R}^2} \left\{ \left| \hat{w}_{||, s} \right|^2 + \left| \hat{w}_{\perp, s} \right|^2 + 2 \text{Re} \hat{w}_{||, s} \overline{\hat{w}_{\perp, s}} \right\} \, dx \, ds
\]

\[= \int_{-1}^{1} \int_{\mathbb{R}} \left| \hat{w}_{||, s} \right|^2 \, dx \, ds + \int_{\mathbb{R}^2} \left| \hat{w}_{\perp, s} \right|^2 \, dx \, ds
\]

\[+ 2 \text{Re} \int_{-1}^{1} \int_{\mathbb{R}} \hat{w}_{||, s} \overline{\hat{w}_{\perp, s}} \, dx \, ds
\]

\[= \int_{-1}^{1} \int_{\mathbb{R}} \left| \hat{w}_{||, s} \right|^2 \, dx \, ds + \int_{\mathbb{R}^2} \left| \hat{w}_{\perp, s} \right|^2 \, dx \, ds.
\]
Step 1. We first prove that

\[
\int_{-1}^{1} \left[E_0(s^* + s) - E_0^* \right] \| \hat{w}_{|s|, s}(\cdot, s) \|_{L^2(\mathbb{R})}^2 \, ds \\
+ \min \{ E_1^* - E_0^*, \inf_{|s| > 1} (E_0(s^* + s) - E_0^*) \} \int_\mathbb{R} \| \hat{w}_{\perp, s}(\cdot, s) \|_{L^2(\mathbb{R})}^2 \, ds \\
\leq |\Re \langle \hat{\omega}, \hat{g} \rangle|_{L^2(\mathbb{R}^2)}.
\]

which can alternatively be phrased, using some of the properties of E_0 which were derived in [13], in the form

\[
\int_{-1}^{1} \left[E_0(s^* + s) - E_0^* \right] \| \hat{w}_{|s|, s}(\cdot, s) \|_{L^2(\mathbb{R})}^2 \, ds \\
+ \left[\min \{ E_1^*, E_0(s^* + 1), E_0(s^* - 1) \} - E_0^* \right] \int_\mathbb{R} \| \hat{w}_{\perp, s} \|_{L^2(\mathbb{R})}^2 \, ds \\
\leq |\Re \langle \hat{\omega}, \hat{g} \rangle|_{L^2(\mathbb{R}^2)}.
\]

By (2.16) and (2.17) we have

\[
\| \tilde{\omega} \|_{L^2(\mathbb{R}^2)}^2 + \left\| \left(\frac{x^2}{2} + s^* + s \right) \tilde{w} \right\|_{L^2(\mathbb{R}^2)}^2 \\
= \int_{\mathbb{R}^2} \left\{ |\tilde{\omega}_{|s|, s}(x, s)|^2 + \left(\frac{x^2}{2} + s^* + s \right)^2 |\hat{w}_{|s|, s}(x, s)|^2 \right\} \, dx \, ds \\
+ \int_{\mathbb{R}^2} \left\{ |\tilde{w}_{\perp, s}(x, s)|^2 + \left(\frac{x^2}{2} + s^* + s \right)^2 |\hat{w}_{\perp, s}(x, s)|^2 \right\} \, dx \, ds \\
+ 2\Re \int_{\mathbb{R}^2} \left\{ \tilde{\omega}_{|s|, s}(x, s)\tilde{\omega}_{\perp, s}(x, s) + \left(\frac{x^2}{2} + s^* + s \right)^2 \hat{w}_{|s|, s}(x, s)\hat{w}_{\perp, s}(x, s) \right\} \, dx \, ds.
\]

From the definition of $E_0(\cdot)$ and its positivity, we obtain

\[
\int_{\mathbb{R}^2} \left\{ |\tilde{\omega}_{|s|, s}(x, s)|^2 + \left(\frac{x^2}{2} + s^* + s \right)^2 |\hat{w}_{|s|, s}(x, s)|^2 \right\} \, dx \, ds \\
= \int_{\mathbb{R}^2} E_0(s^* + s)|\hat{w}_{|s|, s}(x, s)|^2 \, dx \, ds \\
= \int_{-1}^{1} \int_{\mathbb{R}} E_0(s^* + s)|\hat{w}_{|s|, s}(x, s)|^2 \, dx \, ds.
\]

For each fixed $s \in [-1, 1]$, we see from (2.17) and (2.18) that $\hat{w}_{\perp, s}(\cdot, s)$ is orthogonal to the eigenfunction $\phi_0(\cdot, s^* + s)$ associated with the first eigenvalue $E_0(s^* + s)$. (Recall that $E_1(s^* + s)$ is the second eigenvalue.) Hence, we have

\[
\int_{\mathbb{R}} \left\{ |\hat{w}_{\perp, s}(x, s)|^2 + \left(\frac{x^2}{2} + s^* + s \right)^2 |\hat{w}_{\perp, s}(x, s)|^2 \right\} \, dx \geq E_1(s^* + s) \int_{\mathbb{R}} |\hat{w}_{\perp, s}(x, s)|^2 \, dx.
\]
Consequently,

\[
\int_{\mathbb{R}^2} \left\{ \left| \hat{w}'(x,s) \right|^2 + \left(\frac{x^2}{2} + s^* + s \right)^2 \left| \hat{w}_{\perp,s}(x,s) \right|^2 \right\} \, dxds \\
\geq \int_{-1}^1 E_1(s^* + s) \left| \hat{w}_{\perp,s}(x,s) \right|^2 \, dxds + \int_{|s| > 1} E_0(s^* + s) \left| \hat{w}_{\perp,s}(x,s) \right|^2 \, dxds .
\]

From (2.17) and (2.2) we see that

\[
\int_{\mathbb{R}} \left\{ \hat{w}'(x,s) \bar{\hat{w}}_{\perp,s}(x,s) + \left(\frac{x^2}{2} + s^* + s \right)^2 \hat{w}_{\perp,s}(x,s) \bar{\hat{w}}_{\perp,s}(x,s) \right\} \, dx \\
= \Re \int_{-1}^1 \bar{b}(s^* + s) \, ds \left\{ \phi_0(x,s^* + s) \bar{\hat{w}}_{\perp,s}(x,s) \right\} + \left(\frac{x^2}{2} + s^* + s \right)^2 \phi_0(x,s^* + s) \bar{\hat{w}}_{\perp,s}(x,s) \right\} \, dx \\
= 0 .
\]

Substituting the above into (2.22) yields

\[
\| \hat{w}'(x) \|_{L^2(\mathbb{R}^2)}^2 + \left\| \left(\frac{x^2}{2} + s^* + s \right) \hat{w}(x) \right\|_{L^2(\mathbb{R}^2)}^2 \\
\geq \int_{-1}^1 \left\{ E_0(s^* + s) \left| \hat{w}_{\perp,s}(x,s) \right|^2 + E_1(s^* + s) \left| \hat{w}_{\perp,s}(x,s) \right|^2 \right\} \, dxds \\
+ \int_{|s| > 1} E_0(s^* + s) \left| \hat{w}_{\perp,s}(x,s) \right|^2 \, dxds .
\]

We can now use the above inequality in conjunction with (2.16) and (2.19) to obtain

\[
\int_{-1}^1 \left[E_0(s^* + s) - E_0^* \right] \left\| \hat{w}_{\perp,s}(x,s) \right\|_{L^2(\mathbb{R})}^2 + \left[E_1(s^* + s) - E_0^* \right] \left\| \hat{w}_{\perp,s} \right\|_{L^2(\mathbb{R})}^2 \, ds \\
+ \int_{|s| > 1} (E_0(s^* + s) - E_0^*) \left\| \hat{w}_{\perp,s} \right\|_{L^2(\mathbb{R})}^2 \, ds \\
\leq \left\| \Re (\hat{w}, \hat{g}) \right\|_{L^2(\mathbb{R}^2)} ,
\]

implying that

\[
\int_{-1}^1 \left[E_0(s^* + s) - E_0^* \right] \left\| \hat{w}_{\perp,s}(x,s) \right\|_{L^2(\mathbb{R})}^2 \, ds \\
+ \min \left[(E_1^* - E_0), \inf_{|s| > 1} (E_0(s + s^*) - E_0^*) \right] \int_{\mathbb{R}} \left\| \hat{w}_{\perp,s} \right\|_{L^2(\mathbb{R})}^2 \, ds \\
\leq \left\| \Re (\hat{w}, \hat{g}) \right\|_{L^2(\mathbb{R}^2)} ,
\]

which readily yields (2.20).

Step 2. Next we show that there exists a constant \(\tilde{C} \) such that

\[
(2.23) \quad \| \hat{b}(s^* + \cdot) \|_{L^2(\mathbb{R})}^2 + \| \hat{w}_{\perp,s} \|_{L^2(\mathbb{R}^2)}^2 \leq \tilde{C} \| w \|_{L^2(S_3)} \| g \|_{L^2(S_2)} ,
\]
Recall that g is supported in \mathcal{S}_2. Hence,

$$|\text{Re} \langle \hat{w}, \hat{g} \rangle_{L^2(\mathbb{R}^2)}| = |\text{Re} \langle w, g \rangle_{L^2(\mathbb{R}^2)}| = |\text{Re} \langle w, g \rangle_{L^2(\mathcal{S}_2)}| \leq \|w\|_{L^2(\mathcal{S}_2)} \|g\|_{L^2(\mathcal{S}_2)}.$$

From [13] we learn that there exists $C_0 > 0$ such that we have

$$(2.24)\quad E_0(s^* + s) - E_0^* \geq C_0 s^2 \quad \text{for all } s \in [-1, 1].$$

Consequently, we have

$$\int_{-1}^{1} \int_{\mathbb{R}} [E_0(s^* + s) - E_0^*] |\hat{w}_{||,s}(x, s)|^2 \, dx \, ds \geq C_0 \int_{-1}^{1} \int_{\mathbb{R}} s^2 |\hat{w}_{||,s}(x, s)|^2 \, dx \, ds = C_0 \int_{-1}^{1} \int_{\mathbb{R}} s^2 |\hat{w}_{||,s}(x, s)|^2 \, dx \, ds = C_0 \int_{-1}^{1} |\hat{w}_{||,s}(x, s)|^2 \, dx \, ds = C_0 \int_{-1}^{1} |\hat{w}_{||,s}(x, s)|^2 \, ds = C_0 \int_{-1}^{1} |\hat{w}_{||,s}(x, s)|^2 \, ds.$$

Let

$$C_1 = \min \{C_0, E_1^* - E_0^*, E_0(s^* - 1) - E_0^*, E_0(s^* + 1) - E_0^*\}.$$

Then we use (2.21) to get

$$C_1 \left(\|\hat{b}(s^* + \cdot)\|_{L^2(\mathbb{R})}^2 + \|\hat{\omega}_{\perp,s}\|_{L^2(\mathbb{R}^2)}^2\right) \leq \|u\|_{L^2(\mathcal{S}_2)} \|g\|_{L^2(\mathcal{S}_2)},$$

from which (2.23) follows.

Step 3. Let $w_{||,s}$ and $w_{\perp,s}$ respectively denote the inverse partial Fourier transform of $\hat{w}_{||,s}$ and $\hat{w}_{\perp,s}$. We next attempt to control $\frac{\partial}{\partial y} w_{\perp,s}$.

Computing the left-hand side of (2.16) as in (2.22) we obtain that

$$\int_{\mathbb{R}^2} \left\{ |\hat{w}_{\perp,s}|^2 + \left(\frac{x^2}{2} + s^* + s\right)^2 |\hat{w}_{\perp,s}|^2 - |\hat{E}_0| |\hat{w}_{\perp,s}|^2 \right\} \, dx \, ds \leq |\langle w, g \rangle_{L^2(\mathcal{S}_2)}|.$$

Note that, unlike w, the support of $w_{\perp,s}$ extends beyond \mathcal{S}_R to the entire plane. Thus,

$$\left\| \left(\frac{x^2}{2} + s^* + s\right) w_{\perp,s} \right\|_{L^2(\mathbb{R}^2)} = \left\| \frac{\partial w_{\perp,s}}{\partial y} - i \left(\frac{x^2}{2} + s^*\right) w_{\perp,s} \right\|_{L^2(\mathbb{R}^2)}.$$

Consequently, we have

$$(2.25)\quad \left\| \frac{\partial w_{\perp,s}}{\partial y} - i \left(\frac{x^2}{2} + s^*\right) w_{\perp,s} \right\|_{L^2(\mathbb{R}^2)}^2 \leq |\langle w, g \rangle_{L^2(\mathcal{S}_2)}| + E_0^* \|w_{\perp,s}\|_{L^2(\mathbb{R}^2)}^2.$$

With the aid of Kato’s inequality we then obtain

$$(2.26)\quad \left\| \frac{\partial |w_{\perp,s}|}{\partial y} \right\|_{L^2(\mathbb{R}^2)}^2 \leq \left\| \frac{\partial w_{\perp,s}}{\partial y} - i \left(\frac{x^2}{2} + s^*\right) w_{\perp,s} \right\|_{L^2(\mathbb{R}^2)}^2 \leq \|w\|_{L^2(\mathcal{S}_2)} \|g\|_{L^2(\mathcal{S}_2)} + E_0^* \|\hat{w}_{\perp,s}\|_{L^2(\mathbb{R}^2)}^2.$$

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
Combining the above inequality with (2.23) yields
\begin{equation}
\| \hat{b}(s^* + \cdot) \|_{L^2(\mathbb{R}^2)}^2 + \| \hat{\omega}_{\perp,s} \|_{L^2(\mathbb{R}^2)}^2 + \left\| \frac{\partial |w_{\perp,s}|}{\partial y} \right\|_{L^2(\mathbb{R}^2)}^2 \leq C_3 \| u \|_{L^2(S_2)} \| g \|_{L^2(S_2)}.
\end{equation}

Note that \(\frac{\partial w_{\perp,s}}{\partial y} \) is in \(L^2(\mathbb{R}^2, \mathbb{C}) \). In fact, as its partial Fourier transform is given by
\[
\hat{\omega}_{\perp,s}(\cdot, y) = i s \hat{b}(s^* + \cdot) \phi_0(x, s^* + s),
\]
it follows that
\begin{equation}
\left\| \frac{\partial w_{\perp,s}}{\partial y} \right\|_{L^2(\mathbb{R}^2)} = \| \hat{b}(s^* + \cdot) \phi_0(\cdot, s^* + \cdot) \|_{L^2(\mathbb{R}^2)} = \| \hat{b}(s^* + \cdot) \|_{L^2(\mathbb{R}^2)}.
\end{equation}

We now use the continuity of the trace on \(y = 0 \) of \(|w_{\perp,s}| \in H^1(\mathbb{R}^2) \) in order to obtain
\[
\| w_{\perp,s}(\cdot, 0) \|_{L^2(\mathbb{R}^2)}^2 \leq \| w_{\perp,s} \|_{L^2(\mathbb{R}^2)}^2 + \left\| \frac{\partial |w_{\perp,s}|}{\partial y} \right\|_{L^2(\mathbb{R}^2)}^2.
\]
As
\[
w_{\perp,s}(x, 0) + w_{\perp,s}(x, 0) = 0,
\]
we also have that
\[
\| w_{\perp,s}(\cdot, 0) \|_{L^2(\mathbb{R}^2)}^2 = \| w_{\perp,s}(\cdot, 0) \|_{L^2(\mathbb{R}^2)}^2 \leq \| w_{\perp,s} \|_{L^2(\mathbb{R}^2)}^2 + \left\| \frac{\partial |w_{\perp,s}|}{\partial y} \right\|_{L^2(\mathbb{R}^2)}^2.
\]
Let \(l > 0 \). As for all \(y \in [0, l] \)
\[
|w_{\perp,s}(x, y)| = |w_{\perp,s}(x, 0)| + \int_0^y \frac{\partial |w_{\perp,s}|}{\partial y}(x, \eta) d\eta
\leq |w_{\perp,s}(x, 0)| + \sqrt{y} \left\| \int_0^y \left| \frac{\partial |w_{\perp,s}|}{\partial y}(x, y) \right|^2 dy \right\|^{1/2},
\]
we have, for all \(y \in [0, l] \), that
\[
\| w_{\perp,s}(\cdot, y) \|_{L^2(\mathbb{R}^2)}^2 \leq 2 \| w_{\perp,s}(\cdot, 0) \|_{L^2(\mathbb{R}^2)}^2 + l^2 \left\| \frac{\partial |w_{\perp,s}|}{\partial y} \right\|_{L^2(S_1)}^2.
\]
Consequently
\begin{equation}
\| w_{\perp,s} \|_{L^2(S_1)}^2 \leq l \left\{ 2 \| w_{\perp,s} \|_{L^2(\mathbb{R}^2)}^2 + \left\| \frac{\partial |w_{\perp,s}|}{\partial y} \right\|_{L^2(\mathbb{R}^2)}^2 + l^2 \left\| \frac{\partial |w_{\perp,s}|}{\partial y} \right\|_{L^2(S_1)}^2 \right\}.
\end{equation}

Using (2.28) we have
\begin{equation}
\left\| \frac{\partial w_{\perp,s}}{\partial y} \right\|_{L^2(S_1)}^2 \leq \left\| \frac{\partial w_{\perp,s}}{\partial y} \right\|_{L^2(\mathbb{R}^2)}^2 = \| s \hat{\omega}_{\perp,s} \|_{L^2(\mathbb{R}^2)}^2 = \| s \hat{b}(s^* + \cdot) \|_{L^2(\mathbb{R}^2)}^2.
\end{equation}
Thus combining the above inequality and (2.29) yields
\[
\|w\|_{L^2(S)} \leq \|w_\parallel\|_{L^2(S)} + \|w_\perp\|_{L^2(S)} \\
\leq (\sqrt{2l} + 1) \|w_\perp\|_{L^2} + \sqrt{2l} \left\| \frac{\partial w_\perp}{\partial y} \right\|_{L^2} \\
+ l^{3/2}\|s\hat{b}(s^* + \cdot)\|_{L^2}.
\]

Substituting the above, with \(l = 2\), into (2.27) we obtain that
\[
\|s\hat{b}(s^* + \cdot)\|^2_{L^2} + \|\hat{\omega}_\perp\|^2_{L^2} + \left\| \frac{\partial w_\parallel}{\partial y} \right\|^2_{L^2} \\
\leq 2\sqrt{2}C_3 \left(\|w_\perp\|_{L^2} + \left\| \frac{\partial w_\perp}{\partial y} \right\|_{L^2} + \|g\|_{L^2} \right) \|g\|_{L^2}.
\]

from which we easily obtain that
\[
(2.32) \quad \|s\hat{b}(s^* + \cdot)\|_{L^2} + \|\hat{\omega}_\perp\|_{L^2} + \left\| \frac{\partial w_\parallel}{\partial y} \right\|_{L^2} \leq C_4 \|g\|_{L^2}.
\]

From (2.31) and (2.32), we then get (2.14f).

Next we use (2.15) to obtain
\[
\left\| \frac{\partial w}{\partial x} \right\|^2_{L^2} \leq \left\| \left(\nabla - i \left[\frac{x^2}{2} + s^* \right] \hat{\mathbf{i}} \right) w \right\|^2_{L^2} = E_0^* \|w\|^2_{L^2} + \text{Re} \langle w, g \rangle_{L^2} \\
\leq \left(E_0^* + \frac{1}{2} \right) \|w\|^2_{L^2} + \frac{1}{2} \|g\|^2_{L^2}.
\]

From the above and (2.14f) we get (2.14d).

Step 4. We now prove (2.14b)--(2.14c). To this end we decompose \(\hat{\omega}\) yet another time,
\[
\hat{\omega}(x, s) = \hat{\omega}_\perp(x, s) + \hat{b}(s^* + s) \phi^*(x) + \hat{b}(s^* + s) \left[\phi_0(x, s^* + s) - \phi^*(x) \right].
\]
As there exists \(C\) such that
\[
\|\phi_0(\cdot, s^* + s) - \phi^*(\cdot)\|_{L^2} \leq C |s| \quad \text{for all } s \in [-1, 1],
\]
we obtain using (2.32) that
\[
\|\hat{b}(s^* + s) \phi_0(x, s^* + s) - \phi^*(x)\|_{L^2} \leq C_6 \|s\hat{b}(s^* + \cdot)\|_{L^2} \leq CC_4 \|g\|_{L^2}.
\]
Thus, by setting \(v^R\) to be the inverse Fourier transform of
\[
\hat{v}^R(x, s) = \hat{\omega}_\perp(x, s) + \hat{b}(s^* + s) \left[\phi_0(x, s^* + s) - \phi^*(x) \right],
\]
(2.14b) is readily satisfied.

Reintroducing the reference to \(R\), let \(b_R(y)\) denote the inverse Fourier transform of \(\hat{b}(s^* + s)\). As
\[
\|b_R\|^2_{L^2(0, R)} \leq \|b_R\|_{L^2(\mathbb{R})} = \|s\hat{b}(s^* + \cdot)\|_{L^2(\mathbb{R})},
\]
(2.14c) readily follows from (2.32).
Step 5. To complete the proof of the lemma, we make the obvious observation that by (2.25)
\[\left\| \frac{\partial w_{l,s}}{\partial y} - i \left(\frac{x^2}{2} + s^* \right) w_{l,s} \right\|_{L^2((-L,L) \times (0,R))} \leq \left\| \langle w, g \rangle_{L^2(S_2)} \right\|^{1/2} + (E_0^*)^{1/2} \left\| w_{l,s} \right\|_{L^2(\mathbb{R}^2)} . \]
Hence,
\[\left\| \frac{\partial w_{l,s}}{\partial y} \right\|_{L^2((-L,L) \times (0,R))} \leq \frac{1}{2} \left\| w \right\|_{L^2(S_2)} + \frac{1}{2} \left\| g \right\|_{L^2(S_2)} + (E_0^*)^{1/2} \left\| w_{l,s} \right\|_{L^2(\mathbb{R}^2)} + \left\| \left(\frac{x^2}{2} + s^* \right) w_{l,s} \right\|_{L^2((-L,L) \times (0,R))} . \]

Then we use (2.32) and (2.14f) to obtain the existence of a constant C such that for any $L > \max\{1, 2\sqrt{s^2}\}$,
\[\left\| \frac{\partial w_{l,s}}{\partial y} \right\|_{L^2((-L,L) \times (0,R))} \leq C L^2 \left\| g \right\|_{L^2(S_2)} . \]

The above, together with (2.30) and (2.32), proves (2.14e) and thus completes the proof of the lemma. \[\square \]

Once (2.14) is obtained, there is no further necessity to discuss (2.9) in S_R. We then consider the limit $R \to +\infty$. Recall that we denote the norm $\| \cdot \|_{L^2(\mathbb{R}^2)}$ by $\| \cdot \|_2$ and denote the inner product $\langle \cdot, \cdot \rangle_{L^2(\mathbb{R}^2)}$ by $\langle \cdot, \cdot \rangle_2$.

Lemma 2.4. With the notation of Lemma 2.3, there exist $C > 0$ and, for any $g \in L^2(\mathbb{R}^2_+, \mathbb{C})$ which is supported on S_2, a sequence $\{R_k\}_{k \in \mathbb{N}}$ tending to $+\infty$ and functions $w_\infty, v_\infty, b_\infty$ such that the following claims are true:

(i) We have $w_{R_k} \to w_\infty$ and $v_{R_k} \to v_\infty$ strongly in $H^1_{\text{loc}}(\mathbb{R}^2_+, \mathbb{C})$ and $b_{R_k} \to b_\infty$ strongly in $H^1_{\text{loc}}(\mathbb{R}, \mathbb{C})$ as $k \to \infty$.

(ii) w_∞ is a solution of
\[(2.34) \begin{cases} (A_0 - E_0^*) w_\infty = g & \text{in } \mathbb{R}^2_+, \\ w_\infty = 0 & \text{on } \partial \mathbb{R}^2_+ . \end{cases} \]

(iii) w_∞ admits the representation
\[(2.35a) \quad w_\infty(x, y) = v_\infty(x, y) + b_\infty(y) \phi^*(x) , \]
where v_∞ and $b_\infty(y)$ satisfy the estimates
\[(2.35b) \quad \left\| v_\infty \right\|_2 \leq C \left\| g \right\|_{L^2(S_2)} , \]
\[(2.35c) \quad \left\| b_\infty' \right\|_{L^2(\mathbb{R}^2_+)} \leq C \left\| g \right\|_{L^2(S_2)} . \]

(iv) For all $L > 1$ we have
\[(2.35d) \quad \left\| \frac{\partial w_\infty}{\partial y} \right\|_{L^2((-L,L) \times \mathbb{R}^2_+)} \leq C L^2 \left\| g \right\|_{L^2(S_2)} . \]
Proof. By (2.14), the family \(\{ |u^R| : R \geq 2 \} \) is uniformly bounded in \(H^1_{loc}(\mathbb{R}^2_+, \mathbb{C}) \), and hence, by standard elliptic estimates, since \(g \in L^2(\mathbb{R}^2_+, \mathbb{C}) \) and \(w_R \) is a solution of (2.9), the family \(\{ |u^R| : R \geq 2 \} \) is uniformly bounded in \(H^2_{loc}(\mathbb{R}^2_+, \mathbb{C}) \). Hence there exists a sequence \(\{ R_k \}_{k=1}^\infty \) with \(R_k \to +\infty \) as \(k \to +\infty \) such that \(w^R_k \) converges weakly in \(H^2_{loc}(\mathbb{R}^2_+, \mathbb{C}) \) and strongly in \(H^1_{loc}(\mathbb{R}^2_+, \mathbb{C}) \) to some function \(w_\infty \in H^2_{loc}(\mathbb{R}^2_+, \mathbb{C}) \). In particular \(w_\infty(\cdot, 0) = 0 \) holds in the sense of trace in \(H^{1/2}_{loc}(\partial \mathbb{R}^2_+, \mathbb{C}) \). Hence \(w_\infty \) solves (2.34).

In view of (2.14b), (2.14c), (2.14f), \(b^R_k \) is bounded in \(H^1_{loc}(\mathbb{R}^2_+, \mathbb{C}) \) and, by moving to a subsequence (still denoted by \(\{ R_k \} \)), there exists some \(b_\infty \in H^1_{loc}(\mathbb{R}^2_+, \mathbb{C}) \) such that \(b^R_k \to b_\infty \) weakly in \(H^1_{loc}(\mathbb{R}^2_+, \mathbb{C}) \) and strongly in \(L^2_{loc}(\mathbb{R}^2_+, \mathbb{C}) \). Furthermore, for every \(l > 0 \) we have that

\[
\| b_\infty \|_{H^1(0,l)} \leq \liminf_{k \to \infty} \| b^R_k \|_{H^1(0,l)}.
\]

Hence, in view of (2.14c), there exists \(C > 0 \) such that for every \(l > 0 \)

\[
\| b_\infty \|_{L^2(0,l)} \leq C \| g \|_{L^2(S_2)}.
\]

The proof of (2.35a)–(2.35c) now follows from the strong convergence in \(L^2_{loc}(\mathbb{R}^2_+, \mathbb{C}) \) of \(w^R_k \) and \(b^R_k \phi^* \). To prove (2.35d) we use the \(H^1_{loc} \) convergence of \(w^R_k \) and (2.14e). \(\square \)

Remark 2.5. Note that in view of (2.14f), \(w_\infty \in L^2(S_l, \mathbb{C}) \) for any \(l > 0 \). In fact, there exists \(C > 0 \) such that for every \(l > 0 \) we have

\[
(2.36) \quad \| w_\infty \|_{L^2(S_l)} \leq C(1 + l^{3/2}) \| g \|_{L^2(S_2)}.
\]

For convenience we drop the subscript \(\infty \) in what follows and represent \(w_\infty \) by \(w \). Let \(f \in S(\mathbb{R}, \mathbb{C}) \) and \(\chi \) be given by (2.6). Further let \(w \) denote a solution of (2.8) with

\[
g = (A_0 - E_0^*) \left(\chi(y)f(x) \right),
\]

which satisfies (2.35) and (2.36). Then, \(u \)—the corresponding solution of (2.5a)–(2.5b)—which is obtained via (2.7) and (2.8) satisfies (2.35) and (2.36) as well. In the following we show that this \(u \) satisfies (2.5c). To this end we need to prove that \(b(y) \) converges to a positive constant as \(y \to +\infty \). Note that the estimates of \(\| b^l \|_{L^2(\mathbb{R}^+)} \) we currently have are insufficient to prove such a convergence. To close this gap we need a decay estimate of \(\| \frac{\partial u}{\partial y} \|_{L^2((-L,L) \times (R,\infty))} \) as \(R \to +\infty \). The following lemma—a rather standard estimate for solutions of (2.5a)—constitutes a preliminary step toward this end.

Lemma 2.6. There exist \(C \) and for any \(k \geq 1 \) \(C(k) \) such that any solution \(u \) of (2.5a) satisfies for any \(l > 2 \) and any \(L \geq 2 \)

\[
\begin{align*}
(2.37a) & \quad \| x^k u \|_{L^2(\mathbb{R} \times (l-1,l+1))] \leq C(k) \| u \|_{L^2(\mathbb{R} \times (l-2,l+2))}, \\
(2.37b) & \quad \| u(l, \cdot) \|_{L^2(\mathbb{R} \times [-L,L])} \leq C(k) \| u \|_{L^2(\mathbb{R} \times (l-2,l+2))}, \\
(2.37c) & \quad \| \frac{\partial u}{\partial y} \|_{L^2(\mathbb{R} \times (l-1,l+1))] \leq C \| u \|_{L^2(\mathbb{R} \times (l-2,l+2))}.
\end{align*}
\]

Proof. The arguments we apply here are similar to those used in the proof of Lemma 5.2 in [5]. Let \(\chi \) be given by (2.6). Then, set

\[
\chi_r(x) = \chi \left(\frac{|x|}{r} \right), \quad \eta(x,y) = [1 - \chi(|x| - L)]\chi(|y - l|).
\]
Let \(l > 2 \). Multiplying (2.5a) by \(x^{2k} \chi_r \eta^2 \bar{u} \), which vanishes near \(\partial \mathbb{R}^2_+ \), and integrating over \(\mathbb{R}^2_+ \) yields

\[
(2.38) \quad \left\| \left(\nabla - i \left[\frac{x^2}{2} + s^* \right] \hat{i}_y \right) (x^k \chi_r \eta u) \right\|^2_2 - \left\| u \nabla (x^k \chi_r \eta) \right\|^2_2 = E_0^* \left\| u x^k \chi_r \eta \right\|^2_2.
\]

We now use [17, Theorem 4] with

\[
A = \left(0, \frac{x^2}{2} + s^* \right), \quad B = \text{curl } A = x
\]

to get for any \(\phi \in H_0^1(\mathbb{R}^2_+, \mathbb{C}) \)

\[
(2.39) \quad \int_{\mathbb{R}^2_+} \left| \left(\nabla - i \left[\frac{x^2}{2} + s^* \right] \hat{i}_y \right) \phi \right|^2 dx dy \geq \left| \int_{\mathbb{R}^2_+} x |\phi|^2 dx dy \right|.
\]

We first choose in (2.39)

\[
\phi = \xi_+(x) x^k \chi_r \eta u,
\]

where \(\xi_+ \) is a Heavyside function, i.e.,

\[
\xi_+(x) = \begin{cases}
0 & \text{if } x < 0, \\
1 & \text{if } x > 0,
\end{cases}
\]

to obtain

\[
\int_{\mathbb{R}^2_+ \cap \{ x > 0 \}} \left| \left(\nabla - i \left[\frac{x^2}{2} + s^* \right] \hat{i}_y \right) x^k \chi_r \eta u \right|^2 dx dy \geq \int_{\mathbb{R}^2_+ \cap \{ x > 0 \}} x |x^k \chi_r \eta u|^2 dx dy.
\]

We next substitute into (2.39) a different choice of \(\phi \)

\[
\phi = -\xi_-(x) x^k \chi_r \eta u,
\]

where \(\xi_-(x) = 1 - \xi_+(x) \), to obtain

\[
\int_{\mathbb{R}^2_+ \cap \{ x < 0 \}} \left| \left(\nabla - i \left[\frac{x^2}{2} + s^* \right] \hat{i}_y \right) x^k \chi_r \eta u \right|^2 dx dy \geq \int_{\mathbb{R}^2_+ \cap \{ x < 0 \}} |x| |x^k \chi_r \eta u|^2 dx dy.
\]

Summarizing the above pair of inequalities together yields

\[
\int_{\mathbb{R}^2_+} \left| \left(\nabla - i \left[\frac{x^2}{2} + s^* \right] \hat{i}_y \right) x^k \chi_r \eta u \right|^2 dx dy \geq \int_{\mathbb{R}^2_+} |x^k \chi_r \eta u|^2 dx dy.
\]

Substituting the above inequality into (2.38) leads to

\[
\left\| x^{k+1/2} \eta u \right\|^2_{L^2(\mathbb{R} \times (l-1,l+1))} \leq \int_{\mathbb{R}^2_+} |x^{k+1} \chi_r \eta u|^2 dx dy \leq \left\| u \nabla (x^k \chi_r \eta) \right\|^2_2 + E_0^* \left\| u x^k \chi_r \eta \right\|^2_2 \\
\leq C_1(k,r) \left\| u x^k \right\|^2_{L^2(\mathbb{R} \times (l-2,l+2))},
\]

\]

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
where \(C_1(k, r) \) is uniformly bounded for \(r \geq 2 \). Taking the limit \(r \to \infty \) we obtain (2.37a) by invoking inductive arguments.

To prove (2.37b) we let \(r \to +\infty \) in (2.38) to obtain
\[
\left\| \left(\partial_y - i \left[\frac{x^2}{2} + s^2 \right] \right) (x^k \eta u) \right\|_2^2 \leq \left\| \left(\nabla - i \left[\frac{x^2}{2} + s^2 \right] \right) (x^k \eta u) \right\|_2^2
= \left\| u \nabla (x^k \eta) \right\|_2^2 + \| E_0^* u x^k \eta \|_2^2
\leq C_2(k) \| ux^k \|_{L^2(\mathbb{R} \times (l-2, l+2))}^2.
\]

Hence
\[
\left\| x^k \frac{\partial (\eta u)}{\partial y} \right\|_2^2 \leq 2 \left\| \left(\partial_y - i \left[\frac{x^2}{2} + s^2 \right] \right) (x^k \eta u) \right\|_2^2 + 2 \left\| \left[\frac{x^2}{2} + s \right] (x^k \eta u) \right\|_2^2
\leq 2C_2(k) \| ux^k \|_{L^2(\mathbb{R} \times (l-2, l+2))}^2 + 2 \left\| \left[\frac{x^2}{2} + s \right] (x^k \eta u) \right\|_{L^2(\mathbb{R} \times (l-2, l+2))}^2.
\]

Then, by (2.37a) it follows that
\[
\left\| x^k \frac{\partial (\eta u)}{\partial y} \right\|_2^2 \leq C_3(k) \| u \|_{L^2(\mathbb{R} \times (l-2, l+2))}^2,
\]
where \(C_3(k) = 2[C_2(k) + 2\| C(k) + C(k + 2) \|] \). Hence,
\[
\left\| \frac{\partial u}{\partial y} \right\|_{L^2(\mathbb{R} \setminus [-L, L]) \times (l-1, l+1)}^2 \leq \frac{C_3(k)}{L^{2k}} \| u \|_{L^2(\mathbb{R} \times (l-2, l+2))}^2.
\]

Let \(y_1 \in [l - 1, l + 1] \) satisfy
\[
\| u(\cdot, y_1) \|_{L^2(\mathbb{R} \setminus [-L, L])} = \min_{y \in [l - 1, l + 1]} \| u(\cdot, y) \|_{L^2(\mathbb{R} \setminus [-L, L])}.
\]

Clearly, there exists \(C_4 \) such that for any \(L \geq 2, l > 2, \) and \(y \in [l - 1, l + 1] \) we have
\[
\int_{\{|x| > L\}} |u(x, y) - u(x, y_1)|^2 \, dx \leq C_4 \left\| \frac{\partial u}{\partial y} \right\|_{L^2(\mathbb{R} \setminus [-L, L]) \times (l-1, l+1)}^2.
\]

Furthermore, by (2.37a) and (2.42), there exists \(c > 0 \) independent of \(l \) such that
\[
\| u(\cdot, y) \|_{L^2(\mathbb{R} \setminus [-L, L])} \leq \min_{y \in [l - 1, l + 1]} \| u(\cdot, y) \|_{L^2(\mathbb{R} \setminus [-L, L])} \leq \frac{C(k)}{L^k} \| u \|_{L^2(\mathbb{R} \times (l-2, l+2))}.
\]

Combining (2.42), (2.43), and (2.44) yields (2.37b).

To prove (2.37c) we first note that by standard elliptic estimates there exists \(C \) (which is independent of \(l \)) such that
\[
\| u \|_{H^2([-2, 2] \times [l-1, l+1])} \leq C \| u \|_{L^2([-4, 4] \times [l-2, l+2])}.
\]

The above together with (2.41) with \(L = 2 \) completes the proof. \(\Box \)
We can now prove the decay estimate of $\partial w/\partial y$. Recall that we have omitted the subscript ∞ in (2.35) and thus
\begin{equation*}
w(x, y) = v(x, y) + b(y)\phi^*(x).
\end{equation*}

Lemma 2.7. There exists $l_0 > 0$ and for any $k \geq 1$ a constant $C(k)$ such that for every $l > l_0$ and $L \geq 2$, we have
\begin{equation}
\left\| \frac{\partial^2 w}{\partial y^2} \right\|_{L^2((-L, L) \times (kl+2, +\infty))} \leq \frac{C(k) L^4}{l^k}.
\end{equation}

Proof. Step 1. Let $l > 8$, and let K denote the integer part of $l/8$. Clearly,
\begin{equation*}
\sum_{k=0}^{K-1} \int_{\mathbb{R} \times (l/2+4k, l/2+4k+1)} \left[|\phi^*(x)|^2 |b'(y)|^2 + |v(x, y)|^2 \right] \, dx \, dy \\
\leq \int_{\mathbb{R} \times (l/2, l)} \left[|\phi^*(x)|^2 |b'(y)|^2 + |v(x, y)|^2 \right] \, dx \, dy.
\end{equation*}

Then, applying (2.35) to b and v in order to estimate the right-hand side of the above inequality yields the existence of C_1 such that for any l,
\begin{equation*}
K \min_{0 \leq k \leq K-1} \int_{\mathbb{R} \times (l/2+4k, l/2+4k+1)} \left[|\phi^*(x)|^2 |b'(y)|^2 + |v(x, y)|^2 \right] \, dx \, dy \leq C_1 \|g\|_2.
\end{equation*}

Consequently, for any l, there exists $y_0 \in (l/2, l)$ such that
\begin{equation}
\int_{\mathbb{R} \times (y_0-1, y_0+3)} \left[|\phi^*(x)|^2 |b'(y)|^2 + |v(x, y)|^2 \right] \, dx \, dy \leq \frac{C_1}{l} \|g\|_2 \leq \frac{C_2}{l} \|g\|_2
\end{equation}
with $C_2 = 8C_1$.

Step 2. Next we set
\begin{equation}
u_1(x, y) = w(x, y) - b(y_0)\phi^*(x).
\end{equation}

Clearly, u_1 must satisfy
\begin{equation*}
\begin{cases}
(A_0 - E_0^*)u_1 = 0 & \text{in } \mathbb{R} \times (y_0, +\infty), \\
u_1(x, y_0) = w(x, y_0) - b(y_0)\phi^* & \text{in } \mathbb{R}.
\end{cases}
\end{equation*}

In order to facilitate the application of the estimates (2.35) we decompose w even further by writing
\begin{equation}
u_1(x, y) = w_1(x, y) + \chi(y-y_0)\left[w(x, y) - b(y_0)\phi^*(x) \right]
\end{equation}
to obtain
\begin{equation}
\begin{cases}
(A_0 - E_0^*)w_1 = g_1 & \text{in } \mathbb{R} \times (y_0, +\infty), \\
w_1(x, y_0) = 0 & \text{in } \mathbb{R},
\end{cases}
\end{equation}
where
\begin{equation*}
g_1(x, y) = \left[-\chi''(y-y_0) + 2i\chi'(y-y_0) \left(\frac{x^2}{2} + s^* \right) \right] \left[w(x, y) - b(y_0)\phi^*(x) \right] \\
- 2\chi'(y-y_0)\frac{\partial w(x, y)}{\partial y},
\end{equation*}
and χ is the cutoff function defined in (2.6).
We now estimate \(\|g_1\|_2 \). Note that \(\chi'(y-y_0) \) and \(\chi''(y-y_0) \) are supported in the interval \([y_0 + 1, y_0 + 2]\). Hence
\[
\|g_1\|_2 = \|g_1\|_{L^2(\mathbb{R} \times (y_0, y_0 + 2))}.
\]
Clearly, by (2.46), there exist \(C_3 \) and \(C_4 \) such that for any \(l \),
\[
\|\chi''(y-y_0)[w - b(y_0)\phi^\star]\|_2^2 \leq C_3 \|w - b(y_0)\phi^\star\|_{L^2(\mathbb{R} \times (y_0, y_0 + 2))}^2
\leq 2C_3 \left(\|v\|_{L^2(\mathbb{R} \times (y_0, y_0 + 2))} + \|b - b(y_0)\|_{L^2(\mathbb{R} \times (y_0, y_0 + 2))}^2 \right) \leq \frac{C_4}{l}.
\]
We apply the estimates in Lemma 2.6 to \(u_1 \). Then using the exponential decay of \(\phi^\star \), as \(x \to \infty \), we have that
\[
\left\| \chi'(y-y_0) \left(\frac{x^2}{2} + s^\star \right) (w - b(y_0)\phi^\star) \right\|_2^2
\leq C_5 \left\| \left(\frac{x^2}{2} + s^\star \right) (w - b(y_0)\phi^\star) \right\|_{L^2(\mathbb{R} \times (y_0 + 1, y_0 + 2))}^2
= C_5 \left\| \left(\frac{x^2}{2} + s^\star \right) u_1 \right\|_{L^2(\mathbb{R} \times (y_0 + 1, y_0 + 2))}^2 \leq C_6 \|u_1\|^2_{L^2(\mathbb{R} \times (y_0 - 1, y_0 + 3))} \leq \frac{C_7}{l}.
\]
Finally, again applying Lemma 2.6 to \(u_1 \) we have
\[
\left\| \chi'(y-y_0) \frac{\partial w}{\partial y} \right\|_2^2 = \left\| \chi'(y-y_0) \frac{\partial}{\partial y} [w(x,y) - b(y_0)\phi^\star(x)] \right\|_{L^2(\mathbb{R} \times (y_0 + 1, y_0 + 2))}^2
\leq C_5 \left\| \frac{\partial}{\partial y} [w(x,y) - b(y_0)\phi^\star(x)] \right\|_{L^2(\mathbb{R} \times (y_0 + 1, y_0 + 2))}^2
= C_5 \left\| \frac{\partial u_1}{\partial y} \right\|_{L^2(\mathbb{R} \times (y_0 + 1, y_0 + 2))}^2 \leq C_8 \|u_1\|^2_{L^2(\mathbb{R} \times (y_0 - 1, y_0 + 3))} \leq \frac{C_9}{l}.
\]
Consequently,
\[
(2.50) \quad \|g_1\|_2^2 \leq \frac{C_{10}}{l}.
\]
For the function \(w_1 \) defined in (2.48) which is a solution of (2.49) with \(g = g_1 \), we apply the estimate (2.35d) to \(w_1 \) and use (2.50) to obtain the existence of \(C_{11} \) such that for any \(l \),
\[
(2.51) \quad \left\| \frac{\partial w_1}{\partial y} \right\|^2_{L^2((-L,L) \times (y_0, +\infty))} \leq \frac{C_{11}}{l} L^4.
\]
Finally by (2.47) and (2.48) we obtain that for \(y > y_0 \)
\[
w(x,y) = b(y_0)\phi^\star(x) + \chi(y-y_0)[w(x,y) - b(y_0)\phi^\star(x)] + w_1(x,y).
\]
Hence, for all \(y > l + 2 \) we have
\[
\frac{\partial w}{\partial y} = \frac{\partial w_1}{\partial y},
\]
which with the aid of (2.51) completes the proof of the lemma for \(k = 1 \).
The proof of (2.45) for all \(k > 1 \) can be easily obtained by invoking inductive arguments.

Proof of Theorem 2.1. Let \(u \) be the solution of (2.5a)–(2.5b) obtained via (2.7) from a solution \(w \) of (2.8) which satisfies (2.45). Recall that to complete the proof we need to show that there exists a unique \(\alpha \in \mathbb{C} \) such that \(u - \alpha \phi^* \) is in \(L^2(\mathbb{R}^3_+, \mathbb{C}) \) and obeys the condition (2.5c).

Step 1. We first show that \(\|w(., y)\|_{L^2(\mathbb{R})} \) is convergent in \(L^2(-L, L) \) for every finite \(L \) as \(y \to +\infty \). Then let \(z > kl + 2 \) for some \(k \in \mathbb{N} \), and let \(M \) denote the integer part of \(z - kl - 2 \). Set

\[
\delta = \frac{z - kl - 2}{M + 1}.
\]

For \(z > kl + 3 \), we clearly have \(1/2 \leq \delta \leq 1 \). Using (2.45) with \(l = \frac{z - 2}{k} \) we then have

\[
\|w(., z + \delta) - w(., z)\|_{L^2(-L, L)}^2 = \int_{-L}^{L} \left| \int_{z}^{z+\delta} \frac{\partial w}{\partial y} dy \right|^2 dx
\leq \delta \left\| \frac{\partial w}{\partial y} \right\|_{L^2((-L, L) \times (z, z+\delta))}^2
\leq \delta C(k)L^4 \left(\frac{z}{(z-2)k} \right)^k \frac{\delta L^4}{z^k} \leq \frac{\delta C'(k)L^4}{z^k},
\]

where \(C'(k) \) depends only on \(k \). Consequently,

\[
\|w(., z) - w(., kl + 2)\|_{L^2(-L, L)} \leq \sum_{n=0}^{M} \|w(., kl + 2 + (n+1)\delta) - w(., kl + 2 + n\delta)\|_{L^2(-L, L)}
\leq C_1 \sum_{n=0}^{M} \frac{\sqrt{\delta C(k)L^2}}{(kl + 2 + n\delta)^{k/2}} \leq \frac{C_1(k)L^2}{L^3/2 - 1}.
\]

(2.52)

It follows from (2.52) that \(w(., y) \) is convergent in \(L^2(-L, L) \) as \(y \to \infty \). Denote its limit by \(W(x) \). By (2.52) there exists for all \(m \geq 1 \) a constant \(C_2(m) \) such that

\[
\|w(., y) - W(\cdot)\|_{L^2(-L, L)} \leq \frac{C_2(m)L^2}{y^m}.
\]

(2.53)

To obtain \(W \) we make use of (2.35a). Set

\[
\begin{align*}
\alpha(y) &= b(y) + \langle v, \phi^* \rangle, \\
V(x, y) &= v(x, y) - \langle v(\cdot, y), \phi^*(\cdot) \rangle_{L^2(-L, L)} \phi^*(x).
\end{align*}
\]

Then decompose \(W \) in the form

\[
W = \alpha \phi^* + W_\perp,
\]

where

\[
\alpha = \langle W, \phi^* \rangle_{L^2(-L, L)}.
\]
Clearly,
\[
\|V(\cdot, y) - W_\perp(\cdot)\|_{L^2(-L,L)} = \|w(\cdot, y) - W(\cdot)\|_{L^2(-L,L)} - \langle w(\cdot, y) - W(\cdot), \phi^*(\cdot)\rangle_{L^2(-L,L)} \\
\leq \|w(\cdot, y) - W(\cdot)\|_{L^2(-L,L)} \leq \frac{C_2(m)L^2}{ym}.
\]
Since \(V \in L^2(\mathbb{R}^2_+, \mathbb{C})\), there exists a sequence \(\{y_k\}_{k \in \mathbb{N}}\) such that
\[
\|V(\cdot, y_k)\|_{L^2(-L,L)} \to 0 \quad \text{as} \quad k \to +\infty.
\]
Consequently, we have \(W_\perp \equiv 0\). Thus,
\[
(2.54) \quad W = \alpha \phi^*.
\]
Step 2. To complete the proof of (2.5c) we need to prove the convergence of \(w(\cdot, y) - W(\cdot)\) in \(L^2(\mathbb{R}, \mathbb{C})\) and its \(L^2\) norm decays as \(y \to +\infty\). Since \(w - W\) is a bounded solution of (2.5a), we apply Lemma 2.6 to \(u = w - W\) and find that for any \(k \geq 1\) there exist constants \(C(k) > 0\) and \(L(k)\) such that for \(L \geq L(k)\),
\[
(2.55) \quad \|w(\cdot, y) - W(\cdot)\|_{L^2(\mathbb{R}\setminus[-L,L])} \leq \frac{C(k)}{L^k} \|w - W\|_{L^2((L,L) \times (y-2,y+2))} \leq \frac{C_2(m)C(k)L^2}{Lky^m}.
\]
Combining (2.53) and (2.55) with \(L = y\) and with \(k = 2\) we have for sufficiently large \(y\) that
\[
\|w(\cdot, y) - W(\cdot)\|_{L^2(\mathbb{R})} \leq \frac{C_3(m)}{y^m}.
\]
This proves the convergence of \(w(\cdot, y) - W(\cdot)\) to 0 in \(L^2(\mathbb{R}, \mathbb{C})\) as \(y \to +\infty\).

Step 3. We now prove uniqueness of the solutions of (2.5). Suppose that there exists some \(\tilde{u}\) satisfying (2.5a)–(2.5b), but it tends to \(\beta \phi^*\) in (2.5c) for some \(\beta \in \mathbb{C}\). Then \(U = u - \tilde{u}\) satisfies (2.5) with \(f = 0\) in (2.5b) and \(\gamma = \alpha - \beta\) instead of \(\alpha\) in (2.5c). Let
\[
\psi = \begin{cases} \frac{\Phi}{|\gamma|}(U - \gamma \phi^*) & \text{if} \ \gamma \neq 0, \\ U & \text{if} \ \gamma = 0. \end{cases}
\]
Then, \(\psi \in H^{2,\text{max}}(\mathbb{R}^2_+, \mathbb{C})\) and satisfies
\[
(2.56a) \quad (A_0 - E_0^*)\psi = 0 \quad \text{in} \ \mathbb{R}^2_+, \\
(2.56b) \quad \psi = |\gamma|\phi^* \quad \text{on} \ \partial \mathbb{R}^2_+.
\]
Further let
\[
\tilde{\psi}(x, y) = \begin{cases} \psi(x, y) & \text{if} \ y \geq 0, \\ \tilde{\psi}(x, -y) & \text{if} \ y < 0. \end{cases}
\]
Clearly, \(\tilde{\psi} \in H^{1,\text{max}}(\mathbb{R}^2, \mathbb{C})\). Then denote
\[
\nabla_A = \nabla - i \left(\frac{x^2}{2} + s^* \right) \hat{y}
\]
and
\[\chi_R(y) = \chi \left(\frac{|y|}{R} \right), \]
where \(\chi \) is defined in (2.6). Evidently,
\[||\chi_R \tilde{\psi}||^2_{L^2(\mathbb{R}^2)} = 2 ||\chi_R \psi||^2_2 \]
and
\[||\nabla A(\chi_R \tilde{\psi})||^2_{L^2(\mathbb{R}^2)} = 2 ||\nabla A(\chi_R \psi)||^2_2 \]
\[= 2 \left[||\nabla A(\chi_R U)||^2 + ||\gamma \nabla A(\chi_R \phi^*)||^2 \right] - 4 \text{Re} \left(\nabla A(\chi_R U), \gamma \nabla A(\chi_R \phi^*) \right)_2. \]

We now compute the various terms on the right-hand side of the above equality.

Since \(U \) satisfies (2.5a)–(2.5b) with \(U = 0 \) on \(\partial \mathbb{R}^2_+ \), we integrate by parts to obtain
\[||\nabla A(\chi_R U)||^2 = ||U \nabla \chi_R||^2_2 + E_0^* ||\chi_R U||^2_2. \]

From the definition of \(\phi^* \) and the orthogonality of \(\phi^* \) and \((x^2/2 + s^*) \phi^* \) in \(L^2(\mathbb{R}, \mathbb{C}) \) we learn that
\[||\nabla A(\chi_R \phi^*)||^2_2 = ||\phi^* \nabla \chi_R||^2_2 + E_0^* ||\chi_R \phi^*||^2_2 \]
and that
\[\text{Re} \left(\nabla A(\chi_R U), \nabla A(\chi_R \phi^*) \right)_2 \]
\[= E_0^* \text{Re} \left(\chi_R U, \chi_R \phi^* \right)_2 - \text{Re} \left(\chi_R U, \left[\chi_R'' - 2i \left(\frac{x^2}{2} - s^* \right) \chi_R' \right] \phi^* \right)_2. \]

Since
\[|\text{Re} \left(\chi_R U, \chi_R' \phi^* \right)_2| \leq \frac{C_4}{R}, \]
and since
\[\left| \text{Re} \left(\chi_R U, 2i \left(\frac{x^2}{2} + s^* \right) \chi_R' \phi^* \right)_2 \right| \]
\[\leq \left| \text{Re} \left(\chi_R \phi^*, 2i \left(\frac{x^2}{2} + s^* \right) \chi_R' \phi^* \right)_2 \right| + |\gamma| \left| \text{Re} \left(\chi_R \psi, 2i \left(\frac{x^2}{2} + s^* \right) \chi_R' \phi^* \right)_2 \right| \]
\[\leq C_5 R^{-1/2}, \]
it then follows the existence of \(C_6 \) such that for \(R \geq 2, \)
\[\left| ||\nabla A(\chi_R \tilde{\psi})||^2_{L^2(\mathbb{R}^2)} - E_0^* ||\chi_R \tilde{\psi}||^2_{L^2(\mathbb{R}^2)} \right| \leq C_6 R^{-1/2}. \]

From the above estimate, we easily obtain that
\[||\nabla A \tilde{\psi}||^2_{L^2(\mathbb{R}^2)} - E_0^* ||\tilde{\psi}||^2_{L^2(\mathbb{R}^2)} = 0. \]

In the Fourier space the above identity yields
\[\int_{\mathbb{R}^2} (E_0(s) - E_0^*) |\hat{\psi}|^2 dx ds \leq 0; \]
therefore \(\hat{\psi} \equiv 0 \), and hence \(\psi \equiv 0. \)
In the case where $\gamma = 0$ it follows that $U = 0$. If $\gamma \neq 0$, then since $\psi \equiv 0$, it follows that $U = \gamma \phi^*$. However, since $U = 0$ on $\partial \mathbb{R}^n_+$ we must have $\gamma = 0$, which is a contradiction. Thus, the uniqueness of solutions of (2.5) is proved.

Step 4. Finally, from (2.36) we get for all $l > 0$ and $\beta \in \mathbb{C}$ that $w - \beta \phi^* \in L^2(S_l, \mathbb{C})$. By (2.7) we thus have that $u - \alpha \phi^* \in L^2(S_l, \mathbb{C})$. Hence, in view of (2.5c), it is readily verified that $u - \alpha \phi^* \in L^2(\mathbb{R}^n_+, \mathbb{C})$. \[\Box\]

Remark 2.8. Let (u, α) be as in (2.5). Then,

\begin{equation}
(2.57)
 u - \alpha \phi^* \in H^{1, \max}(\mathbb{R}^n_+, \mathbb{C}).
\end{equation}

Proof. Let $P_0 = (x_0, y_0) \in \mathbb{R}^n_+$ and set $\tilde{w} = u - \alpha \phi^*$. Then,

\begin{equation}
(2.58)
 D_x^2 \tilde{w} + \left(D_y - \frac{1}{2} x^2 \right)^2 \tilde{w} = 0.
\end{equation}

Multiplying (2.58) by $\chi^2(|x - P_0|) \tilde{w}$, where the cutoff function χ is defined by (2.6), we obtain via integration by parts, with the aid of (2.5c) and the fact that $\tilde{w} \in L^2(\mathbb{R}^n_+, \mathbb{C})$, that for every $k \geq 1$ there exists $C_k > 0$ such that for any $P_0 = (x_0, y_0) \in \mathbb{R}^n_+$,

\[\left\| \left(\nabla - \frac{i}{2} x^2 \right) \tilde{w} \right\|_{L^2(B(P_0, 1))} \leq \frac{C_k}{y_0^k},\]

where $B(P_0, 1)$ denotes the disk with center P_0 and radius 1. Hence

\begin{equation}
(2.59)
 \left\| u - \alpha \phi^* \right\|_{H^{1, \max}(B(P_0, 1))} \leq \frac{C_k}{y_0^k}.
\end{equation}

Similarly, (2.37b), (2.58), and the fact that $\phi^* \in \mathcal{S}(\mathbb{R}, \mathbb{C})$ permit us to obtain the existence for every $k \geq 1$ of some $D_k > 0$ such that for any $P_0 = (x_0, y_0)$ with $y_0 \neq 0$,

\begin{equation}
(2.60)
 \left\| u - \alpha \phi^* \right\|_{H^{1, \max}(B(P_0, 1))} \leq \frac{D_k}{|x_0|^k}.
\end{equation}

Combining (2.60) and (2.59) yields

\begin{equation}
(2.61)
 \left\| u - \alpha \phi^* \right\|_{H^{1, \max}(B(P_0, 1))}^2 \leq \frac{C_k D_k}{y_0^k |x_0|^k}.
\end{equation}

Now, we take k large and cover \mathbb{R}^n_+ with countably many balls $\{B(P_{ij}, 1)\}$, where $P_{ij} = (x_i, y_j)$ and both x_i and y_j are nonzero and such that on each ball we have (2.61) with $P_0 = P_{ij}$. Taking sum in i, j we find that

\[\left\| u - \alpha \phi^* \right\|_{H^{1, \max}(\mathbb{R}^n_+)}^2 \leq C_k D_k \sum_{i,j=1}^\infty \frac{1}{|x_i|^k y_j^k} < \infty.\]

Here we have chosen the integer k and the sequence of points (x_i, y_j) such that the series $\sum_{i=1}^\infty |x_i|^{-k}$ and $\sum_{j=1}^\infty |y_j|^{-k}$ converge. Consequently, we obtain (2.57). \[\Box\]
3. Construction of the quasi mode. We now return to the analysis of the spectrum of the operator A_c^+ as $c \to 0$. In the following we write A_c^+ as

$$A_c^+ = A_0 + icy,$$

where A_0 is the operator defined in (2.4). Since the resolvent of A_c^+ with $c \neq 0$ is compact (see Proposition 1.1), we need only consider the existence of an eigenpair (λ, v), $v \neq 0$, which solves the equation

$$(3.1) \quad A_c^+ v = \lambda v$$

with $v \in D(A_c^+)$. An obvious lower bound for $\text{Re} \{\sigma(A_c^+)\}$ is E_0^* (see (1.15) and (1.16)). This follows easily from the fact that $\text{Re} \langle u, A_c^+ u \rangle = \text{Re} \langle u, A_0 u \rangle$.

Formal perturbation theory (keeping in mind that for $c = 0$ the spectrum is continuous) suggests that the leftmost eigenvalue in \mathbb{C} of A_c^+ tends to E_0^* as $c \to 0$. Based on this natural guess, we look for a formal asymptotic expansion of this eigenvalue in fractional powers of c with E_0^* as its leading order term and a corresponding approximate eigenfunction or quasi mode. Then set

$$(3.2) \quad c = \epsilon^3.$$

We construct the quasi mode separately in two different zones. In the outer zone we have $y^{-1} = O(\epsilon)$, whereas inside the inner zone is $y = O(1)$. Naturally, we expect the two asymptotic expansions to match through an intermediate domain (or the overlap domain, as it is often called [16]). Thus, for every term (or order) in the expansion, we present first the outer expansion, which is then followed by the corresponding inner expansion.

Outer expansion: $O(1)$ balance. We first apply the gauge transformation

$$v \to v \exp(-is^*y),$$

where s^* is introduced in (2.1), and rewrite (3.1) as

$$-\frac{\partial^2 c}{\partial x^2} - \frac{\partial^2 v}{\partial y^2} + 2i\left(\frac{x^2}{2} + s^*\right)\frac{\partial v}{\partial y} + \left(\frac{x^2}{2} + s^*\right)^2 v + i\epsilon^3 yv = \lambda v.$$

Then, we adopt the outer zone scaling

$$(3.3) \quad \eta = \epsilon y$$

and write (3.1) in the form

$$(3.4) \quad \frac{\partial^2 v}{\partial x^2} + \left(\frac{x^2}{2} + s^*\right)^2 v - \lambda v = \epsilon^2 \left[\frac{\partial^2 v}{\partial \eta^2} - i\eta v\right] - 2i\epsilon \left(\frac{x^2}{2} + s^*\right) \frac{\partial v}{\partial \eta}.$$

Presuming the formal expansion

$$(3.5) \quad \left\{ \begin{array}{l} v = v_0 + \epsilon v_1 + \epsilon^2 v_2 + O(\epsilon^3), \\
\lambda = \lambda_0 + \epsilon \lambda_1 + \epsilon^2 \lambda_2 + O(\epsilon^3), \end{array} \right.$$
we obtain the leading order balance
\[(M_{s^*} - \lambda_0)v_0 = 0,\]
where, for \(s \in \mathbb{R}\), \(M_s\) is defined (see (1.14)) by
\[M_s = -\frac{\partial^2}{\partial x^2} + \left(\frac{x^2}{2} + s\right)^2.\]

It readily follows from the equality
\[(3.6)\quad M_{s^*} \phi_0(x, s^*) = E_{s^*}^0 \phi_0(x, s^*)\]
(see (2.2) and (2.3)) that we can look for a pair \((v_0, \lambda_0)\) in the form
\[(3.7)\quad v_0(x, \eta) = \phi_0(x, s^*) \psi_0(\eta), \quad \lambda_0 = E_{s^*}^0.\]

Inner expansion: \(O(1)\) balance. In the inner zone we keep the original coordinates \((x, y)\). We denote the inner solution by \(u\) and assume for it the analogue of (3.5) with \(v_j\) replaced by \(u_j\),
\[(3.8)\quad u = u_0 + \epsilon u_1 + \epsilon^2 u_2 + O(\epsilon^3).\]

Write (3.1) in the form
\[-A_0 u - \lambda u = -i \epsilon^3 y u.\]

Using the above-obtained \(\lambda_0 = E_{s^*}^0\), we obtain the leading order balance
\[(3.9)\quad \begin{cases} (A_0 - E_{s^*}^0)u_0 = 0 & \text{in } \mathbb{R}^2_+ , \\ u_0 = 0 & \text{on } \partial \mathbb{R}^2_+ , \\ u_0 \sim \psi_0(0) \phi^*(x) & \text{as } 1 \ll y. \end{cases} \]

The last condition is obtained by matching \(u_0\) with \(v_0\) in the overlap zone. Here we recall from (2.3), that \(\phi^*(x) = \phi_0(x, s^*)\). Obviously, for \(\eta \ll 1\),
\[v_0 \sim \psi_0(0) \phi^*.\]

Hence, the leading order terms would match for
\[1 \ll y \ll \frac{1}{\epsilon}.
\]

From the uniqueness part of Theorem 2.1 (namely, if \((u, \alpha)\) is a solution of (2.5) with \(u = 0\) on \(\partial \mathbb{R}^2_+\), then \((u, \alpha) = (0, 0))\), it follows that
\[(3.10)\quad u_0 \equiv 0 \quad \text{and} \quad \psi_0(0) = 0.\]

Outer expansion: \(O(\epsilon)\) balance. The outer \(O(\epsilon)\) balance takes the form
\[(3.11)\quad \begin{align*}
(M_{s^*} - \lambda_0)v_1 &= \lambda_1 v_0 - 2i \left(\frac{x^2}{2} + s^*\right) \frac{\partial v_0}{\partial \eta} \\
&= \lambda_1 \phi^*(x) \psi_0(\eta) - 2i \left(\frac{x^2}{2} + s^*\right) \phi^*(x) \psi'_0(\eta)
\end{align*}
\]
Here we have used (3.7). We now multiply the above by φ∗(x), integrate over x, then integrate by parts and use (3.7) to obtain for any η > 0,

\[(3.12) \quad \lambda_1 \psi_0(\eta) - 2i\psi_0(\eta)\int_\mathbb{R} \left(\frac{x^2}{2} + s^*\right) |\phi^*(x)|^2 dx = 0. \]

It is well known (see [11]) that the integral on the left-hand side of (3.12) vanishes and hence we must have \(\lambda_1 = 0 \). Moreover, we obtain by differentiating the equality (2.2) with respect to \(\psi \) and using (3.7) we get

\[(3.13) \quad (\mathcal{M}_{s^*} - E_0^*)\phi_s^* = 2\left(\frac{x^2}{2} + s^*\right) \phi^*, \]

where

\[(3.14) \quad \phi_s^*(x) = \frac{\partial\psi_0}{\partial s}(x, s^*). \]

We thus obtain that the general solution of (3.11) in \(L^2(\mathbb{R}, \mathbb{C}) \) is given by

\[(3.15) \quad v_1(x, \eta) = -i\psi_0(\eta)\phi_s^*(x) + \psi_1(\eta)\phi^*(x), \]

where \(\psi_1(\eta) \) is any function of \(\eta \), to be determined later. Notice that unlike \(v_0 \), \(v_1 \) cannot satisfy the boundary condition at \(y = 0 \) unless \(\psi_0(0) \equiv 0 \). From the next order balance we derive, however, that this would mean that \(\psi_0 \equiv 0 \) for all positive \(\eta \), turning the leading order balance into the trivial solution. To avoid the failure of our asymptotic scheme it is therefore essential that a proper inner expansion be introduced at this order.

Inner expansion: \(\mathcal{O}(\epsilon) \) balance. For the inner expansion we obtain at the \(\mathcal{O}(\epsilon) \) order the problem

\[(3.16a) \quad (\mathcal{A}_0 - E_0^*)u_1 = 0 \quad \text{in} \ \mathbb{R}^2_+, \]
\[(3.16b) \quad u_1 = 0 \quad \text{on} \ \partial\mathbb{R}^2_+, \]
\[(3.16c) \quad u_1 \sim \psi_1(0)\phi^*(x) + \psi_0(0)[y\phi^*(x) - i\phi_s^*(x)] \quad \text{as} \ y \gg 1. \]

The last condition is obtained by matching the inner expansion, through the overlap zone, with the outer expansion. In fact, since for \(\eta \) of order \(\epsilon \) the outer solution admits using (3.7) and (3.15) the expansion

\[
\begin{align*}
v_0(x, \eta) + \epsilon v_1(x, \eta) &= v_0(x, 0) + \eta \frac{\partial v_0}{\partial \eta}(x, 0) + \epsilon v_1(x, 0) + \mathcal{O}(\epsilon^2) \\
&= \epsilon [\psi_0'(0)(y\phi^*(x) - i\phi_s^*(x)) + \psi_1(0)\phi^*(x)] + \mathcal{O}(\epsilon^2),
\end{align*}
\]

we readily obtain (3.16c).

It is easily verified that

\[(x, y) \mapsto y\phi^*(x) - i\phi_s^*(x) \]

is a solution of (3.16a). (More generally it is the consequence of the commutation of the operators \(y + D_s \) and \(D_x^2 + (\frac{x^2}{2} + s - D_y)^2 \). We thus define

\[(3.17) \quad w_1(x, y) = u_1(x, y) - \psi_0(0)[y\phi^*(x) - i\phi_s^*(x)] \]
to obtain the following problem for w_1:

\begin{align}
(3.18a) \quad & (A_0 - E_0^0)w_1 = 0 \quad \text{in } \mathbb{R}^2_+ , \\
(3.18b) \quad & w_1 = i\psi_0'(0)\phi^*_s(x) \quad \text{on } \partial \mathbb{R}^2_+ , \\
(3.18c) \quad & w_1 \sim \psi_1(0)\phi^*(x) \quad \text{as } y \to +\infty .
\end{align}

It is easy to show that $\phi^*_s \in \mathcal{S}(\mathbb{R}, \mathbb{C})$ and hence we can use Theorem 2.1 to deduce the existence of some $\alpha_1 \in \mathbb{C}$ such that if

\begin{equation}
(3.19) \quad \psi_1(0) = i\alpha_1\psi_0'(0) ,
\end{equation}

then there exists $w_1 \in H^2_{\text{loc}}(\mathbb{R}^2_+, \mathbb{C})$ satisfying (3.18).

Once w_1, α_1 is obtained, we have determined u_1 (by (3.17)) and a relation between $\psi_1(0)$ and $\psi_0'(0)$ (by (3.19)). We emphasize that α_1 is independent of $\psi_0'(0)$.

Outer expansion: $O(\epsilon^2)$ balance. The next order outer balance is given by

\begin{equation}
(3.20) \quad (M_{s^*} - \lambda_0)v_2 = \lambda_2v_0 - 2i\left(\frac{x^2}{2} + s^*\right)\frac{\partial v_1}{\partial \eta} + \frac{\partial^2 v_0}{\partial \eta^2} - i\eta v_0 \\
= \left[(\lambda_2 - i\eta)\psi_0(\eta) - 2i\left(\frac{x^2}{2} + s^*\right)\psi_1'(\eta) + \psi_0''(\eta)\right]\phi^*(x) \\
- 2\left(\frac{x^2}{2} + s^*\right)\psi_0''(\eta)\phi^*_s .
\end{equation}

In deriving the second equality sign in (3.20) we used (3.7) and (3.15). Multiplying it by $\phi^*(x)$, integrating over x, and then integrating by parts we obtain, after some manipulation, the solvability condition

\begin{align}
\psi_0''(\eta) + (\lambda_2 - i\eta)\psi_0(\eta) - 2i\psi_1'(\eta) \int_{\mathbb{R}} \left(\frac{x^2}{2} + s^*\right) |\phi^*(x)|^2 \, dx \\
= 2\psi_0''(\eta) \int_{\mathbb{R}} \left(\frac{x^2}{2} + s^*\right) \phi^*(x)\phi^*_s(x) \, dx .
\end{align}

The integral on the left-hand side is zero (as in (3.12) above). To obtain the integral on the right-hand side one needs to differentiate

\begin{equation}
(3.21) \quad E_0^0(s) = -2\int \left(\frac{x^2}{2} + s\right) \phi_0(x, s)^2 \, dx
\end{equation}

and set $s = s^*$:

\begin{align}
2\int_{\mathbb{R}} \left(\frac{x^2}{2} + s^*\right) \phi^*(x)\phi^*_s(x) \, dx &= -\frac{1}{2} E_0''(s^*) + 1 .
\end{align}

Let

\begin{equation}
(3.22) \quad \beta = \frac{1}{2} E_0''(s^*) ,
\end{equation}

and recall from [13] that β is positive. Then, we have

\begin{equation}
(3.23) \quad \begin{cases}
-\beta\psi_0''(\eta) + (i\eta - \lambda_2)\psi_0(\eta) = 0, \quad \eta > 0 , \\
\psi_0(0) = 0 .
\end{cases}
\end{equation}
Applying the transformation
\[\eta_1 = \beta^{1/3} \eta \]
to (3.23), we obtain (cf. [3])
\[\lambda_2 = \beta^{1/3} (-a_1) e^{i \pi/3} , \]
and the corresponding eigenfunction is given by
\[\psi_0(\eta) = C_0 \, \text{Ai}(\beta^{1/3} e^{i \pi/6} \eta + a_1) , \]
where \(a_1 \in \mathbb{R}_- \) is the rightmost zero of the Airy function. The constant \(C_0 > 0 \) is determined by requiring \(\| \psi_0 \|_{L^2(\mathbb{R}_+)} = 1 \). Once \(C_0 \) is obtained, we can evaluate \(\psi_0'(0) \), which in turn determines \(\psi_1(0) \) (via (3.19)) and \(w_1 \).

Next, we look for the general solution in \(L^2(\mathbb{R}, \mathbb{C}) \) of (3.20). Let
\[\phi^*_s(x) = \frac{\partial^2 \phi_0}{\partial s^2}(x,s^*) . \]
We have the identity
\[(\mathcal{M}_s - \lambda_0) \phi^*_s = 4 \left(\frac{x^2}{2} + s^* \right) \phi^*_s - 2(1 - \beta) \phi^* , \]
which is obtained by differentiating (2.2) twice with respect to \(s \) and then letting \(s = s^* \). Using (3.7), (3.15), (3.23), and (3.26), we can show that the general solution of (3.20) is given by
\[v_2(x,\eta) = -\frac{1}{2} \phi^*_s(x) \psi_0''(\eta) - i \phi^*_s(x) \psi_1'(\eta) + \psi_2(\eta) \phi^*(x) , \]
where \(\psi_2 \) is any function (\(\psi_2 = 0 \) is therefore a legitimate choice for our approximate solution). In fact, since \(\psi_0 \) satisfies (3.23), we can write (3.20) as
\[(\mathcal{M}_s - \lambda_0) v_2 = -2i \left(\frac{x^2}{2} + s^* \right) \psi_1'(\eta) + (1 - \beta) \psi_0''(\eta) \right] \phi^*(x) - 2 \left(\frac{x^2}{2} + s^* \right) \psi_0''(\eta) \phi^*_s . \]
Write
\[v_2 = z_2 - \frac{1}{2} \phi^*_s(x) \psi_0''(\eta) - i \phi^*_s(x) \psi_1'(\eta) . \]
Using (3.13) and (3.26) we reduce (3.20) to
\[(\mathcal{M}_s - \lambda_0) z_2 = 0 . \]
Hence \(z_2 = \psi_2(\eta) \phi^*(x) \), which validates (3.27).

Inner expansion: \(O(\varepsilon^2) \) balance. From the outer expansion we obtain the following problem for \(u_2 \)
\[(\mathcal{A}_0 - E_0^*) u_2 = \lambda_2 u_0 \quad \text{in } \mathbb{R}_+^2 , \]
\[u_2 = 0 \quad \text{on } \partial \mathbb{R}_+^2 , \]
\[u_2 \sim \psi_0''(\eta) \left[\frac{1}{2} y^2 \phi^* - iy \phi^*_s - \frac{1}{2} \phi^*_s \right] + \psi_1'(0) [y \phi^* - i \phi^*_s] + \psi_2(0) \phi^* \quad \text{as } y \gg 1 . \]
Again, the last condition (3.28c) is obtained by matching the inner expansion, through the overlap zone, with the outer expansion. In fact, since for \(\eta \sim O(\epsilon) \), the outer solution admits using (3.7), (3.10), (3.15), and (3.27) the expansion

\[
e u_1(x, y) + \epsilon^2 u_2(x, y) + O(\epsilon^3)
\]

\[
= v_0(x, \eta) + \epsilon v_1(x, \eta) + \epsilon^2 v_2(x, \eta) + O(\epsilon^3)
\]

\[
= v_0(x, 0) + \eta \frac{\partial v_0}{\partial \eta}(x, 0) + \frac{\eta^2}{2} \frac{\partial^2 v_0}{\partial \eta^2}(x, 0)
\]

\[
+ \epsilon \left[v_1(x, 0) + \eta \frac{\partial v_1}{\partial \eta}(x, 0) \right] + \epsilon^2 v_2(x, 0) + O(\epsilon^3)
\]

\[
= \epsilon \left[\psi_0'(0)(y\phi^*(x) - i\phi^*_s(x)) + \psi_1(0)\phi^*(x) \right]
\]

\[
+ \epsilon^2 \left\{ \psi''_0(0) \left[\frac{y^2}{2}\phi^*(x) - iy\phi^*_s(x) - \frac{1}{2}\phi^*_s(x) \right]
\]

\[
+ \psi'_1(0)[y\phi^*(x) - i\phi^*_s(x)] + \psi_2(0)\phi^*(x) \right\} + O(\epsilon^3).
\]

By matching the terms of order \(\epsilon^2 \) we readily obtain (3.28c).

It is easy to show (see the explanation above (3.17)) that the function

\[
(x, y) \mapsto \frac{y^2}{2}\phi^*(x) - iy\phi^*_s(x) - \frac{1}{2}\phi^*_s(x)
\]

solves (3.28a). Thus, as we did for the \(O(\epsilon) \) inner balance, we set

\[
w_2(x, y) = u_2(x, y) - \psi''_0(0) \left[\frac{y^2}{2}\phi^*(x) - iy\phi^*_s(x) - \frac{1}{2}\phi^*_s(x) \right] - \psi'_1(0)[y\phi^*(x) - i\phi^*_s(x)]
\]

and substitute it into (3.28) to obtain

\[
(A_0 - E^*_s)w_2 = 0 \quad \text{in } \mathbb{R}^2_+,
\]

\[
w_2 = i\psi'_1(0)\phi^*_s + \frac{1}{2}\psi''_0(0)\phi^*_s \quad \text{on } \partial\mathbb{R}^2_+,
\]

\[
w_2 \sim \psi_2(0)\phi^* \quad \text{as } y \to +\infty.
\]

We now observe that by (3.23) \(\psi''_0(0) = 0 \). Hence we can rely on Theorem 2.1 to show that if

\[
\psi_2(0) = i\alpha_1\psi'_1(0),
\]

then there exists \(w_2 \) satisfying (3.29).

A uniformly valid quasi mode. One can continue the above process to obtain higher order terms up to the desired accuracy. Once we have obtained the outer and the inner expansions we can combine them into a quasi mode which would approximate the eigenfunctions in both the inner and the outer zones. Denote this uniform approximation by \(U_e \). The standard manner, by which the uniform quasi mode is constructed (see [16, 22]), is by setting

\[
U_e(x, y) = u(x, y) + v(x, \epsilon y) - u(x, +\infty),
\]

\[\text{Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.}\]
where \(u(x, +\infty) \) stands for the asymptotic behavior of \(u \) as \(y \to +\infty \). (It can be exchanged for the asymptotic behavior of \(v \) near \(\eta = 0 \).) For instance, at the \(\mathcal{O}(\epsilon) \) balance \(u(x, +\infty) \) is given by (3.16c). Thus,

\[
U_\epsilon(x, y) = \psi_0(\eta)\phi^*(x) + \epsilon \left\{ -i\phi_0^*(\eta)\psi_1(\eta) + \rvert \psi_1(\eta) - \psi_1(0) \lvert \phi^*(x) + w_1(x, y) \right\}
+ \epsilon^2 \left\{ -\frac{1}{2}\phi_{ss}^*(x)\psi_0''(\eta) - i\phi_{ss}^*(x)\psi_1'(\eta) + \rvert \psi_2(\eta) - \psi_2(0) \lvert \phi^*(x) + w_2(x, y) \right\}
\]

with \(\eta = \epsilon y \).

It can be readily verified that

\[
U_\epsilon(x, 0) = 0.
\]

We now show that for a suitably chosen \(\psi_2 \), \(U_\epsilon \) is also an approximate solution for the equation

\[
(A_{0,c} - E_0^\ast - \epsilon^2\lambda_2)U = 0
\]

with \(\epsilon = \epsilon^{1/3} \) and an error of size \(o(\epsilon^2) \). More precisely, we choose in (3.31) \(\psi_2 \equiv 0 \), and accordingly, by (3.30) and (3.29), we can impose

\[
\psi_1'(0) = 0
\]

and get from the uniqueness part in Theorem 2.1 that \(w_2 \equiv 0 \). Then we have

\[
U_\epsilon(x, y) = \psi_0(\eta)\phi^*(x) + \epsilon \left\{ -i\phi_0^*(\eta)\psi_1(\eta) + \rvert \psi_1(\eta) - \psi_1(0) \lvert \phi^*(x) + w_1(x, y) \right\}
+ \epsilon^2 \left\{ -\frac{1}{2}\phi_{ss}^*(x)\psi_0''(\eta) - i\phi_{ss}^*(x)\psi_1'(\eta) \right\}.
\]

For this choice of \(U_\epsilon \) we have the following proposition.

Proposition 3.1. Let \(U_\epsilon \) be given by (3.34), where \(\psi_0 \) is given by (3.25), \(\psi_1 \in \mathcal{S}(\mathbb{R}_+, \mathbb{C}) \) satisfies (3.19) with \(\psi_1'(0) = 0 \), and \(w_1 \) satisfies (3.18). Further let

\[
\Lambda = E_0^\ast + \epsilon^2\lambda_2,
\]

where \(\lambda_2 \) is given by (3.24), and let

\[
f = (A_\epsilon^\ast - \Lambda)U_\epsilon
\]

with \(\epsilon = \epsilon^3 \). (Note that \(f \) depends on \(\epsilon \). We omit the subscript \(\epsilon \) to simplify the notation.)

Then we have the following conclusions:

(i) \(U_\epsilon \in \mathcal{D}(A_\epsilon^\ast) \), the domain of the operator \(A_\epsilon^\ast \).

(ii) For any \(p, k, n \in \mathbb{N} \), there exists \(C = C(p, k, n) > 0 \) such that

\[
\left\lVert |x|^p(\epsilon y) \frac{\partial^n f}{\partial y^n} \right\rVert_2 \leq C(p, k, n) \epsilon^3 \lVert U_\epsilon \rVert_2.
\]

Proof. Step 1. We first prove (ii). We have

\[
f = (A_{0,c} - \Lambda)U_\epsilon = (iy\epsilon + \lambda_2\epsilon^3)\left[w_1(x, y) - \psi_1(0)\phi^*(x) \right] + \epsilon^3 \left\{ -i\phi_{ss}^*(x)\psi_0^{(3)}(\eta) + \psi_1'(\eta)\phi^*(x) + \lambda_2 \left[-i\phi_{ss}^*(x)\psi_0'(\eta) + \psi_1(\eta)\phi^*(x) \right] \right.
- i \left[\frac{x^2}{2} + s^* \right] \left[\phi_{ss}^*(x)\psi_0^{(3)}(\eta) + 2\phi_{ss}^*(x)\psi_1'(\eta) \right] \bigg\} + \epsilon^4 \left\{ -i\phi_{ss}^*(x)\psi_1^{(3)}(\eta) - i\lambda_2\phi_{ss}^*(x)\psi_1'(\eta) \right\}
\]
with \(\eta = \epsilon y \). To prove (ii) one has to show that (3.37) holds for each term in (3.38). There are two types of terms: the first includes those which depend only on the slow coordinate \(\eta \), and the second includes those which depend on the fast coordinate \(y \). Consider then a term of the first type,

\[
(3.39) \quad h_1(x, y) = \epsilon^3 \psi''(\eta) \phi^*(x).
\]

Since \(\psi \in S(\mathbb{R}, \mathbb{C}) \) and \(\phi^* \in S(\mathbb{R}, \mathbb{C}) \), it easily follows that

\[
(3.40) \quad \left\| |x|^p(\epsilon y)^k \frac{\partial^n h_1}{\partial y^n} \right\|_2^2 \leq \int_{\mathbb{R}_+^2} |x|^{2p} |\epsilon y|^{2k} \left| \frac{\partial^n h_1}{\partial y^n} \right|^2 \, dx dy
\]

\[
+ \epsilon^{5+2n} \int_{\mathbb{R}_+} \eta^{2k} |\psi_1^{(n+2)}(\eta)|^2 d\eta \int_{\mathbb{R}} |x|^{2p} |\phi^*(x)|^2 \, dx
\]

\[
\leq C_{p,k,n} \epsilon^{5+2n}.
\]

All terms of this type can similarly be estimated.

Consider next an example of a term of the second type,

\[
(3.41) \quad h_2(x, y) = \epsilon^3 [w_1(x, y) - \psi_1(0) \phi^*(x)].
\]

In view of (2.8), (2.37), and (2.5c) we have that

\[
\int_{B(P_0, 1)} |h_2(x, y)|^2 \, dx dy \leq \frac{C(k, p)}{|x_0|^p y_0^6} \epsilon^6 \quad \text{for all } k \in \mathbb{N},
\]

where \(P_0 = (x_0, y_0) \in \mathbb{R}_+^2 \) and \(B(P_0, 1) \) is the ball with center \(P_0 \) and radius 1. Standard elliptic estimates, boot-strapping, and Sobolev embeddings then show the existence of a constant \(C(k, p, n) \) such that

\[
\|h_2\|_{H^s(B(P_0, 1/2))} \leq \frac{C(k, p, n)}{|x_0|^p y_0^6} \epsilon^3 \quad \text{for all } k \in \mathbb{N}.
\]

Using the above and a countable covering of \(\mathbb{R}_+^2 \) (see, for instance, the proof of Remark 2.8) we obtain that

\[
(3.42) \quad \left\| |x|^p(\epsilon y)^k \frac{\partial^n h_2}{\partial y^n} \right\|_2 \leq C(k, p, n) \epsilon^{k+3}.
\]

The above, in conjunction with (3.40), yields

\[
(3.43) \quad \left\| |x|^p(\epsilon y)^k \frac{\partial^n f}{\partial y^n} \right\|_2 \leq C(k, p, n) \epsilon^{5/2}.
\]

By the choice of \(C_0 \) in (3.25) we have

\[
(3.44) \quad \|U_\epsilon\|_2 = \frac{1}{\epsilon^{1/2}} + \mathcal{O}(1).
\]

Combining (3.43) and (3.44) we obtain (3.37).

Step 2. We now prove (i). As by (3.43) we have that \(A^\perp U_\epsilon \in L^2(\mathbb{R}_+^2, \mathbb{C}) \), it remains to show only that \(U_\epsilon \in H^1_{0, \text{max}}(\mathbb{R}_+^2, \mathbb{C}) \). For product terms, such as \(v_0(\eta) \phi^*(x) \), this fact easily follows from the exponential rate of decay of the Airy function and its
derivatives. (Note that ψ_1 decays exponentially fast as well.) For w_1, this fact follows from Remark 2.8.

We next define the following cutoff function:

\begin{equation}
\chi_\epsilon(y) = \begin{cases}
y \exp \left(-\epsilon^{-\alpha}(1 - \epsilon^{\alpha+\gamma}) \right) & \text{if } 0 \leq y \leq 1, \\
\exp \left(-\epsilon^{-\alpha}(1 - \epsilon^{\alpha+\gamma}) \right) & \text{if } 1 < y \leq \epsilon^{-(\alpha+\gamma)}, \\
1 & \text{if } \epsilon^{-(\alpha+\gamma)} < y.
\end{cases}
\end{equation}

where α and γ satisfy $\alpha > 0$, $0 < \gamma < 1$, and $\alpha + \gamma \leq 1$. Furthermore,

\begin{equation}
\chi'_\epsilon(y) = \begin{cases}
\exp \left(-\epsilon^{-\alpha}(1 - \epsilon^{\alpha+\gamma}) \right) & \text{if } 0 \leq y \leq 1, \\
\epsilon^{-\gamma} \exp \left(-\epsilon^{-\alpha}(1 - \epsilon^{\alpha+\gamma}) \right) = \epsilon^{-\gamma} \chi_\epsilon & \text{if } 1 < y \leq \epsilon^{-(\alpha+\gamma)}, \\
0 & \text{if } \epsilon^{-(\alpha+\gamma)} < y.
\end{cases}
\end{equation}

Thus, for sufficiently small $\epsilon > 0$,

\begin{equation}
\chi'_\epsilon(y) \geq 0, \quad |\chi'_\epsilon| \leq \epsilon^{-\gamma} \chi_\epsilon + 2e^{-\epsilon^{-\alpha}}.
\end{equation}

Hence for every $u \in L^2(\mathbb{R}^2_+, \mathbb{C})$ we have

\begin{equation}
|\chi'_\epsilon u|_2 \leq \epsilon^{-\gamma} |\chi_\epsilon u|_2 + 2e^{-\epsilon^{-\alpha}} |u|_2.
\end{equation}

The reason for introducing the above cutoff function will become clear later. (See the comments above Remark 5.5.)

Lemma 3.2. Let f be given by (3.36) and χ_ϵ by (3.45). For every $n \in \mathbb{N}$ there exists $C_n > 0$ such that for all sufficiently small $\epsilon > 0$ we have

\begin{equation}
\left\| \chi_\epsilon \frac{\partial^n f}{\partial y^n} \right\|_2 \leq C_n \epsilon^{n+5/2}.
\end{equation}

Proof. As in the proof of Proposition 3.1 we prove (3.48) by estimating separately the derivatives of the two different types of terms in the expression of f mentioned there.

Let h_1 be a term of the first type given by (3.39). Then,

\begin{equation}
\left\| \chi_\epsilon \frac{\partial^n h_1}{\partial y^n} \right\|_2 \leq \left\| \chi_\epsilon \frac{\partial^n h_1}{\partial y^n} \right\|_2 = \epsilon^{3+n} \left\| \psi_1^{(n+2)} \right\|_2 \leq C_1(n) \epsilon^{n+5/2},
\end{equation}

where the last equality is due to the fact that $\psi_1 \in S(\mathbb{R}, \mathbb{C})$.

Let h_2 be a term of the second type given by (3.41). Then,

\begin{equation}
\left\| \chi_\epsilon \frac{\partial^n h_2}{\partial y^n} \right\|_2 = \epsilon^{3} \left\| \chi_\epsilon \frac{\partial^n w_1}{\partial y^n} \right\|_2 \leq \epsilon^{3} \left\| \frac{\partial^n w_1}{\partial y^n} \right\|_{L^2(\mathbb{R} \times (\frac{1}{\epsilon^{\alpha+\gamma}}, \infty))} + \epsilon^{-\alpha} \left\| \frac{\partial^n w_1}{\partial y^n} \right\|_{L^2(\mathbb{R} \times (0, \frac{1}{\epsilon^{\alpha+\gamma}}))}.
\end{equation}

Applying the H^n elliptic estimates to (3.18) on the domain $\mathbb{R} \times (\frac{1}{\epsilon^{\alpha+\gamma}}, +\infty)$ in conjunction with (2.5c), it is easy to show that there exists a constant K, and for every $k \geq 1$, $C_2(k) > 0$, such that for all sufficiently small ϵ we have

\begin{equation}
\left\| \frac{\partial^n w_1}{\partial y^n} \right\|_{L^2(\mathbb{R} \times (\frac{1}{\epsilon^{\alpha+\gamma}}, +\infty))} \leq K \left\| w_1 \right\|_{L^2(\mathbb{R} \times (\frac{1}{\epsilon^{\alpha+\gamma}}, +\infty))} \leq C_2(k) \epsilon^{k(\alpha+\gamma)}.
\end{equation}
The same H^n estimates can also be applied to (3.18) on the domain $\mathbb{R} \times (0, \frac{3}{2}e^{-(\alpha + \gamma)})$, yielding
\[
\left\| \frac{\partial^n w_1}{\partial y^n} \right\|_{L^2(\mathbb{R} \times (0, \frac{3}{2}e^{-(\alpha + \gamma)}) \mathbb{R}^2, C)} \leq K \left\| w_1 \right\|_{L^2(\mathbb{R} \times (0, \frac{3}{2}e^{-(\alpha + \gamma)}) \mathbb{R}^2, C)} \leq C_3 \epsilon^{-(\alpha + \gamma)},
\]
and hence
\[
\left\| \chi \frac{\partial^n h_2}{\partial y^n} \right\|_2 \leq C_2(k) \epsilon^{3+k(\alpha + \gamma)} + C_3 \epsilon^{-(\alpha + \gamma)} e^{-\frac{3}{2} \epsilon - \alpha} \leq C_4(k) \epsilon^{3+k(\alpha + \gamma)}.
\]
Combining the above with (3.49) yields (3.48).

4. Auxiliary estimates. In this section we prove some basic properties of the solution of

\[
\begin{cases}
(A_{0,c} - \lambda) u = g & \text{in } \mathbb{R}^2_+,

u = 0 & \text{on } \partial \mathbb{R}^2_+,
\end{cases}
\]

where the operator $A_{0,c}$ is defined in (1.10) and $g \in \mathcal{S}(\mathbb{R}^2_+, \mathbb{C})$. To describe the topology in $\mathcal{S}(\mathbb{R}^2_+, \mathbb{C})$, we use here the increasing (with respect to k) ϵ-dependent family of norms

\[
g \rightarrow p_k(g) = \sum_{p+q+r+s \leq k} \left\| \rho |x|^p \rho y|^q \frac{\partial}{\partial x} \frac{\partial}{\partial y} g \right\|_2
\]

for $k \in \mathbb{N}$, where

\[
\epsilon = c^{1/3}.
\]

We use this definition in the sequel whenever a norm appears in our calculations, except for the cases where the exact form of the norm should be introduced.

The following equations are needed in the sequel. Let ϕ be any smooth real-valued function with a compact support in \mathbb{R}^2_+. We multiply (4.1) by $\phi^2 \bar{u}$ and integrate to get

\[
\left(\nabla - \frac{i x^2}{2} \delta x \right) (\phi u) \right\|_2^2 - \| u \nabla \phi \|_2^2 + 2i \text{Im} \left(\left(\nabla - \frac{i x^2}{2} \delta x \right) (\phi u), u \nabla \phi \right)_2 + 4c \| u \|_2^2 \phi u \|_2^2
\]

\[
= \lambda \| \phi u \|_2^2 + \langle \phi g, \phi u \rangle_2.
\]

Taking the real part of (4.3) we obtain

\[
\left(\nabla - \frac{i x^2}{2} \delta x \right) (\phi u) \right\|_2^2 = \| u \nabla \phi \|_2^2 + (\text{Re} \lambda) \| \phi u \|_2^2 + \text{Re} \langle \phi g, \phi u \rangle_2.
\]

Lemma 4.1. Let $C > 0$, $c_0 > 0$, and $k \in \mathbb{N}$. There exists a positive constant $C(k)$ such that for any $g \in \mathcal{S}(\mathbb{R}^2_+, \mathbb{C})$, $c \in (0, c_0)$, and $\lambda \in \mathbb{C}$ with $\text{Re} \lambda \leq C$, the solution u of (4.1) satisfies

\[
\| x^k u \|_2 \leq C(k) \left(\| u \|_2 + p_k(g) \right).
\]
Proof. Step 1. For $j \geq 1$, let $\eta_j \in C^\infty(\mathbb{R}, [0, 1])$ satisfy

$$
\eta_j(t) = \begin{cases}
0 & \text{if } t < -1, \\
1 & \text{if } 0 < t < j, \\
0 & \text{if } 2j < t,
\end{cases}
$$

and

$$
|\eta_j'(t)| \leq \frac{C_0}{j} \text{ for all } t \in \mathbb{R}.
$$

Denote further by η_j^+ the restriction of η_j to \mathbb{R}_+. Setting $\phi(x, y) = |x|^{m/2} \eta_j(x) \eta_j^+(y)$ in (4.3) with m a nonnegative integer we get from the real part

$$
\left\| \left(\nabla - i \frac{x^2}{2} \hat{i} y \right) \left(|x|^{m/2} \eta_j \eta_j^+ u \right) \right\|^2_2 = ||(|x|^{m/2} \eta_j \eta_j^+)_{x} u||^2_2
$$

$$
+ \text{Re } \lambda ||| |x|^{m/2} \eta_j \eta_j^+ u||^2_2 + \text{Re } \langle x^m \eta_j^+ u, g \rangle_2.
$$

Letting $k \to +\infty$ then yields

$$
\left\| \left(\nabla - i \frac{x^2}{2} \hat{i} y \right) \left(|x|^{m/2} \eta_j u \right) \right\|^2_2 = ||(|x|^{m/2} \eta_j)_{x} u||^2_2 + \text{Re } \lambda ||| |x|^{m/2} \eta_j u||^2_2 + \text{Re } \langle x^m \eta_j^2 u, g \rangle_2.
$$

We now claim that there exists a constant $K(m)$ depending on m such that

$$
\left\| |x|^{(m+1)/2} \eta_j u \right\|^2_2 \leq K \left\{ ||(|x|^{m/2} \eta_j)_{x} u||^2_2 + \text{Re } \lambda ||| |x|^{m/2} \eta_j u||^2_2 + ||| |x|^{m/2} \eta_j g||^2_2 \right\},
$$

which can be proved by using Theorem 4 in [17] (cf. also (2.24) in [4] and (5.18) in [5]) together with a partition of unity. In fact we can find a constant M_1 such that for any $\psi \in H^{1, \text{max}}_0(\mathbb{R}_+, \mathbb{C})$, we have

$$
\int_{\mathbb{R}_+^2} |B_{kl}| \psi|^2 dx \leq M_1 \left(\left\| \nabla A \psi \right\|^2_2 + \|\psi\|^2_2 \right),
$$

where

$$
B_{kl} = i(\partial_{x_k} - i A_k, \partial_{x_l} - i A_l),
$$

and $[P, Q]$ denotes the commutator of the operators P and Q. For $A = (0, \frac{x^2}{2})$ we have $B_{12} = x$. Hence, from (4.9) we get the existence of $M_2 > 0$ such that

$$
||| |x|^{1/2} \psi||^2_2 \leq M_2 \left\{ \left\| \left(\nabla - i \frac{x^2}{2} \hat{i} y \right) \psi \right\|^2_2 + \|\psi\|^2_2 \right\}.
$$

Clearly, the above inequality is valid for $\psi = |x|^{m/2} \eta_j u$, where m is a nonnegative integer. Consequently,

$$
||| |x|^{(m+1)/2} \eta_j u||^2_2 \leq M_2 \left\{ \left\| \left(\nabla - i \frac{x^2}{2} \hat{i} y \right) \left(|x|^{m/2} \eta_j u \right) \right\|^2_2 + \|\eta_j^2 u\|^2_2 \right\}.
$$

From the above, in conjunction with (4.7), we get (4.8).
Step 2. Based on (4.8) we prove (4.5) invoking inductive arguments. We first consider the case $m = 0$. By (4.8) we have
\[
\left\| x^{1/2} \eta_j u \right\|_2^2 \leq K \left\{ \frac{1}{j} \| u \|_2^2 + \Re \lambda \| u \|_2^2 + \| u \|_2 \| g \|_2 \right\}.
\]
Taking limit as $j \to +\infty$ we obtain
\[
\left\| \mathbf{1}_{\mathbb{R}_+}(x) x^{1/2} u \right\|_2^2 \leq M_3 \left(\| u \|_2^2 + \| u \|_2 \| g \|_2 \right),
\]
where $M_3 = K(0) \max \{ |\lambda|, 1 \}$ and $\mathbf{1}_{\mathbb{R}_+}(x)$ is the characteristic function of the set \mathbb{R}_+. Since $u(-x, y)$ is a solution of (4.1), we apply (4.10) to $u(-x, y)$ and then change the variables $(x, y) \to (-x, y)$ to get
\[
\left\| \mathbf{1}_{\mathbb{R}_-}(x) x^{1/2} u \right\|_2^2 \leq M_3 \left(\| u \|_2^2 + \| u \|_2 \| g \|_2 \right),
\]
from which we easily obtain the existence of C_1 such that
\[
\left\| x^{1/2} u \right\|_2 \leq C_1 \left(\| u \|_2 + \| g \|_2 \right).
\]

Suppose now, by induction, that there exists C_l such that
\[
\left\| x^{(m+1)/2} \eta_j u \right\|_2^2 \leq C_{m+1} \left(\| u \|_2^2 + p_{(m+1)/2}(g) \| u \|_2 \right)
\]
for all $1 \leq l \leq m$, where $[\cdot]$ denotes the integer part of the term in brackets. By (4.8) and (4.11) we get a constant C_{m+1} such that for all j and g,
\[
\left\| x^{(m+1)/2} \eta_j u \right\|_2^2 \leq C_{m+1} \left(\| u \|_2^2 + p_{(m+1)/2}(g) \| u \|_2 \right).
\]
Taking limit as $j \to \infty$ and using again the fact that $u(-x, y)$ is a solution of (4.1), we obtain
\[
\left\| x^{(m+1)/2} u \right\|_2 \leq C_{m+1} \left(\| u \|_2^2 + p_{(m+1)/2}(g) \| u \|_2 \right).
\]
Thus, by induction, (4.11) follows for all $l \geq 1$. In particular, if we set $l = 2k$ in (4.11), then (4.5) easily follows with $C(k) = C_{2k}$.

Lemma 4.2. Let $C > 0$, $c_0 > 0$, and $n \in \mathbb{N}$. There exists $C(n)$ such that for any $g \in \mathcal{S}(\mathbb{R}_+^2, \mathbb{C})$, $\lambda \in \mathbb{C}$ with $|\lambda| \leq C$, and $0 < c < c_0$, the solution u of (4.1) satisfies
\[
\left\| \frac{\partial^n u}{\partial y^n} \right\|_2 \leq C(n) \left(\| u \|_2 + p_{2n}(g) \right).
\]

Proof. Step 1. Taking the limit as $j \to +\infty$ in (4.7), we obtain by (4.5) that for any m, there exists a constant $K_1(m)$ such that
\[
\left\| \left(\nabla - \frac{x^2}{2} i \right) \left(x^{m/2} u \right) \right\|_2^2 \leq K_1(m) \left\{ \| u \|_2^2 + p_{(m+1)/2}(g) \| u \|_2 \right\}.
\]
Using the above together with Cauchy’s inequality we obtain for any m the existence of a constant $K_2(m)$ such that
\[
\| (x^{m/2} u)_x \|_2 + \| x^{m/2} u_y \|_2 \leq K_2(m) \left\{ \| x^{m/2+2} u \|_2 + \| u \|_2 + p_{(m+1)/2}(g) \right\},
\]
and hence, taking \(m = 2k \) in this inequality and using (4.5) we get the existence of a constant \(C_1(k) \) depending on \(k \) such that

\[
(4.13) \quad \|x^k u_x\|_2 + \|x^k u_y\|_2 \leq C_1(k) \left(\|u\|_2 + p_{k+2}(g) \right).
\]

Step 2. Let \(\zeta \in C_0^\infty(\mathbb{R}_+) \) be given by

\[
(4.14) \quad \zeta(t) = \begin{cases} 1 & \text{if } t < 1, \\ 0 & \text{if } t \geq 1, \end{cases}
\]

and

\[0 \leq \zeta \leq 1, \quad |\zeta'| \leq 2.
\]

Let further

\[
(4.15) \quad \zeta_\ell(t) = \zeta(2^{\ell} t).
\]

Clearly, for any \(\ell \),

\[
(4.16) \quad \zeta_\ell \leq \zeta_{\ell - 1}, \quad |\zeta'_\ell| \leq 2^{\ell} \zeta_{\ell - 1}.
\]

In the following, for fixed \(x_0 \) and \(y_0 \) we write

\[
(4.17) \quad \zeta_{\ell,x_0}(x) = \zeta_\ell(|x - x_0|), \quad \zeta_{\ell,y_0}(y) = \zeta_\ell(|y - y_0|).
\]

Let \(\phi = \zeta_{\ell,y_0}(y)\zeta_{\ell,x_0}(x) \) in (4.3) to obtain for the real part

\[
(4.18) \quad \left\| \left(\nabla - i \frac{x^2}{2} \right) \zeta_{\ell,y_0}(y) \zeta_{\ell,x_0}(x) \right\|_2^2 = \Re \lambda \|\zeta_{\ell,y_0}(y)\zeta_{\ell,x_0}(x)\|_2^2 + \|\nabla(\zeta_{\ell,y_0}(y)\zeta_{\ell,x_0}(x))\|_2^2
\]

\[
+ \Re \langle \zeta_{\ell,y_0}(y)\zeta_{\ell,x_0}(x), \zeta_{\ell,y_0}(y)\zeta_{\ell,x_0}(x) \rangle.
\]

Letting \(k \to +\infty \) yields

\[
(4.19) \quad \left\| \left(\nabla - i \frac{x^2}{2} \right) \zeta_{\ell,y_0}(y) \zeta_{\ell,x_0}(x) \right\|_2^2 = \Re \lambda \|\zeta_{\ell,y_0}(y)\|_2^2 + \|\zeta_{\ell,y_0}(y)\|_2^2 + \Re \langle \zeta_{\ell,y_0}(y)\zeta_{\ell,x_0}(x), \zeta_{\ell,y_0}(y)\zeta_{\ell,x_0}(x) \rangle
\]

\[
\leq K_3(\ell) \left(\|\zeta_{\ell-1,y_0}(y)\|_2^2 + \|\zeta_{\ell-1,y_0}(y)\|_2^2 \right),
\]

where \(K_3(\ell) \) depends only on \(\ell \). Here we have used (4.14). From the imaginary part of (4.3) we obtain, after the limit \(k \to \infty \) is taken, that

\[
(4.20) \quad c \|y^{1/2}\zeta_{\ell,y_0}(y)\|_2^2
\]

\[
= \Im \lambda \|\zeta_{\ell,y_0}(y)\|_2^2 + \Im \langle \zeta_{\ell,y_0}(y)\zeta_{\ell,y_0}(y), \zeta_{\ell,y_0}(y) \rangle
\]

\[
\leq |\Im \lambda| \|\zeta_{\ell,y_0}(y)\|_2^2 + \|\zeta_{\ell,y_0}(y)\|_2 \|\zeta_{\ell,y_0}(y)\|_2 + 2 \left\| \left(\nabla - i \frac{x^2}{2} \right) \zeta_{\ell,x_0}(x) \right\|_2 \|\zeta_{\ell,x_0}(x)\|_2.
\]

With the aid of (4.14) and (4.15) we thus obtain for any \(\ell \) the existence of \(C_2(\ell) \geq 1 \) such that

\[
(4.21) \quad c^{1/2} \|y^{1/2}\zeta_{\ell,y_0}(y)\|_2 \leq C_2(\ell) \left(\|\zeta_{\ell-1,y_0}(y)\|_2 + \|\zeta_{\ell-1,y_0}(y)\|_2 \right).
\]
Step 3. We now establish the H^2 estimates of u. Using (4.1) we obtain that

$$
(4.18) \quad \begin{cases}
-\Delta u = -\left[\frac{x^4}{4} - \lambda\right] u - ix^2u_y + \lambda u - i c u + g & \text{in } \mathbb{R}^2_+,

u = 0 & \text{on } \partial \mathbb{R}^2_+.
\end{cases}
$$

For any $x_0 = (x_0, y_0)$ with $x_0 \in \mathbb{R}$ and $y_0 > 0$ and $\ell \in \mathbb{N}$, we let

$$
\zeta_{\ell,x_0,y_0}(x,y) = \zeta_{\ell,x_0}(x) \zeta_{\ell,y_0}(y) \chi_+(y),
$$

where $\chi_+(y)$ is the characteristic function of the positive y-axis. Applying the standard elliptic L^2 estimates to (4.18) and taking $\ell = 4$, we can show that for some constant K_4,

$$
(4.19) \quad \|u\|_{H^2(B(x_0, 2^{-4}))} \leq K_4 \left\{ \left(\|x^4 + 1\|_{L^2(x_0,y_0)} \right) + \|x^2\zeta_{4,x_0,y_0}u_y\|_2 + c\|\zeta_{4,x_0,y_0}u\|_2 + \|\zeta_{4,x_0,y_0}g\|_2 \right\}.
$$

Then we use a sequence of intervals $A_i = (x_i - 2^{-5}, x_i + 2^{-5})$, $i \in \mathbb{Z}$, to cover the x-axis, and a sequence of intervals $B_j = (y_j - 2^{-5}, y_j + 2^{-5})$, $j \in \mathbb{N}$, to cover the positive y axis. We can choose $\{x_i\}$ such that

$$
\sum_{i \in \mathbb{Z}} \frac{1}{1 + |x_i|^2} < \infty.
$$

We set $x_0 = x_i$ and $y_0 = y_j$ in (4.19) and take the sum in i and j to get the existence of K_5 such that

$$
(4.20) \quad \|u\|_{H^2(\mathbb{R}^2_+)} \leq K_5 \left\{ \sum_{i \in \mathbb{Z}} \left[\|x^4\zeta_{4,x_i}u\|_2 + \|x^2\zeta_{4,x_i}u_y\|_2 \right] + c \sum_{j \in \mathbb{N}} \|y\zeta_{4,y_j}u\|_2 + (\|u\|_2 + \|g\|_2) \right\}.
$$

Step 3.1. We now claim that for any integer $k \geq 1$, there exists a constant $C_3(k)$ such that for any i it holds that

$$
(4.21) \quad \|x^k\zeta_{4,x_i}u\|_2 \leq \left(\frac{C_3(k)}{1 + |x_i|^k} \right) (\|u\|_2 + p_{k+4}(g)) \quad \text{for all } k \geq 1.
$$

In the following we denote the constant $C(k)$ in (4.5) by $C_0(k)$. It is easy to show that (4.21) is valid with $C_3(k) \geq 21(1 + 2^k)$ for all i such that $|x_i| \leq 2$. We now assume $|x_i| > 2$. For any $k \geq 1$ we use (4.5) to obtain

$$
C_0(k + 4)(\|u\|_2 + p_{k+4}(g)) \geq \|x^{k+4}u\|_2 \geq \|x^{k+4}\zeta_{4,x_i}u\|_2 \geq \left(\frac{1}{2} \right)^k \|x^4\eta_{4,x_i}u\|_2 \geq \left(\frac{1}{2} \right)^k \|x^4\eta_{4,x_i}u\|_2.
$$

Here we have used the fact that on the support of ζ_{4,x_i}, we have $|x - x_i| \leq 2^{-3}$, yielding that $|x| \geq |x_i| - 2^{-3} \geq (|x_i| + 1)/2$. Hence

$$
(4.22) \quad \|x^4\eta_{4,x}u\|_2 \leq \frac{2^k C_0(k + 4)}{1 + |x_i|^k} (\|u\|_2 + p_{k+4}(g)).
$$
Similarly, we obtain that
\begin{equation}
\|x^2 y_{4,z} u_0\|_2 \leq \frac{2kC_1(k+2)}{1+|x_i|^k}(\|u\|_2 + p_{k+4}(g)),
\end{equation}
where $C_1(k+2)$ is the constant appearing in (4.13). Combining (4.22) and (4.23) yields (4.21).

Step 3.2. Next, we claim that there exists $C_4 > 0$ such that for any j such that $y_j > 2$,
\begin{equation}
c \|y \zeta_{4,y_j} u\|_2 \leq C_4 (\|\zeta_{2,y_j} u\|_2 + p_1(\zeta_{2,y_j} g)).
\end{equation}
To prove (4.24), we first note that for $\ell \geq 2$, if $\zeta_{\ell,y_j}(y) \neq 0$, then $|y - y_j| \leq 2^{1-\ell}$, and hence $y_j/2 \leq y \leq 2y_j$. Using (4.17) we obtain
\[c^{1/2}\left(\frac{y_j}{2}\right)^{1/2} \|\zeta_{4,y_j} u\|_2 \leq c \|y^{1/2} \zeta_{4,y_j} u\|_2 \leq C_2(4) (\|\zeta_{3,y_j} u\|_2 + \|\zeta_{3,y_j} g\|_2).\]
Therefore,
\[\|\zeta_{4,y_j} u\|_2 \leq \frac{2^{1/2}C_2(4)}{c^{1/2}y_j^{1/2}} (\|\zeta_{3,y_j} u\|_2 + \|\zeta_{3,y_j} g\|_2).\]
For the same reason we have
\[\|\zeta_{3,y_j} u\|_2 \leq \frac{2^{1/2}C_2(3)}{c^{1/2}y_j^{1/2}} (\|\zeta_{2,y_j} u\|_2 + \|\zeta_{2,y_j} g\|_2).\]
Using the above two inequalities we have just proved, and noting that $C_2(n) \geq 1$, we obtain that
\[\|\zeta_{4,y_j} u\|_2 \leq \frac{K_6}{c y_j} \left\{ \|\zeta_{2,y_j} u\|_2 + \|\zeta_{2,y_j} g\|_2 + \|\zeta \|_2 \right\}.\]
Since $g \in S(\mathbb{R}_z^+, C)$, the existence easily follows of a constant C_4 such that for any j, g, and $c > 0$,
\[c \|y \zeta_{4,y_j} u\|_2 \leq 2c \|y_j \zeta_{4,y_j} u\|_2 \leq C_4 (\|\zeta_{2,y_j} u\|_2 + p_1(\zeta_{2,y_j} g)).\]
and this completes the proof of (4.24).

For later reference, we repeat the above procedure twice more to obtain for some constant C_5
\begin{equation}
c^2 \|y^2 \zeta_{4,y_j} u\|_2 \leq C_5 (\|\zeta_{0,y_j} u\|_2 + p_2(\zeta_{0,y_j} g)).
\end{equation}

Step 3.3. We now combine (4.20), (4.21), and (4.24) to obtain for any $k \geq 2$
\[\|u\|_{H^k(\mathbb{R}_z^+)} \leq K_5 \sum_{i \in \mathbb{Z}} \frac{C_3(k)}{1+|x_i|^k}(\|u\|_2 + p_{k+4}(g)) + K_5(C_4 + 1) \sum_{j \in \mathbb{N}} (\|\zeta_{2,y_j} u\|_2 + p_1(\zeta_{2,y_j} g)) + K_5(\|u\|_2 + \|g\|_2).\]
Setting $k = 2$ in the above inequality yields the existence of C_6 such that
\begin{equation}
\|u\|_{H^2(\mathbb{R}_z^+)} \leq C_6 (\|u\|_2 + p_6(g)).
\end{equation}
Hence, (4.12) holds for $n = 2$.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
Step 4. To bound the H^1 norm of u we need to bound the H^1 norm of the right-hand side of (4.18), which is bounded by

\[
\| \Delta u \|_{H^1(B_{x_0^2}, \mathbb{C})} \leq \| x^2 u_{yy} \|_2 + \| x^2 u_{xy} \|_2 + \| (x^2 + 1)u_x \|_2 + 4 \| (x^2 + 1)u_y \|_2 \\
+ \| (x^2 + 1)u \|_2 + c \| (y + 1)u \|_2 + c \| y u_x \|_2 + c \| y u_y \|_2.
\]

(4.27)

Once we manage to obtain a bound for the right-hand side of the above inequality, we can use the standard regularity theory for the Dirichlet–Laplacian on the half-space.

Step 4.1. We first compute the terms $\| x^2 u_{yy} \|_2 + \| x^2 u_{xy} \|_2$ in (4.27). Let $D^2 u$ denote the Hessian matrix of u. Using (4.19) we have for any $x_0 \in \mathbb{R}$ and $y_0 > 0$

\[
(x_0^2 + 1) \| D^2 u \|_{L^2(B(x_0, 2^{-i}))} \leq C_7 (x_0^2 + 1) \left\{ \| (x^4 + 1) \zeta_{4,x,x_0,y_0} u \|_2 + \| x^2 \zeta_{4,x,y_0} y u \|_2 + c \| y \zeta_{4,x,x_0,y_0} u \|_2 + \| \zeta_{4,x,x_0,y_0} g \|_2 \right\},
\]

which can be written as

\[
\| (x^2 + 1) D^2 u \|_{L^2(B(x_0, 2^{-i}))} \leq K_7 \left\{ \| (x^4 + 1) \zeta_{4,x,x} u \|_2 + \| (x^4 + 1) \zeta_{4,x,y} y u \|_2 \\
+ 2 \| (x_0^2 + 1)^2 + c^2 y_0^2 \| \zeta_{4,x,x_0,y_0} u \|_2 + \| (x^2 + 1) \zeta_{4,x,y_0} g \|_2 \right\}.
\]

As in Step 3 we cover the x-axis by the intervals $\{ A_i \}$ and cover the positive y-axis by the intervals $\{ B_j \}$. Then, we let $x_0 = x_i$ and $y_0 = y_j$ in the above inequality and then sum in i and j to obtain

\[
\| (x^2 + 1) D^2 u \|_2 \leq K_8 \left\{ \sum_{i \in \mathbb{Z}} \| (x^4 + 1) \zeta_{4,x,x} u \|_2 + \| (x^4 + 1) \zeta_{4,x,y} y u \|_2 + \| (x^2 + 1) \zeta_{4,x,y} g \|_2 \right\} + c^2 \sum_{j \in \mathbb{N}} \| y^2 \zeta_{4,y,y} u \|_2.
\]

(4.28)

We now estimate the terms in the right side of (4.28). For the first two terms we use the same argument as in the proof of (4.21). Thus,

\[
\| (x^4 + 1) \zeta_{4,x,x} u \|_2 + \| (x^4 + 1) \zeta_{4,x,y} y u \|_2 \leq C_5 (k + 2) \left(\| u \|_2 + p_{k+4}(g) \right) \quad \text{for all } k \geq 1.
\]

(4.29)

For the third term we use (4.25) to obtain

\[
c^2 \| y^2 \zeta_{4,x,x,y} y u \|_2 \leq C_5 \left(\| \zeta_{0,y} u \|_2 + p_2(\zeta_{0,y} g) \right).
\]

(4.30)

Now we use (4.29) and (4.30) to bound the terms on the right-hand side of (4.28) and take $k = 2$ to obtain the existence of K_9 and K_{10} such that

\[
\| (x^2 + 1) D^2 u \|_2 \leq K_9 \left\{ \sum_{i \in \mathbb{Z}} \frac{1}{1 + |x_i|^2} \left(\| u \|_2 + p_4(g) \right) + \| (x^2 + 1) \zeta_{4,x,y} g \|_2 \right\} + \sum_{j \in \mathbb{N}} \| \zeta_{0,y} u \|_2 + p_2(\zeta_{0,y} g) \}
\]

(4.31)

\[
\leq K_{10} \left(\| u \|_2 + p_6(g) \right).
\]
Recall that \(\|H\|_2 \leq \lambda \). Hence standard elliptic estimates applied to (4.18) yield
\[
\left\| \nabla - i \frac{x^2}{2} \partial_y \right\| (yu) \right\|^2 _2 = \|u\|^2 _2 + (\text{Re} \lambda) \|yu\|^2 _2 + \text{Re} \langle yg, yu \rangle _2 .
\]
From this we have
\[
c^2 \|y\nabla u\|^2 _2 = c^2 \|\partial_x (yu)\|^2 _2 + c^2 \|\partial_y (yu) - \frac{ix^2}{2} (yu) + \left(\frac{ix^2 y}{2} - 1 \right) u \|^2 _2 \\
\leq 2c^2 \left\| \left(\nabla - i \frac{x^2}{2} \partial_y \right) (yu) \right\|^2 _2 + 2c^2 \left\| \left(\frac{ix^2 y}{2} - 1 \right) u \right\|^2 _2 \\
\leq 8c^2 (\|u\|^2 _2 + \|yg\|^2 _2) + c^4 \|y^2 u\|^2 _2 + \|x^4 u\|^2 _2 .
\]
From the above, with the aid of (4.25) and (4.5), we obtain a constant \(C_8 \) such that
\[
(4.32) \quad c^2 \|y\nabla u\|^2 _2 \leq C_8 (\|u\|^2 _2 + p_4 (g)) .
\]

Step 4.2. We next estimate the term \(c\|y\nabla u\|_2 \) in (4.27). From (4.24) we know
that \(yu \in L^2 (\mathbb{R}^2_x, C) \). Hence, via a density argument, we can apply (4.4) with \(\phi = y \) to get
\[
\left\| \nabla - i \frac{x^2}{2} \partial_y \right\| (yu) \right\|^2 _2 = \|u\|^2 _2 + (\text{Re} \lambda) \|yu\|^2 _2 + \text{Re} \langle yg, yu \rangle _2 .
\]

Step 4.3. The rest of the terms in (4.27) can be easily estimated. From Lemma 4.1 and (4.13) we have
\[
\| (x^2 + 1) u_x \|_2 + 4\| (x^2 + 1) u_y \|_2 + 2\| (x^2 + 1) u \|_2 \leq C_9 (\|u\|_2 + p_4 (g)) ,
\]
and from (4.24) we derive
\[
c\| (y + 1) u \|_2 \leq C_{10} (\|u\|_2 + p_4 (g)) .
\]

Since all the terms on the right-hand side of (4.27) have been estimated we have
\[
\| \Delta u \|_{H^1 (\mathbb{R}^2_x, C)} \leq C_{11} (\|u\|_2 + p_6 (g)) .
\]

Hence standard elliptic estimates applied to (4.18) yield
\[
(4.33) \quad \| u \|_{H^3 (\mathbb{R}^2_x)} \leq C_{12} (\|u\|_2 + p_6 (g)) .
\]

Hence (4.12) holds for \(n = 3 \). Higher order Sobolev norms can similarly be obtained in a recursive manner.

The proof of the next lemma relies on the following elementary implication:
\[
(4.34) \quad \text{For } (a, b) \in \mathbb{R}_+ \times \mathbb{R}_+, \text{ if } X^2 \leq a^2 + bX , \text{ then } X^2 \leq 2a^2 + b^2 .
\]

Lemma 4.3. Let \(c_0 > 0, M > 0, \delta \in (0, 1/2), \alpha \in (0, 2\delta], \) and \(n \in \mathbb{N} \). There
exists a constant \(C_{n, \delta} > 0 \) such that for any \(g \in S (\mathbb{R}^2_x, C) , \) \(c \in (0, c_0) , \) \(\epsilon = c^{1/3} , \) and \(\lambda \in C \) with \(|\lambda - E_0| \leq M \epsilon \), the solution \(u \) of (4.1) satisfies
\[
(4.35) \quad \begin{aligned}
\| x^\alpha \partial^n y^{n-1} u \|_2 &\leq C_{n, \delta} \left\{ \frac{1}{\epsilon^{2+\delta}} \left\| x^\alpha \partial^n u \|_2 \right\| + \epsilon^3 \left\| \partial^{n-1} u \|_2 \right\| + \frac{1}{\epsilon^3} \| x^\alpha \partial^n g \|_2 \right\} \\
&\quad + C_{n, \delta} \epsilon^{-\frac{1}{3} - \delta} (\|u\|_2 + p_{2n} (g)) .
\end{aligned}
\]
Recall that \(\chi_\epsilon \) is defined in (3.45).
Proof. Step 1. Differentiating (4.1) \(n \) times yields

\[
(4.36) \quad (A_{0,c} - \lambda) \frac{\partial^n u}{\partial y^n} = \frac{\partial^n g}{\partial y^n} + i n \epsilon^3 \frac{\partial^{n-1} u}{\partial y^{n-1}} \quad \text{in} \ \mathbb{R}_+^2.
\]

Multiplying (4.36) by \(\chi^2(y) \partial^n \bar{u}/\partial y^n \) and integrating by parts yields for the real part

\[
(4.37) \quad \left\| \left(\nabla - i \frac{x^2}{2} \right) \left(\chi^2 \frac{\partial^n u}{\partial y^n} \right) \right\|^2 = \Re \lambda \left\| \chi \frac{\partial^n u}{\partial y^n} \right\|^2 + \Re \left\langle \chi \frac{\partial^n u}{\partial y^n}, \chi \frac{\partial^n g}{\partial y^n} + i n \epsilon^3 \frac{\partial^{n-1} u}{\partial y^{n-1}} \right\rangle \nonumber
\]

and for the imaginary part

\[
\epsilon^3 \left\| y^{1/2} \chi^2 \frac{\partial^n u}{\partial y^n} \right\|^2 = \Im \lambda \left\| \chi \frac{\partial^n u}{\partial y^n} \right\|^2 + 4n \epsilon^3 \left\| \chi \frac{\partial^n g}{\partial y^n} \right\|^2 + 4n \epsilon^3 \left\| \chi \frac{\partial^{n-1} u}{\partial y^{n-1}} \right\|^2 \nonumber
\]

By (3.47), (4.12), and (4.37), we have that for all \(0 < c < c_0 \),

\[
(4.38) \quad \left\| \left(\nabla - i \frac{x^2}{2} \right) \left(\chi^2 \frac{\partial^n u}{\partial y^n} \right) \right\|^2 \leq C_1 \left\| \chi \frac{\partial^n u}{\partial y^n} \right\|^2 + 2 \left\| \chi \frac{\partial^n g}{\partial y^n} \right\|^2 + 4n \epsilon^3 \left\| \chi \frac{\partial^{n-1} u}{\partial y^{n-1}} \right\|^2 + C_1 e^{-\epsilon^{-\alpha} (\|u\|_2 + p_{2n}(g))^2},
\]

where \(C_1 \), like all other constants introduced in the following, depends on \(M \), \(n \), \(c_0 \), \(\alpha \), and \(\gamma \). In particular we have that

\[
(4.40) \quad \left\| \left(\nabla - i \frac{x^2}{2} \right) \left(\chi^2 \frac{\partial^n u}{\partial y^n} \right) \right\|^2 \leq C_2 (\|u\|_2 + p_{2n}(g)).
\]

Next, we estimate the terms in the right side of (4.38). Since \(\chi' \geq 0 \), the third term in the right side of (4.38) is negative. For the fourth term on the right-hand side of (4.38), we use (3.47), (4.12), and (4.40) to obtain

\[
\left| 2 \Im \left\langle \left(\nabla - i \frac{x^2}{2} \right) \left(\chi^2 \frac{\partial^n u}{\partial y^n} \right), \chi^2 \frac{\partial^n u}{\partial y^n} \right\rangle \right| \leq 2c \gamma \left\| \left(\nabla - i \frac{x^2}{2} \right) \left(\chi^2 \frac{\partial^n u}{\partial y^n} \right) \right\|^2 + C_3 e^{-\epsilon^{-\alpha} (\|u\|_2 + p_{2n}(g))^2}.
\]

From the above and (4.38) we obtain

\[
\epsilon^3 \left\| y^{1/2} \chi^2 \frac{\partial^n u}{\partial y^n} \right\|^2 \leq M \epsilon \left\| \chi \frac{\partial^n u}{\partial y^n} \right\|^2 + \left\| \chi \frac{\partial^n g}{\partial y^n} \right\|^2 + \left\| \chi \frac{\partial^{n-1} u}{\partial y^{n-1}} \right\|^2 + C_3 e^{-\epsilon^{-\alpha} (\|u\|_2 + p_{2n}(g))^2}.
\]

\[
(4.41)
\]
Combining (4.39) with (4.41) yields

\[\epsilon^3 \left\| y^{1/2} \chi \frac{\partial^n u}{\partial y^n} \right\|_2^2 \leq C_4 \epsilon^n \chi \frac{\partial^n u}{\partial y^n} \right\|_2^2 + C_4 \chi \frac{\partial^n g}{\partial y^n} \right\|_2^2
+ C_4 \epsilon^3 \chi \frac{\partial^n u}{\partial y^n} \right\|_2^2 \right\|_2^2 + C_4 C(n) e^{-\alpha} \left(\|u\|_2 + p_2 n(g) \right)^2. \]

Using the above in conjunction with Cauchy’s inequality yields

\[\left\| \chi \frac{\partial^n u}{\partial y^n} \right\|_2 \leq \frac{\epsilon^3}{2} \left\| \chi \frac{\partial^n u}{\partial y^n} \right\|_2^2 + \frac{1}{2 \epsilon^3} \chi \frac{\partial^n g}{\partial y^n} \right\|_2^2. \]

Consequently,

\[\left(y^{1/2} \chi \frac{\partial^n u}{\partial y^n} \right)_2 \leq C_5 \left\{ \frac{1}{\epsilon^3 - \gamma} \left\| \chi \frac{\partial^n u}{\partial y^n} \right\|_2^2 + e^{\epsilon^3} \left\| \chi \frac{\partial^n g}{\partial y^n} \right\|_2^2
+ \frac{1}{\epsilon^3} \left\| \chi \frac{\partial^n u}{\partial y^n} \right\|_2 \right\} \left(\chi \frac{\partial^n u}{\partial y^n} \right)_2 + \frac{1}{\epsilon} e^{-\epsilon} \left(\|u\|_2 + p_2 n(g) \right)^2. \]

Step 2. Multiplying (4.36) by \(y \chi^n(y) \partial^n \bar{u}/\partial y^n \) and integrating by parts yields for the imaginary part

\[\epsilon^3 \left\| \chi \frac{\partial^n u}{\partial y^n} \right\|_2^2 = \Im \lambda \left\| \chi \frac{\partial^n u}{\partial y^n} \right\|_2^2 + \Im \left\langle \chi \frac{\partial^n u}{\partial y^n}, \chi \frac{\partial^n g}{\partial y^n} \right\rangle_2
- ne^{\epsilon^3} \left\langle \chi \left(\frac{\partial^n u}{\partial y^n} \right)_2 \right\rangle_2
+ \Im \left\langle \left(\frac{\partial}{\partial y} - \frac{x}{2} \right) \left(\chi \frac{\partial^n u}{\partial y^n} \right)_2, (\chi \frac{\partial^n u}{\partial y^n} \right\rangle_2. \]

Using again the fact \(\chi(y) \geq 0 \), the third term in the right side of (4.43) is negative, and hence

\[\epsilon^3 \left\| \chi \frac{\partial^n u}{\partial y^n} \right\|_2^2 \leq Me^{\epsilon^3} \left\| \chi \frac{\partial^n u}{\partial y^n} \right\|_2^2 \left\| \chi \frac{\partial^n g}{\partial y^n} \right\|_2^2
+ \left\| \left(\frac{\partial}{\partial y} - \frac{x}{2} \right) \left(\chi \frac{\partial^n u}{\partial y^n} \right)_2 \right\|_2 \left\langle \chi \frac{\partial^n u}{\partial y^n} \right\rangle_2. \]

Note that when \(0 < \epsilon \leq 1 \),

\[y \chi^\epsilon(y) = \begin{cases} y \chi(y) & \text{if } 0 \leq y \leq 1, \\
y^\epsilon \chi \leq e^{-\alpha} \chi(y) & \text{if } 1 < y \leq e^{-(\alpha + \gamma)}, \\
0 & \text{if } e^{-(\alpha + \gamma)} < y, \end{cases} \]

hence

\[\left\| \left(\chi \frac{\partial^n u}{\partial y^n} \right)_2 \right\|_2 \leq 3e^{-\alpha} \left\| \chi \frac{\partial^n u}{\partial y^n} \right\|_2. \]
Finally taking square root of the both sides we get (4.35) with

\[
\|y\chi^2 \frac{\partial^n u}{\partial y^n}\|_{2} \leq \frac{2M}{\epsilon^2} \left(\|y^{1/2} \chi^2 \frac{\partial^n u}{\partial y^n}\|_{2} + \frac{1}{\epsilon^6} \|\chi^2 \frac{\partial^n g}{\partial y^n}\|_{2} \right) + \frac{6}{\epsilon^{3+\alpha}} \left(\nabla - \frac{x^2}{2} \right) \left(\frac{\partial^n u}{\partial y^n} \right) + \frac{1}{\epsilon^6} \|\chi^2 \frac{\partial^n u}{\partial y^n}\|_{2} \cdot
\]

We next substitute (4.39) and (4.42) into (4.46) to obtain

\[
\left\| y\chi^2 \frac{\partial^n u}{\partial y^n}\right\|_{2} \leq C_6 \left\{ \frac{1}{\epsilon^{5-\gamma}} \left(\|\chi^2 \frac{\partial^n u}{\partial y^n}\|_{2} + \epsilon^{1-\gamma} \left(\|\chi^2 \frac{\partial^n-1 u}{\partial y^{n-1}}\|_{2} + \frac{1}{\epsilon^6} \|\chi^2 \frac{\partial^n g}{\partial y^n}\|_{2} \right) + \frac{1}{\epsilon^{3+\alpha}} \left(\|u\|_2 + p_{2n}(g) \right) \left(\|\chi^2 \frac{\partial^n u}{\partial y^n}\|_{2} + \frac{1}{\epsilon^6} \|\chi^2 \frac{\partial^n g}{\partial y^n}\|_{2} \right) \right\}.
\]

Making use of Cauchy's inequality yields

\[
\left\| y\chi^2 \frac{\partial^n u}{\partial y^n}\right\|_{2} \leq C_6 \left\{ \frac{1}{\epsilon^{5-\gamma}} \left(\|\chi^2 \frac{\partial^n u}{\partial y^n}\|_{2} + \epsilon^{1-\gamma} \left(\|\chi^2 \frac{\partial^n-1 u}{\partial y^{n-1}}\|_{2} + \frac{1}{\epsilon^6} \|\chi^2 \frac{\partial^n g}{\partial y^n}\|_{2} \right) \right\}.
\]

Furthermore, it follows from (4.12) that

\[
\frac{e^{-\frac{1}{2} e^{-n}}}{\epsilon^{3+\alpha}} \left(\|u\|_2 + p_{2n}(g) \right) \left(\|\chi^2 \frac{\partial^n u}{\partial y^n}\|_{2} \leq \frac{e^{-\frac{1}{2} e^{-n}}}{\epsilon^{3+\alpha}} \left(\|u\|_2 + p_{2n}(g) \right). \right.
\]

Substituting (4.48a)–(4.48c) back to (4.47) we get

\[
\left\| y\chi^2 \frac{\partial^n u}{\partial y^n}\right\|_{2} \leq C_5 \left\{ \frac{1}{\epsilon^{4+2\delta}} \left(\|\chi^2 \frac{\partial^n u}{\partial y^n}\|_{2} + \epsilon^{2\delta} \left(\|\chi^2 \frac{\partial^n-1 u}{\partial y^{n-1}}\|_{2} + \frac{1}{\epsilon^6} \|\chi^2 \frac{\partial^n g}{\partial y^n}\|_{2} \right) + e^{-\frac{1}{2} e^{-n}} \right(\|u\|_2 + p_{2n}(g) \right)^2 \right\}. \]

Let \(\delta = 1 - \gamma/2 \) (which readily yields \(\alpha < 2\delta \)). Substituting into (4.49) we obtain

\[
\left\| y\chi^2 \frac{\partial^n u}{\partial y^n}\right\|_{2} \leq C_5 \left\{ \frac{1}{\epsilon^{4+2\delta}} \left(\|\chi^2 \frac{\partial^n u}{\partial y^n}\|_{2} + \epsilon^{2\delta} \left(\|\chi^2 \frac{\partial^n-1 u}{\partial y^{n-1}}\|_{2} + \frac{1}{\epsilon^6} \|\chi^2 \frac{\partial^n g}{\partial y^n}\|_{2} \right) + e^{-\frac{1}{2} e^{-n}} \right(\|u\|_2 + p_{2n}(g) \right)^2 \right\}.
\]

Finally taking square root of the both sides we get (4.35) with \(C_{n,\delta} = (C_5)^{1/2} \).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
5. “Outer” estimates. To estimate the resolvent for λ in the vicinity of (3.35) we need to first prove some auxiliary estimates. Note that by (3.31), to the leading order, the eigenfunction corresponding to an eigenvalue near Λ is expected to be proportional to ϕ^*. Thus, we define the following projections from $L^2(\mathbb{R}^4_+, \mathbb{C})$ into $L^2(\mathbb{R}^4_+, \mathbb{C})$

$$P_\parallel = \langle \cdot, \phi^* \rangle_x \phi^*, \quad P_\perp = I - P_\parallel,$$

where $\langle \cdot, \cdot \rangle_x$ denotes the inner product in $L^2(\mathbb{R}, \mathbb{C})$ with respect to the variable x. Then set for any $v \in L^2(\mathbb{R}^4_+, \mathbb{C})$

$$v_\parallel = P_\parallel v, \quad v_\perp = P_\perp v.$$

Then

$$v(x, y) = \phi^*(x)\psi[v](y) + v_\perp(x, y),$$

where

$$\psi[v](y) = \langle v(\cdot, y), \phi^*(\cdot) \rangle_x, \quad y \in \mathbb{R}_+.$$

A useful observation to make is that

$$\frac{\partial^n}{\partial y^n} v(x, y) = \phi^*(x) \frac{\partial^n}{\partial y^n} \psi[v](y) + \frac{\partial^n}{\partial y^n} v_\perp(x, y),$$

and hence

$$\frac{\partial^n}{\partial y^n} P_\perp v(x, y) = P_\perp \frac{\partial^n}{\partial y^n} v_\perp(x, y).$$

The next lemma is necessary to show that the image of functions of small L^2 norm under the resolvent $(A_\pm^+ - \lambda)^{-1}$ lies almost entirely in $P_\parallel L^2(\mathbb{R}^4_+, \mathbb{C})$.

Lemma 5.1. There exists a constant $C_1 > 0$ such that for any $u \in H^1_{\text{mag}}(\mathbb{R}^2_+, \mathbb{C})$ and any $\gamma > 0$ satisfying

$$\|\nabla - i \left[\frac{x^2}{2} + s^*\right]i_y\|^2 u - E_0^*\|u\|^2_2 \leq \gamma^2,$$

it holds that

$$\|u_\perp\|^2_2 \leq C_1 \gamma.$$

Proof. We use the same procedure applied in the proof of Proposition 4.2 in [9]. Assume first $u \in C_c^\infty(\mathbb{R}^2_+, \mathbb{C})$. Then $u_\perp = P_\perp u \in C^\infty(\mathbb{R}^2_+, \mathbb{C})$. Recall the notation

$$\|u\|_2 \equiv \|u\|_{L^2(\mathbb{R}^2_+)} = \|u\|_{L^2(\mathbb{R}^2)} = \|\hat{u}\|_{L^2(\mathbb{R}^2)} \equiv \|\hat{u}\|_2,$$

where as before \hat{u} denotes the partial Fourier transform of the extension to \mathbb{R}^2 of u with respect to y, defined by (2.13).

Step 1. Let

$$\hat{u}^\parallel_0(x, s) = \langle \hat{u}(\cdot, s), \phi_0(\cdot, s) \rangle_x \phi_0(x, s),$$

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
where $\phi_0(\cdot, s)$ is the normalized eigenfunction of \mathcal{M}_s associated with the lowest eigenvalue $E_0(s)$ (see (2.2)), and let \hat{u}_+^s be defined by the following relation

$$
\hat{u} = \hat{u}_\parallel + \hat{u}_\perp^s.
$$

This step entails estimates of $\|\hat{u}_\perp^s\|_2$.

We begin by rewriting (5.2) in terms of \hat{u}:

$$
\int_{\mathbb{R}^2} \left| \partial_x \hat{u} \right|^2 + \left(\frac{x^2}{2} + s^* + s \right) \hat{u}(x, s^* + s) \right| \hat{u} \right|^2 \right) \, dx \, ds \leq \gamma^2 + E_0^* \int_{\mathbb{R}^2} |\hat{u}(x, s^* + s)|^2 \, dx \, ds.
$$

It is easy to show that

$$
(\hat{u}_\parallel^s(\cdot, s^* + s), \hat{u}_\perp^s(\cdot, s^* + s)) = 0 \quad \text{for all } s \in \mathbb{R}.
$$

On the other hand, since for any fixed $s \in \mathbb{R}$, the function

$$
x \mapsto \hat{u}_\parallel^s(x, s^* + s)
$$

is the eigenfunction of $\mathcal{M}_{s^* + s}$ associated with the first eigenvalue $E_0(s^* + s)$, we have

$$
\text{Re} \int_{\mathbb{R}} \left\{ \partial_x \hat{u}_\parallel^s(x, s^* + s) \partial_x \hat{u}_\perp^s(x, s^* + s) \right\} dx
$$

$$
+ \left(\frac{x^2}{2} + s^* + s \right)^2 \hat{u}_\parallel^s(x, s^* + s) \hat{u}_\perp^s(x, s^* + s) \right\} dx = 0.
$$

(The last identity was obtained with the aid of (5.7).) Consequently, we have that

$$
\int_{\mathbb{R}^2} \left\{ \left| \partial_x \hat{u}_\parallel^s \right|^2 + \left(\frac{x^2}{2} + s^* + s \right) \hat{u}_\parallel^s \right|^2 \right) \, dx \, ds
$$

$$
= \int_{\mathbb{R}} E_0(s + s^*) \|\hat{u}_\parallel^s(\cdot, s^* + s)\|_{L^2(\mathbb{R})}^2 \, ds
$$

$$
+ \int_{\mathbb{R}^2} \left| \partial_x \hat{u}_\perp^s \right|^2 + \left(\frac{x^2}{2} + s^* + s \right) \hat{u}_\perp^s \right|^2 \right) \, dx \, ds.
$$

From (5.7) and the variational characterization of the second eigenvalue $E_1(s+s^*)$, we get that the right side of (5.8) is bounded from below by

$$
E_0^* \|\hat{u}_\parallel^s\|_2^2 + E_1^* \|\hat{u}_\perp^s\|_2^2.
$$

Substituting (5.8) back into the left side of (5.6) then yields

$$
E_0^* \|\hat{u}_\parallel^s\|_2^2 + E_1^* \|\hat{u}_\perp^s\|_2^2 - E_0^* \|\hat{u}\|_2^2 \leq \gamma^2.
$$

Consequently,

$$
\|\hat{u}_\perp^s\|_2^2 \leq \frac{\gamma^2}{E_1^* - E_0^*}.
$$
Step 2. By the nondegeneracy of s^* (see [13]), there exists $s_0 \in \mathbb{R}_+$ such that

\begin{equation}
E_0(s^* + s) - E_0^* \geq E_0''(s^*) \frac{s^2}{4}
\end{equation}

for s in $B_0 = \{ s \in \mathbb{R} \mid |s| < s_0 \}$. We now show that there exists $C_3 > 0$ such that for all $u \in C_c^\infty(\mathbb{R}^2_+, \mathbb{C}),$

\begin{equation}
\|\hat{u}\|_{L^2(\mathbb{R}^2 \setminus (s^* + B_0)))} + \|s\hat{u}(\cdot, s^* + \cdot)\|_{L^2(\mathbb{R}^2 \times B_0)} \leq C_3 \gamma.
\end{equation}

To prove (5.12) we use (5.6) and (5.8) to obtain that

\begin{equation}
\int_{\mathbb{R}^2} [E_0(s^* + s) - E_0^*] \hat{u}(x, s^* + s)^2 \, dx ds \leq \gamma^2.
\end{equation}

In view of the uniqueness of s^*, there exists $C_0 > 0$ such that

\[\inf_{s \in \mathbb{R} \setminus B_0} [E_0(s^* + s) - E_0^*] \geq C_0. \]

Combining the above with (5.11) and (5.13) yields (5.12).

Step 3. We now prove (5.3). To this end we use the following decomposition:

\begin{equation}
\|\hat{u}\|_2 \leq \|\hat{u}\|_2 + \|\hat{u} - \hat{u}\|_2 \leq \|\hat{u}\|_2 + \|\hat{u}, \phi^*(\cdot, s^*)\|_2 + \|\hat{u}, (\phi - \phi^*)\|_2.
\end{equation}

The first term on the right-hand side of the last inequality in (5.14) obeys (5.10). It is therefore necessary to estimate the remaining two terms on this side. We first estimate their $L^2(\mathbb{R}^2 \setminus (s^* + B_0))$ norm. Then set

\[C_4 = \sup_{s \in B_0} \int_{\mathbb{R}} \left| \frac{\partial \phi_0}{\partial s}(x, s^* + s) \right|^2 \, dx. \]

Clearly,

\[\sup_{s \in B_0} \|\phi_0(\cdot, s^* + s) - \phi^*(\cdot)\|_{L^2(\mathbb{R})} \leq C_4 s^2, \]

and hence

\begin{equation}
\|\hat{u}(\cdot, s^* + s) - \phi^*(\cdot)\|_{L^2(\mathbb{R})} \leq C_4 \|\hat{u}, (s^* + s)\|_{L^2(\mathbb{R} \times B_0)}.
\end{equation}

In a similar manner we show

\begin{equation}
\|\hat{u}, (\phi - \phi^*)\|_{L^2(\mathbb{R} \times (s^* + B_0))} \leq C_4 \|\hat{u}, (s^* + s)\|_{L^2(\mathbb{R} \times B_0)}.
\end{equation}

The last inequality can be justified using the fact that by Kato’s perturbation theory $s \mapsto \phi_0(\cdot, s^* + s) - \phi^*(\cdot)$ is a holomorphic function in B_0 with values in $L^2(\mathbb{R}, \mathbb{C})$ (cf. Theorem VII-1.7 in [15]). Hence, $\|\phi_0(\cdot, s^* + s) - \phi^*(\cdot)\|_{L^2(\mathbb{R})}$ is a C^1 function in B_0. Also recall that $\|\phi_0(\cdot, s^* + s)\|_{L^2(\mathbb{R})} = 1$.

We now turn to estimate the $L^2(\mathbb{R} \times (\mathbb{R} \setminus (s^* + B_0)))$ norm of the above terms. Clearly,

\[\|\hat{u}, \phi^*(\cdot, s^* + s)\|_{L^2(\mathbb{R} \times (\mathbb{R} \setminus (s^* + B_0)))} \leq \|\hat{u}, (s^* + s)\|_{L^2(\mathbb{R})}. \]
and since
\[\| \phi_0(\cdot, s^* + s) - \phi^*(\cdot) \|_{L^2(\mathbb{R})} \leq \| \phi_0(\cdot, s^* + s) \|_{L^2(\mathbb{R})} + \| \phi^* \|_{L^2(\mathbb{R})} = 2, \]
we obtain that
\[\| \langle \hat{u}, \phi^* \rangle_x \|_{L^2(\mathbb{R} \setminus (S^* + B_0))} \leq 2 \| \hat{u} \|_{L^2(\mathbb{R} \setminus (S^* + B_0))}. \]

In a similar manner we can show that
\[\| \langle \hat{u}, (\phi_0 - \phi^*) \rangle_x \|_{L^2(\mathbb{R} \setminus (S^* + B_0))} \leq 2 \| \hat{u} \|_{L^2(\mathbb{R} \setminus (S^* + B_0))}. \]
Combining the above with (5.15), (5.16), and (5.17) yields
\[\| \langle \hat{u}, (\phi_0 - \phi^*) \rangle_x \phi_0 \|_{L^2(\mathbb{R} \setminus B_0)} \leq 2C_4 \| \hat{u} \|_{L^2(\mathbb{R} \setminus (S^* + B_0))}, \]
which together with (5.14), (5.12), and (5.10) completes the proof of (5.3).

We now use (5.3) to prove the following useful corollary.

Corollary 5.2. Let \(u \in H^{2,\text{mag}}(\mathbb{R}^2_+, \mathbb{C}) \) satisfy
\[(A_{0,c} - \lambda)u = g, \]
where \(g \in L^2(\mathbb{R}^2_+, \mathbb{C}) \) and \(\lambda \in \mathbb{C} \).

1. Let \(\Upsilon \in C^1(\mathbb{R}_+ \cup [0, 1]) \cap \mathcal{W}^{1,\infty}(\mathbb{R}_+ \cup [0, 1]) \) satisfy \(\Upsilon(0) = 0 \). Then
\[\| \Upsilon u \|_2 \leq C_1 \left\{ |\text{Re} \lambda - E_0^*|^{1/2} \| \Upsilon u \|_2 + \| \Upsilon' u \|_2 + \| \Upsilon g \|_2^{1/2} \| \Upsilon u \|_2^{1/2} \right\}. \]

2. Furthermore, if \(P_1 u = 0 \), then there exists a positive constant \(C_2 \) such that if \(|\text{Re} \lambda - E_0^*| \leq 1/(4C_7^2) \),
\[\| \Upsilon u \|_2 \leq C_2 \left\{ \| \Upsilon g \|_2 + \| \Upsilon' u \|_2 \right\}. \]

We note that later on in this section, we choose \(\Upsilon \) to be the cutoff function \(\chi_\epsilon \)
introduced in (3.45) (see Lemma 5.6).

Proof. Step 1. We first prove (i). Suppose first that \(\Upsilon \in C^1(\mathbb{R}_+ \cup [0, 1]) \). Since \(u \in H^{1,\text{mag}}(\mathbb{R}^2_+, \mathbb{C}) \) we have that \(\Upsilon u \in H^{1,\text{mag}}(\mathbb{R}^2_+, \mathbb{C}) \). Multiplying (5.18) by \(\Upsilon^2 \hat{u} \) and integrating over \(\mathbb{R}^2_+ \) we obtain
\[\left\| \left(\nabla - i \left(\frac{x^2}{2} + s^* \right) \right) \Upsilon u \right\|_2^2 - E_0^* \| \Upsilon u \|_2^2 = (\text{Re} \lambda - E_0^*) \| \Upsilon u \|_2^2 + \| \Upsilon' u \|_2^2 + \text{Re} \langle \Upsilon u, \Upsilon g \rangle_2. \]

Denote
\[\gamma = \left(|\text{Re} \lambda - E_0^*| \| \Upsilon u \|_2^2 + \| \Upsilon' u \|_2^2 + |\text{Re} \langle \Upsilon u, \Upsilon g \rangle_2| \right)^{1/2}. \]

Note that \((\Upsilon u)_\perp = \Upsilon u \). Applying Lemma 5.1 to \(\Upsilon u \) we readily obtain (5.19).

Step 2. We next prove (ii). Now we assume \(P_1 u = 0 \). Then
\[P_1(\Upsilon u) = \Upsilon P_1 u = 0, \]

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
and hence
\[(\Upsilon u)_\perp = \Upsilon u.\]

Thus, by applying Lemma 5.1 to \(\Upsilon u\) with \(\gamma\) given above, we obtain
\[(5.21) \quad \|\Upsilon u\|_2^2 \leq C_1^2 \gamma^2 = C_1^2 \left(|\text{Re}\, \lambda - E_0^*| \|\Upsilon u\|_2^2 + \|\Upsilon' u\|_2^2 + |\text{Re}\, (\Upsilon u, \Upsilon g)_2| \right).\]

Since \(\phi^*\) is a real-valued function, \(P_\parallel\) and \(P_\perp\) are self-adjoint operators. Thus
\[\langle \Upsilon u, \Upsilon g \rangle_2 = \langle P_\perp(\Upsilon u), \Upsilon g \rangle_2 = \langle \Upsilon u, P_\perp(\Upsilon g) \rangle_2 = \langle \Upsilon u, \Upsilon g_\perp \rangle_2.\]

Hence
\[\|\Upsilon u\|_2^2 \leq C_1^2 \left(\|\Upsilon u\|_2^2 + \|\Upsilon' u\|_2^2 + C_1^2 \|\Upsilon g_\perp\|_2^2 \right).\]

Next, suppose that
\[|\text{Re}\, \lambda - E_0^*| \leq \frac{1}{4C_1^2}.\]

Substituting the above back into (5.21) yields
\[\|\Upsilon u\|_2^2 \leq C_1^2 \left(\frac{1}{4C_1^2} \|\Upsilon u\|_2^2 + \|\Upsilon' u\|_2^2 + \frac{1}{4C_1^2} \|\Upsilon u\|_2^2 + C_1^2 \|\Upsilon g_\perp\|_2^2 \right) = \frac{1}{2} \|\Upsilon u\|_2^2 + C_1^2 \left(\|\Upsilon' u\|_2^2 + C_1^2 \|\Upsilon g_\perp\|_2^2 \right),\]

from which (5.20) is readily verified.

Step 3. A simple density argument extends the corollary to any \(\Upsilon \in C^1(\mathbb{R}_+, [0, 1]) \cap W^{1, \infty}(\mathbb{R}_+, [0, 1])\) satisfying \(\Upsilon(0) = 0\).

Once the above auxiliary results have been established, we can begin our attempt to estimate the norm \(\|\left(A_c^+ - \lambda\right)^{-1}\|\) for \(\lambda\) lying in a close vicinity of (3.35). Then let
\[(5.22) \quad w = \left(A_c^+ - \lambda\right)^{-1} f,\]

where
\[(5.23) \quad f = (A_{0,c} - \lambda) U_c,\]

and \(U_c\) is given by (3.31). In the following we prove that
\[(5.24) \quad \|w\|_2 \leq \frac{1}{2e^{1/2}}.\]

Once (5.24) has been verified, the eigenvalue estimate would easily follow as we later demonstrate.

We prove (5.24) by negation, that is, we suppose for a contradiction that the following holds.

Assumption 5.3.
\[(5.25) \quad \|w\|_2 \geq \frac{1}{2e^{1/2}}.\]
We note that the above assumption is merely a technical measure. We shall demonstrate in the following that this assumption leads to a contradiction and consequently we verify (5.24). The estimate of $\|(A_c^+ - \lambda)^{-1}\|$ will then be provided in Proposition 7.2. We further note that one can prove (5.24) directly, but that would considerably complicate many of the estimates in what follows.

It easily follows from (3.37), (3.43), and (3.44) that

\[
p_k(f) \leq C(k) \epsilon^{3/2},
\]

where $p_k(f)$ is defined in (4.2). From (5.25) and (5.26) we then get

\[
p_k(f) \leq C(k) \epsilon^3 \|w\|_2.
\]

Let

\[
w = P_{\|w\|} w = \phi^*(x)\psi_0(y), \quad w_{\perp} = P_{\perp} w.
\]

Then

\[
\psi_0(y) = (w(y), \phi^*(\cdot))_x, \quad y \in \mathbb{R}_+.
\]

Recall that (see (3.10))

\[
\psi_0(0) = 0.
\]

Note that ψ_0 depends on ϵ, but for simplicity of notation we do not indicate this fact explicitly.

In the following we derive an estimate for ψ_0. As the outer solution constructed in section 3 depends solely on a slow coordinate $\eta = \epsilon y$, we expect the derivative of the outer solution with respect to y to have smaller norms. The next lemma establishes this fact for $\psi_0(\eta)$.

Lemma 5.4. Suppose that (5.25) holds. Let ϵ_0 and C_0 be both positive. Let $\lambda = \lambda(\epsilon)$ satisfy for $0 < \epsilon < \epsilon_0$

\[
|\text{Re} \lambda - E_0^*| \leq C_0 \epsilon^2.
\]

Then, there exist $C > 0$ and $0 < \epsilon_1 \leq \epsilon_0$ such that for $\epsilon \in (0, \epsilon_1)$,

\[
\|\psi_0'\|_{L^2(\mathbb{R})} \leq C \epsilon \|\psi_0\|_{L^2(\mathbb{R})}.
\]

Proof. Step 1. Recall the notation $A_0 \overset{\text{def}}{=} A_{0,0}$ (see the paragraph after (1.10)) in section 1. Clearly,

\[
\text{Re} \langle \phi^* \psi_0, (A_0 - \lambda)w \rangle_2 = \text{Re} \langle \phi^* \psi_0, (A_0 - \lambda)w \rangle_2 = \text{Re} \langle (A_0 - \lambda) \phi^* \psi_0, w \rangle_2.
\]

Consequently

\[
(E_0^* - \text{Re} \lambda)\|\psi_0\|_{L^2(\mathbb{R})}^2 - \text{Re} \langle \psi_0', \psi_0 \rangle_y + \text{Re} \left(2i \left(\frac{x^2}{2} + s^*\right) \phi^* \psi_0', w \right)_2 = \text{Re} \langle \phi^* \psi_0, f \rangle_2.
\]

In view of (5.30) and since $\phi^* \perp (\frac{x^2}{2} + s^*)\phi^*$ we have that

\[
\|\psi_0\|_{L^2(\mathbb{R})} = (\text{Re} \lambda - E_0^*)\|\psi_0\|_{L^2(\mathbb{R})}^2 + \text{Re} \left(-2i \left(\frac{x^2}{2} + s^*\right) \phi^* \psi_0', w_{\perp} \right)_2 + \text{Re} \langle \phi^* \psi_0, f \rangle_2.
\]
Step 2. From (5.22), (5.31), and (5.27) we get
\[
\left\| \left(\nabla - i \left[\frac{x^2}{2} + s^* \right] \hat{y} \right) w \right\|^2_2 - E_0^* \| w \|^2_2 = (\text{Re} \lambda - E_0^*) \| w \|^2_2 + \text{Re} \langle f, w \rangle_2 \\
\leq C_0 \epsilon^2 \| w \|^2_2 + \| f \|_2 \| w \|_2 \\
\leq (C_0 \epsilon^2 + C_1 \epsilon^3) \| w \|^2_2 \leq C_2 \epsilon^2 \| w \|^2_2.
\]

Then we apply Lemma 5.1 to \(w \) with \(\gamma = \epsilon \sqrt{C_2 \| w \|^2_2} \) to obtain that
(5.34) \[\| w_\perp \|^2_2 \leq C \epsilon \| w \|^2_2. \]

As \[\| w \|^2_2 \leq \| \psi_0 \|^2_2 + \| w_\perp \|^2_2, \]
we have for sufficiently small \(\epsilon \) that
(5.35) \[\| w \|^2_2 \leq 2 \| \psi_0 \|^2_2. \]

Consequently, by (5.27) and (5.35) we have for every \(k \) that
(5.36) \[p_k(f) \leq C_k \epsilon^3 \| \psi_0 \|, \]
and by (5.34)
(5.37) \[\| w_\perp \|^2_2 \leq C \epsilon \| \psi_0 \|^2_2. \]

Thus, by (5.33) we obtain that
\[\| \psi_0' \|^2_2 \leq C \left(\epsilon^2 \| \psi_0 \|^2_2 + \| f \|_2 \| \psi_0 \|^2_2 \right) + C \epsilon^{1/2} \| \psi_0' \|_2 \| \psi_0 \|^2_2. \]

With the aid of (5.36), we readily obtain (5.32).

We have thus shown that the norm of \(\psi_0' \) is small compared to that of \(\psi_0 \), although it is evaluated over both the "inner" and the "outer" regions described in section 3. The norm is small despite the fact that \(\partial w/\partial y \) is expected to be \(\mathcal{O}(1) \) inside the inner region and not necessarily \(\mathcal{O}(\epsilon) \) as in the outer region. This smallness of \(\| \psi_0' \|_2 \) can be attributed to the fact that the leading term in the inner expansion of the quasi mode \(U_\epsilon \) in section 3 is of order \(\mathcal{O}(\epsilon) \).

For higher order derivatives, however, one should not expect that \(\| \psi_0^{(k)} \|_2 \) would be much smaller than \(\| \psi_0^{(k-1)} \|_2 \). Nevertheless, the expected slow variation of \(\psi_0 \) far away from the boundary should yield small norms calculated over the outer region only. We therefore make use of the cutoff function \(\chi_\epsilon \) defined in (3.45) to establish recursive estimates for the "outer norms" of higher order derivatives.

Remark 5.5. Assuming (5.25), it easily follows from (3.48) that
(5.38) \[\left\| \chi_\epsilon \frac{\partial^n f}{\partial y^n} \right\|_2 \leq C_n \epsilon^{n+3} \| \psi_0 \|^2_2. \]
LEMMA 5.6. Under the conditions of Lemma 5.4 (in particular assuming (5.25) and (5.31)) there exist for every \(n \in \mathbb{N} \), \(C_n > 0 \), and \(\epsilon_n > 0 \) such that for \(\epsilon \in (0, \epsilon_n) \),

\[
\| \chi_{\epsilon} \psi_0^{(n+1)} \|_{L^2(\mathbb{R}^+)} \leq C_n \left\{ \epsilon \| \chi_{\epsilon} \psi_0^{(n)} \|_{L^2(\mathbb{R}^+)} + \epsilon^2 \| \chi_{\epsilon} \psi_0^{(n-1)} \|_{L^2(\mathbb{R}^+)} + \| \chi_{\epsilon} \frac{\partial^n w}{\partial y^n} \|_2 \right\}
\]

(5.39a)

\[
\left\| \chi_{\epsilon} \frac{\partial^n w}{\partial y^n} \right\|_2 \leq C_n \left\{ \epsilon \| \chi_{\epsilon} \psi_0^{(n)} \|_{L^2(\mathbb{R}^+)} + \epsilon^2 \left(\| \chi_{\epsilon} \psi_0^{(n-1)} \|_{L^2(\mathbb{R}^+)} + \| \chi_{\epsilon} \frac{\partial^n w}{\partial y^n} \|_2 \right) \right\}
\]

(5.39b)

Proof. Step 1. We prove first (5.39b). Clearly, by the definition of \(w \) we have that

\[
(\mathcal{A}_0 - \lambda) \frac{\partial^n w}{\partial y^n} = \frac{\partial^n f}{\partial y^n} + n \epsilon^2 \frac{\partial^{n-1} w}{\partial y^{n-1}}.
\]

Furthermore, as

\[
\frac{\partial^n w}{\partial y^n} = \phi^*(x) \psi_0^{(n)}(y) + \frac{\partial^n w}{\partial y^n},
\]

we have that

\[
P_\perp \left(\chi_{\epsilon} \frac{\partial^n w}{\partial y^n} \right) = \chi_{\epsilon} \frac{\partial^n w}{\partial y^n}.
\]

Hence we can apply (5.19) to (5.40) with \(\Upsilon \) replaced by \(\chi_{\epsilon} \) and \(u \) by \(\partial^n w/\partial y^n \), and then we use (5.31) to obtain that

\[
\left\| \chi_{\epsilon} \frac{\partial^n w}{\partial y^n} \right\|_2 \leq C_n \left\{ \epsilon \left\| \chi_{\epsilon} \frac{\partial^n w}{\partial y^n} \right\|_2 + \left(\epsilon \left\| \chi_{\epsilon} \frac{\partial^n f}{\partial y^n} \right\|_{1/2} + \epsilon^{3/2} \left\| \chi_{\epsilon} \frac{\partial^{n-1} w}{\partial y^{n-1}} \right\|_{1/2} \right) \right\} \left\| \chi_{\epsilon} \frac{\partial^n w}{\partial y^n} \right\|_{1/2}
\]

\[
+ \left\| \chi_{\epsilon} \frac{\partial^n w}{\partial y^n} \right\|_2 \right\}.\]

With the aid of (3.47), (4.12), (5.35), (5.36), (5.38), and (5.41), we obtain that

\[
\left\| \chi_{\epsilon} \frac{\partial^n w}{\partial y^n} \right\|_2 \leq C_n \left\{ \epsilon \left\| \chi_{\epsilon} \frac{\partial^n w}{\partial y^n} \right\|_2 + \epsilon^{3/2} \left\| \chi_{\epsilon} \frac{\partial^{n-1} w}{\partial y^{n-1}} \right\|_{1/2} \right\} \left\| \chi_{\epsilon} \frac{\partial^n w}{\partial y^n} \right\|_{1/2}
\]

\[
+ \epsilon^{(3+n)/2} \left\| \psi_0 \right\|_{1/2} \left\| \chi_{\epsilon} \frac{\partial^n w}{\partial y^n} \right\|_{1/2} + \epsilon^{-n} \left\| \psi_0 \right\|_{L^2(\mathbb{R}^+)} \right\}.\]

By Cauchy’s inequality we have that

\[
\epsilon^{(3+n)/2} \left\| \psi_0 \right\|_{1/2} \left\| \chi_{\epsilon} \frac{\partial^n w}{\partial y^n} \right\|_{1/2} \leq \epsilon \frac{\epsilon}{2} \left\| \chi_{\epsilon} \frac{\partial^n w}{\partial y^n} \right\|_2 + \frac{\epsilon^{n+2}}{2} \left\| \psi_0 \right\|_2
\]
and that

\[\epsilon^{3/2} \left\| \chi_\epsilon \frac{\partial^{n-1} w}{\partial y^{n-1}} \right\|^2_2 \leq \epsilon \left\| \chi_\epsilon \partial^n w \right\|^2_2 + \epsilon \left\| \chi_\epsilon \frac{\partial^{n-1} w}{\partial y^{n-1}} \right\|^2_2. \]

Hence,

\[\left\| \chi_\epsilon \frac{\partial^n w_1}{\partial y^n} \right\|^2_2 \leq C \left\{ \epsilon^3 \left\| \chi_\epsilon \partial^n w \right\|^2_2 + \epsilon \left\| \chi_\epsilon \frac{\partial^{n-1} w}{\partial y^{n-1}} \right\|^2_2 + \epsilon^{n+2} \left\| \psi_0 \right\|^2_{L^2(\mathbb{R}^+)} \right\}. \]

The above inequality in conjunction with (5.41) readily yields (5.39b) for sufficiently small \(\epsilon \).

Step 2. To prove (5.39a), we multiply (5.40) by \(\chi_\epsilon^2 \phi^* \psi_0^{(n)} \) and integrate by parts to obtain

\[\left\| \chi_\epsilon \psi_0^{(n)} \right\|^2_{L^2(\mathbb{R}^+)} - \left\| \chi_\epsilon \psi_0^{(n)} \right\|^2_{L^2(\mathbb{R}^+)} = \left(E_0 - \Re \lambda \right) \left\| \chi_\epsilon \psi_0^{(n)} \right\|^2_{L^2(\mathbb{R}^+)} + \Re \left\langle 2i \left(\frac{x^2}{2} + s^* \right) \phi^* \chi_\epsilon^{(n)} \frac{\partial^n w_1}{\partial y^n}, \chi_\epsilon \frac{\partial^n w_1}{\partial y^n} \right\rangle \]

\[- \epsilon^3 \Re \left\langle \epsilon i \chi_\epsilon \psi_0^{(n)} \psi_0^{(n+1)} \right\rangle + \Re \left\langle \chi_\epsilon^2 \phi^* \psi_0^{(n)} \chi_\epsilon \frac{\partial^n f}{\partial y^n} \right\rangle. \]

To estimate the second term in the right side of (5.42), we represent it as follows:

\[\Re \left\langle 2i \left(\frac{x^2}{2} + s^* \right) \phi^* \chi_\epsilon^{(n)} \frac{\partial^n w_1}{\partial y^n} \right\rangle \]

\[= \Re \left\langle 2i \left(\frac{x^2}{2} + s^* \right) \phi^* \chi_\epsilon \psi_0^{(n)} \right\rangle \frac{\partial^n w_1}{\partial y^n} \chi_\epsilon \frac{\partial^n w_1}{\partial y^n} \right\rangle \]

\[= \Re \left\langle 2i \left(\frac{x^2}{2} + s^* \right) \phi^* \chi_\epsilon \psi_0^{(n)} \frac{\partial^n w_1}{\partial y^n} \chi_\epsilon \frac{\partial^n w_1}{\partial y^n} \right\rangle \]

\[+ \Re \left\langle 2i \left(\frac{x^2}{2} + s^* \right) \phi^* \chi_\epsilon \psi_0^{(n)} \frac{\partial^n w_1}{\partial y^n} \chi_\epsilon \frac{\partial^n w_1}{\partial y^n} \right\rangle. \]

Using the fact that \(x^2 \phi^* \in L^2(\mathbb{R}) \) together with Cauchy's inequality and (3.47) yields

\[\left\| \left\| \chi_\epsilon \psi_0^{(n)} \right\|^2_{L^2(\mathbb{R}^+)} - \left\| \chi_\epsilon \psi_0^{(n)} \right\|^2_{L^2(\mathbb{R}^+)} \geq (1 - \delta) \frac{1}{\delta} \left\| \chi_\epsilon \psi_0^{(n-1)} \right\|^2_{L^2(\mathbb{R}^+)} - \frac{1}{\delta} \left\| \chi_\epsilon \psi_0^{(n)} \right\|^2_{L^2(\mathbb{R}^+)} \right. \]

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
From the above, (5.31), and (5.42), we get (5.43)
\[\left\| \chi \epsilon \psi_0^{(n+1)} \right\|^2_{L^2(R_+)} \]
\[\leq C_n \left\{ \epsilon^7 \left\| \chi \epsilon \psi_0^{(n)} \right\|^2_{L^2(R_+)} + \left\| \chi \epsilon \psi_0^{(n+1)} \right\|^2_{L^2(R_+)} \right\} + \epsilon^7 \left\| \chi \epsilon \psi_0^{(n)} \right\|^2_{L^2(R_+)} \left\| \chi \epsilon \psi_0^{(n+1)} \right\|^2_{L^2(R_+)} \]
\[+ \epsilon^3 \left\| \chi \epsilon \psi_0^{(n)} \right\|_{L^2(R_+)} \left\| \chi \epsilon \psi_0^{(n+1)} \right\|_{L^2(R_+)} \left\| 2 \frac{\partial^n w_{1n}^{1}}{\partial y^n} \right\|_{L^2(R_+)} \right\} . \]

Next, we use (5.41), then apply (4.12) with \(u = w \) and \(g = f \), and then use (5.35) and (5.36) to bound the \(L^2 \) norms of \(w \) and of \(f \). We obtain
\[\left\| \frac{\partial^n w_{1n}^{1}}{\partial y^n} \right\|^2_{L^2(R_+)} = \left\| \chi \epsilon \psi_0^{(n)} \right\|_{L^2(R_+)} \left\| 2 \frac{\partial^n w_{1n}^{1}}{\partial y^n} \right\|_{L^2(R_+)} \right\} . \]

Hence, (5.39a) readily follows from (5.36) and (5.43).

The next corollary employs (5.39) with \(n = 1, n = 2, \) and \(n = 3 \).

Corollary 5.7. Under the conditions of Lemma 5.4, there exist \(C > 0 \) and \(\epsilon_0 > 0 \) such that for all \(\epsilon \in (0, \epsilon_0) \),
\[\left\| \chi \epsilon \psi_0^{(n+1)} \right\|_{L^2(R_+)} \leq C \epsilon^{1+\gamma} \left\| \psi_0 \right\|_{L^2(R_+)} , \]
\[\left\| \chi \epsilon \psi_0^{(3)} \right\|_{L^2(R_+)} \leq C \epsilon^{1+2\gamma} \left\| \psi_0 \right\|_{L^2(R_+)} , \]
\[\left\| \chi \epsilon \psi_0^{(4)} \right\|_{L^2(R_+)} \leq C \epsilon^{1+3\gamma} \left\| \psi_0 \right\|_{L^2(R_+)} . \]

Proof. We first use (5.39b) with \(n = 1 \) to obtain that
\[\left\| \chi \epsilon \psi_0^{(n+1)} \right\|_{L^2(R_+)} \leq C \epsilon^{1+\gamma} \left\| \psi_0 \right\|_{L^2(R_+)} . \]

Then, substituting (5.32) and (5.37) into (5.45), we obtain that
\[\left\| \chi \epsilon \psi_0^{(n+1)} \right\|_{L^2(R_+)} \leq C \epsilon^{1+\gamma} \left\| \psi_0 \right\|_{L^2(R_+)} . \]

Substituting the above into (5.39a) with \(n = 1 \) and then using (5.32) again yields (5.44a).

The proofs of (5.44b) and (5.44c) follow in exactly the same manner.

From the formal expansion in section 3, we expect \(\psi_0 \) to be, approximately, a solution of (3.23). We thus seek an estimate for \(-\beta \psi_0^\prime + \left[i \epsilon^3 y + E_0^\prime - \lambda \right] \psi_0 \). Recall that (3.23) is obtained formally as a solvability condition for (3.20). Hence, we must provide an approximation for the right-hand side of (3.20) and in particular to the term involving \(v_1 \). Then set
\[w_1(x, y) = -i \phi_0^* \psi_0^\prime + w_1^1(x, y) , \]
we have

\[\| \chi_{\epsilon} \frac{\partial w^1}{\partial y} \|_{L^2(\mathbb{R}^+)} \leq C \epsilon^{1+2\gamma} \| \psi_0 \|_{L^2(\mathbb{R}^+)} , \]

where \(w^1 \) is defined by \(w \) by (5.47).

Proof. Step 1. A straightforward computation leads to

\[(A_{0,c} - \lambda) w^1 = -i(E_0^* - \lambda - i\epsilon^3 y)\phi^*_s \psi'_0 + f + \phi^*[\psi''_0 - (i\epsilon^3 y + E_0^* - \lambda)\psi_0] \]

\[- 2 \left(\frac{x^2}{2} + s^2 \right) \phi^*_s \psi'_0 - i\psi^{(3)}_0 \phi^*_s , \]

which in turn yields

\[(A_{0,c} - \lambda) \frac{\partial w^1}{\partial y} = -i(E_0^* - \lambda - i\epsilon^3 y)\phi^*_s \psi''_0 + f_y + \phi^*[\psi''_0 - (i\epsilon^3 y + E_0^* - \lambda)\psi'_0] \]

\[- 2 \left(\frac{x^2}{2} + s^2 \right) \phi^*_s \psi'(3)_0 - i\psi^{(4)}_0 \phi^*_s . \]

We now use (5.20) to obtain that

\[\| \chi_{\epsilon} \frac{\partial w^1}{\partial y} \|_2 \leq C \left\{ \left\| \chi_{\epsilon} \frac{\partial w^1}{\partial y} \right\|_2^2 + \epsilon^2 \| \chi_{\epsilon} \psi''_0 \|_{L^2(\mathbb{R}^+)} + \epsilon^3 \| \chi_{\epsilon} y \psi''_0 \|_{L^2(\mathbb{R}^+)} + \epsilon^3 \| \chi_{\epsilon} y \psi'_0 \|_{L^2(\mathbb{R}^+)} \right\} . \]

Here we have used (5.1) to obtain \(P_\perp f_y = \frac{\partial^2 f_y}{\partial y^2} \).

As

\[\chi_{\epsilon}(y) \frac{\partial^2 w}{\partial y^2}(\cdot, y) = \phi^*(\cdot) \chi_{\epsilon}(y) y \psi''_0(y) + \chi_{\epsilon}(y) y \frac{\partial^2 w_\perp}{\partial y^2}(\cdot, y) , \quad y \in \mathbb{R}^+, \]

we have

\[\| \chi_{\epsilon} y \psi''_0 \|_{L^2(\mathbb{R}^+)} \leq \left\| \chi_{\epsilon} y \frac{\partial^2 w}{\partial y^2} \right\|_2 . \]

Employing (4.35) with \(n = 2 \) and \(u = w \) yields

\[\left\| \chi_{\epsilon} \frac{\partial^2 w}{\partial y^2} \right\|_2 \leq C_\delta \left\{ \frac{1}{\epsilon^{2+\beta}} \left\| \chi_{\epsilon} \frac{\partial^2 w}{\partial y^2} \right\|_2 + \epsilon^\delta \left\| \frac{\partial w}{\partial y} \right\|_2 + \frac{1}{\epsilon^3} \left\| \chi_{\epsilon} \frac{\partial^2 f}{\partial y^2} \right\|_2 \right\} \]

\[+ C_\delta \epsilon^{-\frac{1}{4}+\alpha} (\| w \|_2 + p_4(f)) \]

\[\leq C_\delta \left\{ \frac{1}{\epsilon^{2+\beta}} \left(\| \chi_{\epsilon} \psi''_0 \|_2 + \left\| \chi_{\epsilon} \frac{\partial^2 w_\perp}{\partial y^2} \right\|_2 \right) + \epsilon^\delta \left\| \frac{\partial w}{\partial y} \right\|_2 + \frac{1}{\epsilon^3} \left\| \chi_{\epsilon} \frac{\partial^2 f}{\partial y^2} \right\|_2 \right\} \]

\[+ C_\delta \epsilon^{-\frac{1}{4}+\alpha} (\| w \|_2 + p_4(f)) . \]
Therefore, we find that
\[
\|\chi y\psi_0''\|_{L^2(\mathbb{R}_+)} \leq \left\| \chi y \frac{\partial^2 w}{\partial y^2} \right\|_2
\]
\[
\leq C_\delta \left\{ \frac{1}{\epsilon^{2+\beta}} \left(\|\chi y\psi_0''\|_{L^2(\mathbb{R}_+)} + \|\chi y \frac{\partial^2 w}{{\partial y}^2}\|_2 \right)
+ \epsilon^\delta \left(\|\chi \psi_0''\|_2 + \|\chi \frac{\partial^2 w}{{\partial y}^2}\|_2 \right) + \frac{1}{\epsilon^\beta} \|\chi \frac{\partial^2 f}{{\partial y}^2}\|_2 \right\} + C e^{-\frac{y}{\epsilon}} \left(\|w\|_2 + p_4(f) \right).
\]
By (5.39b) with \(n = 2 \) we have
\[
\|\chi \frac{\partial^2 w}{{\partial y}^2}\|_2 \leq C \left\{ \epsilon^2 \|\chi \psi_0''\|_{L^2(\mathbb{R}_+)} + \epsilon^2 \left(\|\chi \frac{\partial w}{{\partial y}}\|_2 + \|\chi \psi_0''\|_{L^2(\mathbb{R}_+)} \right) \right\},
\]
which together with (5.27), (5.44), and (5.46) yields
\[
\|\chi \frac{\partial^2 w}{{\partial y}^2}\|_2 \leq C \left\{ \epsilon^{1+2\gamma} \|\chi \psi_0''\|_{L^2(\mathbb{R}_+)} + \epsilon \|\psi_0\|_{L^2(\mathbb{R}_+)} \right\}.
\]
Substituting the above together with (5.27), (5.44), and (5.46) into (5.51) leads to
\[
\|\chi y\psi_0''\|_{L^2(\mathbb{R}_+)} \leq \frac{C_\delta}{\epsilon^\delta} \|\psi_0\|_{L^2(\mathbb{R}_+)}.
\]
Substituting the above inequality, (3.37), (3.47), (4.35), and (5.44) into (5.50) verifies (4.48).

We can now complete the outer estimates by showing that away from the boundary, for \(y^{-1} = O(\epsilon) \), one of the solutions of (3.23) can serve as a good approximation for \(\psi_0 \).

Proposition 5.9. Under the conditions of Lemma 5.4, there exist \(C > 0 \) and \(\epsilon_0 > 0 \) such that, for \(\epsilon \in (0, \epsilon_0) \),
\[
\|\chi (- \beta \psi_0'' + [i\epsilon^3 y + E_0^* - \lambda] \psi_0)\|_2 \leq C \epsilon^{2\gamma+1} \|\psi_0\|_{L^2(\mathbb{R}_+)},
\]
where \(\beta = \frac{1}{2} E_0^* (s^*) \).

Proof. Taking the inner product in \(L^2(\mathbb{R}, \mathbb{C}) \) of (5.49) with \(\phi^*(x) \) yields
\[
-\beta \psi_0'' + [i\epsilon^3 y + E_0^* - \lambda] \psi_0 = -2i \left\langle \frac{x^2}{2} + s^* \right\rangle \frac{\partial w^1}{{\partial y}} + \langle f, \phi^* \rangle.
\]
Consequently,
\[
\|\chi (- \beta \psi_0'' + [i\epsilon^3 y + E_0^* - \lambda] \psi_0)\|_{L^2(\mathbb{R}_+)} \leq C \left\| \chi \frac{\partial w^1}{{\partial y}} \right\|_2 + \|f\|_2.
\]
With the aid of (3.47), (3.36), and (4.48), we can now complete the proof of (5.52).
Remark 5.10. Let \(\mu = (E_0^* - \lambda)/\epsilon^2 \). By applying the transformation \(\eta = \epsilon y \) in (5.52) we obtain for
\[
\Psi(\eta) = \psi_0 \left(\frac{\eta}{\epsilon} \right), \quad \zeta(\eta) = \chi_\epsilon \left(\frac{\eta}{\epsilon} \right)
\]
the following for any \(\delta > 0 \):
\[
(5.54) \quad \| \zeta \left(-\beta\Psi''(\eta) + [i\eta - \mu]\Psi(\eta)\right)\|_{L^2(\mathbb{R}_+)} \leq C_\delta \epsilon^{1/2-\delta} \| \Psi \|_{L^2(\mathbb{R}_+)}.
\]
This manifests the validity of (3.23) in the outer region.

6. “Inner” estimates. In section 3 we obtained the equation governing the behavior of \(\psi_0 \) in the outer region (namely, (3.23)). Obviously, \(\psi_0 \) decays as \(y \to +\infty \). Nevertheless, a boundary condition at the lower “edge” of the outer region needs to be established. In this regard, it is simply not enough to rely on the fact that \(\psi_0(0) = w(x,0) = 0 \), since the boundary condition has to be prescribed at some \(y_0 \sim \epsilon^{-1+\delta} \), wherein \(0 < \delta < 1/2 \). The next lemma allows us to obtain a bound on \(\psi_0(y_0) \).

Lemma 6.1. Let \(w \) satisfy
\[
(6.1) \quad \begin{cases} (A_{0,c} - \lambda)w = f & \text{in } \mathbb{R}^2_+, \\ w = 0 & \text{on } \partial \mathbb{R}^2_+ \end{cases}
\]
with \(f \in S(\mathbb{R}^2_+, \mathbb{C}) \) and \(\lambda \in \rho(A_+) \). Assume \(\lambda \) satisfies
\[
(6.2) \quad |\text{Re } \lambda - E_0^*| \leq 1.
\]
Then for any \(\delta > 0 \) there exists \(k = k(\delta) \in \mathbb{N} \) such that
\[
(6.3) \quad \left\| \frac{\partial w}{\partial y} \right\|_2^2 \leq C_\delta \left\{ |\text{Re } \lambda - E_0^*|^{1-\delta} \|w\|_2^2 + (p_k(f))^2 \right\} + |\text{Re } \lambda - E_0^*|^{-\delta} \|w\|_2 \|f\|_2.
\]

Proof. The proof follows the same steps of the proof of (2.14f). Multiplying (6.1) by \(\tilde{w} \) and integrating by part we obtain
\[
\left\| \left(\nabla - i \left[\frac{x^2}{2} + s^* \right] \right) \tilde{w} \right\|_2^2 - \text{Re } \lambda \|w\|_2^2 = \text{Re } \langle w, f \rangle_2.
\]
Let \(\tilde{w} \) denote, once again, the partial Fourier transform with respect to \(y \) of the extension of \(w \) to \(H^1(\mathbb{R}^2, \mathbb{C}) \) defined in (2.12) and (2.13). We next employ the decomposition (2.17)
\[
(6.4) \quad \begin{align*}
\tilde{w}(x,s) &= \tilde{w}_{\parallel,s}(x,s) + \tilde{w}_{\perp,s}(x,s), \\
\tilde{w}_{\parallel,s}(x,s) &= \tilde{b}(s^* + s) \phi_0(x, s^* + s), \\
\tilde{b}(s^* + s) &= 1_{[s^* -1, s^* +1]}(s^* + s) \langle \tilde{w}(:, s), \phi_0(:, s^* + s) \rangle_{L^2(\mathbb{R})}.
\end{align*}
\]
Then, we conclude in exactly the same manner as in the derivation (2.23) that
\[
(6.5) \quad \| \tilde{b}(s^* + \cdot) \|_{L^2(\mathbb{R})}^2 + \| \tilde{w}_{\perp,s} \|_{L^2(\mathbb{R}^2)}^2 \leq C (|\text{Re } \lambda - E_0^*| \|w\|_2^2 + \|w\|_2 \|f\|_2).
\]
Furthermore, using the same argument leading to (2.25) we obtain
\[
\left\| \frac{\partial w_{\perp,s}}{\partial y} - i \left(\frac{x^2}{2} + s^* \right) w_{\perp,s} \right\|_{L^2(\mathbb{R}^2)}^2 \leq |\text{Re} \lambda - E_0^*| \|w\|_2^2 + \langle w, f \rangle_2 + E_0^* \|w_{\perp,s}\|_{L^2(\mathbb{R}^2)}^2.
\]
Combining the above with (6.5) yields
\[
(6.6) \quad \left\| \frac{\partial w_{\perp,s}}{\partial y} \right\|_{L^2(\mathbb{R}^2)}^2 \leq C \left(|\text{Re} \lambda - E_0^*| \|w\|_2^2 + \|w\|_2 \|f\|_2 \right) + \left\| \left(\frac{x^2}{2} + s^* \right) w_{\perp,s} \right\|_{L^2(\mathbb{R}^2)}^2.
\]
In view of (6.4) we have that
\[
\left\| \left(\frac{x^2}{2} + s^* \right) w_{\perp,s} \right\|_{L^2(\mathbb{R}^2 \setminus [-L,L] \times \mathbb{R}_+)} \leq \left\| \left(\frac{x^2}{2} + s^* \right) w \right\|_{L^2(\mathbb{R}^2 \setminus [-L,L] \times \mathbb{R}_+)} + \left\| \left(\frac{x^2}{2} + s^* \right) w \right\|_{L^2(\mathbb{R}^2 \setminus [-L,L] \times \mathbb{R}_+)}.
\]
By (4.5) for all \(L > 1 \) and \(k \in \mathbb{N} \) we have
\[
\left\| \left(\frac{x^2}{2} + s^* \right) w \right\|_{L^2(\mathbb{R}^2 \setminus [-L,L] \times \mathbb{R}_+)} \leq \frac{C_k}{L^k} \left(\|w\|_2 + p_k(f) \right).
\]
Similarly, from the well-known properties of the eigenfunctions of the anharmonic oscillator [12] we learn that
\[
\left\| \left(\frac{x^2}{2} + s^* \right) w_{\perp,s} \right\|_{L^2(\mathbb{R}^2 \setminus [-L,L] \times \mathbb{R})} \leq \frac{C_k}{L^k} \|w_{\perp,s}\|_{L^2(\mathbb{R}^2)} \leq \frac{C_k}{L^k} \|w\|_2.
\]
Consequently, for all \(L > 1 \) we have
\[
\left\| \left(\frac{x^2}{2} + s^* \right) w_{\perp,s} \right\|_{L^2(\mathbb{R}^2)} \leq C L^2 \|w_{\perp,s}\|_2 + \frac{C_k}{L^k} \left(\|w\|_2 + p_k(f) \right).
\]
For a given \(k \geq 1 \), we choose
\[
L = |\text{Re} \lambda - E_0^*|^{-1/(k+4)}
\]
to obtain with the aid of (6.5) that
\[
\left\| \left(\frac{x^2}{2} + s^* \right) w_{\perp,s} \right\|_{L^2(\mathbb{R}^2)}^2 \leq C_k \|\text{Re} \lambda - E_0^*\|^{k/(k+4)} \left(\|w\|_2^2 + (p_k(f))^2 \right) + C \|\text{Re} \lambda - E_0^*\|^{-4/(k+4)} \|f\|_2 \|w\|_2.
\]
Substituting this into (6.6), the lemma readily follows by choosing \(k \) to be so large so that \(4/(k+4) < \delta \).

Relying on (6.3) we obtain the following estimate.

Lemma 6.2. Assume that
\[
(6.7) \quad |\text{Re} \lambda - E_0^*| \leq C e^2
\]
and let f satisfy (3.36). Suppose further that w satisfies (5.25) and let ψ_0 be defined by w in (5.28). Finally let $\eta = \epsilon y$ and $\Psi(\eta) = \psi_0(\eta/\epsilon)$. Then, for all $\delta > 0$, there exists $C_\delta > 0$ such that

\begin{equation}
|\Psi(\eta)| \leq C_\delta \epsilon^{-\delta} (2\eta)^{1/2} \|\Psi\|_{L^2(\eta, +\infty)} \quad \text{for all } \eta \in (0, \epsilon C_\delta^{-1/2}).
\end{equation}

\textbf{Proof.} As $w(x, 0) \equiv 0$, we have, for any $R > 0$,

\[
\int_R \left| w(x, y) \right|^2 dx = \int_R \left| w(x, y) - w(x, 0) \right|^2 dx = \int_R \int_0^y \left| \frac{\partial w}{\partial y_1} \right|^2 dy_1 dx \leq \int_R y \int_0^y \left| \frac{\partial w}{\partial y_1} \right|^2 dy_1 dx \leq y \left\| \frac{\partial w}{\partial y} \right\|_2^2.
\]

By (3.37), (5.25), (5.28), and (6.3), we then have that for all $\delta > 0$ there exists some $k(\delta) \in \mathbb{N}$ such that

\[
|\psi_0(y)|^2 \leq \int_R \left| w(x, y) \right|^2 dx \leq y C_\delta \left\{ |\text{Re} \lambda - E_0^*|^{1-\delta} \|w\|_2^2 + |\text{Re} \lambda - E_0^*|^{-\delta} \|w\|_2 \|f\|_2 \right\}.
\]

It readily follows from (5.27), (5.35), and (6.7) that

\[
|\psi_0(y)|^2 \leq C_\delta y \epsilon^{2(1-\delta)} \|\psi_0\|_2^2.
\]

Applying the transformation $\eta = \epsilon y$ we obtain that

\[
|\Psi(\eta)|^2 \leq C_\delta \epsilon^{-2\delta} \|\Psi\|_2^2.
\]

To complete the proof we use the above inequality to obtain by integration that

\begin{equation}
\int_0^\eta |\Psi(\zeta)|^2 d\zeta \leq C_\delta \frac{\eta^2}{2} \epsilon^{-2\delta} \|\Psi\|_2^2.
\end{equation}

Hence, for η satisfying

\[
0 < \eta < \epsilon^\delta C_\delta^{-1/2},
\]

we obtain that

\[
\|\Psi\|_2^2 \leq 2 \int_{\eta}^{+\infty} |\Psi(\zeta)|^2 d\zeta,
\]

from which (6.8) readily follows. \qed

7. \textbf{Proof of Theorem 1.2.} Let $\mathcal{L} : D(\mathcal{L}) \to L^2(\mathbb{R}_+, \mathbb{C})$ be defined as

\[
\mathcal{L} = -\frac{d^2}{d\eta^2} + i\eta,
\]

where

\[
D(\mathcal{L}) = \{ u \in H^1_0(\mathbb{R}_+, \mathbb{C}) : \mathcal{L}u \in L^2(\mathbb{R}_+) \}.
\]

It is well known [3, 14] that $\sigma(\mathcal{L})$ consists of a countable set of eigenvalues $\{\mu_n\}_{n=1}^{\infty}$ with

\[
\mu_n = e^{-i2\pi/3} \alpha_n,
\]

\[
\alpha_n = \alpha_0 + \frac{2\pi n}{3},
\]

\[
\alpha_0 = \frac{2\pi}{3} \left(\frac{1}{2} \right)^{1/2}.
\]
where \(\{\alpha_n\}_{n=1}^{\infty} \subset \mathbb{R} \) denotes the decreasing sequence of the zeroes of the Airy function on the negative real axis. Set

\[
 r = \frac{|\alpha_2 - \alpha_1|}{2}.
\]

To prove Theorem 1.2 we need first the following proposition.

Proposition 7.1. There exists \(C > 0 \) such that

\[
 \| (L - \mu)^{-1} \| \leq \frac{C}{|\mu - \mu_1|} \quad \text{for all } \mu \in B(\mu_1, r),
\]

where \(\mu_1 \) is the leftmost eigenvalue of the operator \(L \).

Proof. The Riesz–Schauder theory of compact operators allows us to represent the resolvent of \(L \) in the form

\[
 (L - \mu)^{-1} = \frac{1}{\mu - \mu_1} \Pi_{\mu_1} + T_\mu,
\]

where \(T_\mu \) is bounded in \(B(\mu_1, r) \) (cf. (16.1) in [2]) and \(\Pi_{\mu_1} \) is the projector (defined by the Dunford integral) associated with \(\mu_1 \). The proposition readily follows. \(\square \)

We can now prove the following estimate for the resolvent.

Proposition 7.2. Let, for \(\epsilon > 0 \), \(\Lambda \) be given by (3.35) and \(f \) be given by (3.36). Then, for every \(\theta \in (0, 1/6) \) there exist \(C_\theta > 0 \) and \(\epsilon_\theta > 0 \) such that for all \(\lambda \) satisfying

\[
 |\lambda - \Lambda| = C_\theta \epsilon^{13/6 - \theta},
\]

we have, for \(\epsilon \in (0, \epsilon_\theta) \),

\[
 \|(A^+_\epsilon - \lambda)^{-1}f\|_2 \leq \frac{1}{2\epsilon^{1/2}}.
\]

Proof. We recall that to obtain the estimates in sections 5 and 6, we assumed (5.25) by negation. Therefore, if we reach a contradiction, (7.2) would immediately follow. For \(\Psi(\eta) = \psi_0(\eta/\epsilon) \) defined in Remark 5.10 let

\[
 g(\eta) = -\beta \Psi''(\eta) + (i\eta - \mu)\Psi(\eta),
\]

where \(\beta = \frac{1}{2}E''_0(s^\epsilon) \) and \(\mu = (\lambda - E_0^\epsilon)/\epsilon^2 \). By (5.54) for every \(\delta > 0 \), we have that

\[
 \|g\|_{L^2(\epsilon^\delta, \infty)} \leq C_\delta \epsilon^{1/2 - \delta} \|\Psi\|_{L^2(\epsilon^\delta, \infty)}.
\]

Given any \(\theta \in (0, 1/6) \), take \(\delta = \theta \) and \(\eta_0 = \epsilon^{1/3} \). By (6.8), for all \(\epsilon > 0 \) sufficiently small (such that \(\epsilon^{1/2} < \epsilon^\theta/C_\theta^{1/2} \)) we have that

\[
 |\Psi(\eta_0)| \leq \tilde{C}_\theta \epsilon^{1/6 - \theta} \|\Psi\|_{L^2(\eta_0, \infty)}.
\]

Applying the transformation \(\eta \to \beta^{-1/3}(\eta - \eta_0) \) to (7.3), we obtain the following problem for \(\Psi \):

\[
 \begin{cases}
 (L - \nu)\Psi = g & \text{in } \mathbb{R}_+,
 \\
 \Psi(0) = \Psi_1,
 \end{cases}
\]
where $\Psi_1 = \Psi(\eta_0)$. In the above

$$\nu = \beta^{-1/3}(\mu - i e^{1/6}),$$

(7.5)

$$\|g\|_{L^2(\mathbb{R}_+)} \leq C e^{1/6} \|\Psi\|_{L^2(\mathbb{R}_+)},$$

$$|\Psi_1| \leq \tilde{C}_\theta e^{1/6 - \theta} \|\Psi\|_{L^2(\mathbb{R}_+)}. $$

Next we write

(7.6)

$$\Psi(\eta) = \Phi(\eta) + \Psi_1 A_i \left(\frac{e^{i\pi/6} (\eta + i \nu)}{A_i(e^{i\pi/3} \nu)} \right),$$

where A_i denotes the Airy function [1] and

$$\Phi = (L - \nu)^{-1} g.$$

By (7.1) we have that

(7.7)

$$\|\Phi\|_{L^2(\mathbb{R}_+)} \leq \frac{C}{|\nu - \mu_1|} \|g\|_{L^2(\mathbb{R}_+)} \leq C \frac{e^{1/6}}{|\nu - \mu_1|}.$$

Furthermore, as

$$|A_i(e^{i2\pi/3} \nu)| = |A'_i(\alpha_1)(e^{i2\pi/3} \nu - \alpha_1) + o(\nu - \mu_1)| \leq C|\nu - \mu_1|,$$

a straightforward computation yields

$$\int_0^\infty \frac{|A_i(e^{i\pi/6} (\eta + i \nu))|^2 d\eta}{|A_i(e^{i\pi/3} \nu)|^2} \leq \frac{C}{|\nu - \mu_1|^2}. $$

Combining (7.5), (7.6), and (7.7) yields

$$\|\Psi\|_{L^2(\mathbb{R}_+)} \leq C(\theta) \frac{e^{1/6 - \theta}}{|\nu - \mu_1|} \|\Psi\|_{L^2(\mathbb{R}_+)}. $$

Recall that

$$|\lambda - \Lambda| = \beta^{2/3} |\nu - \mu_1|.$$

Thus, for $\epsilon > 0$ small and

$$|\nu - \mu_1| \geq \frac{2}{C(\theta)}.$$

it follows that $\Psi \equiv 0$, which clearly contradicts (5.25). \qed

Proof of Theorem 1.2. We now use the same technique as in [5]. Let U_ϵ be given by (3.34) and f by (3.36). Clearly,

$$(A^+_c - \lambda)^{-1} U_\epsilon = \frac{1}{\lambda - \Lambda} [U_\epsilon - (A^+_c - \lambda)^{-1} f].$$

Hence for all $0 < \theta < 1/6$ we have

$$\int_{\partial B(\Lambda, C_\theta e^{13/6 - \theta})} (A^+_c - \lambda)^{-1} U_\epsilon \ d\lambda = \int_{\partial B(\Lambda, C_\theta e^{13/6 - \theta})} \frac{1}{\lambda - \Lambda} (A^+_c - \lambda)^{-1} f \ d\lambda + 2\pi i U_\epsilon.$$
By (3.44) and (7.2) we then have
\[
\frac{1}{2\pi} \left\| \oint_{\partial B(\Lambda, C_{\theta}^{13/6-\epsilon})} (A_c^+ - \lambda)^{-1} U_c d\lambda \right\|_2 \\
\geq \frac{1}{2\epsilon^{1/2}} - C - \left\| \oint_{\partial B(\Lambda, C_{\theta}^{13/6-\epsilon})} \frac{1}{\lambda - \Lambda} (A_c^+ - \lambda)^{-1} f d\lambda \right\|_2 \\
\geq \frac{1}{2\epsilon^{1/2}} - C - C'.
\]
For sufficiently small \(\epsilon \) we thus obtain
\[
\oint_{\partial B(\Lambda, C_{\theta}^{13/6-\epsilon})} (A_c^+ - \lambda)^{-1} d\lambda \neq 0.
\]
It follows that \((A_c^+ - \lambda)^{-1}\) is not holomorphic in the disc \(B(\Lambda, C_{\theta}^{13/6-\epsilon})\) and hence an eigenvalue of \(A_c^+\) must exist there.

Acknowledgments. One of the anonymous referees is acknowledged for suggesting the present proof of Lemma 5.1. Y. Almog also wishes to thank the Department of Mathematics at Technion and his host Professor Itai Shafrir for supporting his visit there while this research was in progress.

REFERENCES

