THE STABILITY OF THE NORMAL STATE OF SUPERCONDUCTORS IN THE PRESENCE OF ELECTRIC CURRENTS

Y. ALMOG

Abstract. The stability of the normal state of superconductors in the presence of electric currents is studied in the large domain limit. The model being used is the time-dependent Ginzburg–Landau model, in the absence of an applied magnetic field, and with the effect of the induced magnetic field being neglected. We find that if the current is nowhere perpendicular to the boundary, or if the minimal current on the boundary, at points where it is perpendicular to it, is greater than the critical current in the one-dimensional case, then the normal state is stable. We also prove some short-time instability when the current is both perpendicular to the boundary and smaller than the one-dimensional critical current.

Key words. superconductivity, Ginzburg–Landau, electric current, non–self-adjoint

AMS subject classifications. 82D55, 35P10, 35P15

DOI. 10.1137/070699755

1. Introduction. It is well known that when a superconductor is placed at a temperature lower than the critical one, it loses its electrical resistivity. This means that current can flow through a superconducting sample with a vanishingly small voltage drop. If one raises the current above a certain critical level, superconductivity will be destroyed and the material would revert to the normal state, even if the temperature is kept fixed below the critical one.

The reverse experiment can also be considered. One can flow a strong current through the sample which would set it in the normal state. Then, if we lower the current, there is a critical current where the sample would abruptly become purely superconducting. Though the two experiments substantially differ from each other from a theoretical point of view, hysteresis was not experimentally observed in the current-voltage characteristics of the sample [8, 14, 15].

We consider here the second experiment. To this end we must analyze the stability of the normal state. The model we use in this work is the time-dependent Ginzburg–Landau model [7, 4], presented here in a dimensionless form as follows:

\[
\begin{align*}
\frac{\partial \psi}{\partial t} + i \phi \psi &= (\nabla - iA)^2 \psi + \psi (1 - |\psi|^2) \quad \text{in } \Omega, \\
-\kappa^2 \nabla \times (\nabla \times A) - \sigma \left(\frac{\partial A}{\partial t} + \nabla \phi \right) &= i \left(\psi \nabla \psi - \psi \nabla \bar{\psi} \right) + |\psi|^2 A \quad \text{in } \Omega, \\
\psi &= 0 \quad \text{on } \partial \Omega_c, \\
(i \nabla + A) \psi \cdot \nu &= 0 \quad \text{on } \partial \Omega_i.
\end{align*}
\]
In (1.1) ψ is the superconducting order parameter, so that $|\psi|$ represents the number density of superconducting electrons. Superconductors for which $|\psi| = 1$ are said to be wholly superconducting, and those for which $\psi = 0$ are said to be at the normal state. A is the magnetic vector potential and ϕ is the electric scalar potential. The constant σ is a measure of the normal conductivity of the superconducting material so that $-\sigma \nabla \phi$ is the normal current, and κ is the Ginzburg–Landau parameter. Length has been scaled with the coherence length ξ, which is the natural length-scale for variations in ψ. The domain $\Omega \subset \subset \mathbb{R}^n$ ($n = 1, 2, 3$), where the superconducting sample resides, is smooth and has an interface, denoted by $\partial \Omega_c$, with a conducting metal which is at the normal state. The rest of the boundary, denoted by $\partial \Omega_i$, is adjacent to an insulator. We allow nonsmoothness of $\partial \Omega$ in the sense that $\partial \Omega_c$ and $\partial \Omega_i$ are required to be perpendicular to each other in order to include cylindrical-like domains. Figure 1 presents a typical two-dimensional sample, where the current flows into the sample from one part of $\partial \Omega_c$ and exits from another part, disconnected from the first one. Most wires would fall into the above class of domains.

Equations (1.1) are gauge invariant in the sense that they are invariant under transformations of the form

$$A \rightarrow A + \nabla \omega, \quad \phi \rightarrow \phi - \frac{\partial \omega}{\partial t}, \quad \psi \rightarrow e^{i\kappa \omega}.$$

Note that none of the important physical properties, i.e., $|\psi|$, the magnetic field $H = \nabla \times A$, and the electric field $E = -\partial A/\partial t - \nabla \phi$, are altered by the above transformation.

To obtain a well-posed problem one must add to (1.1) initial conditions, and the equations satisfied by A and ϕ outside Ω, that is, the Maxwell equations. Continuity
of the tangential components of A and $\nabla \times A$ through $\partial \Omega$ and some conditions on $\nabla \times A$ at infinity should be required as well. Since these details are irrelevant in the context of the present contribution, we omit them. Interested readers may be able to find them in [4, 6].

We consider here the stability of the normal state. If $\psi \equiv 0$, we obtain that the steady state solution must satisfy

$$\nabla \times H = -\frac{\sigma}{\kappa^2} \nabla \phi,$$

and hence ϕ is harmonic in Ω. To obtain ϕ we thus need to solve the following problem:

$$\begin{cases}
\Delta \phi = 0 & \text{in } \Omega, \\
\phi = \phi_0(x) & \text{on } \partial \Omega_c, \\
\frac{\partial \phi}{\partial \nu} = 0 & \text{on } \partial \Omega_i.
\end{cases}$$

(1.2)

We note that instead of prescribing the potential on $\partial \Omega_c$ we can prescribe the current in the normal direction to the boundary $J_n(x) = -\sigma \frac{\partial \phi}{\partial \nu}$. For simplicity we assume that $\nabla \phi \neq 0$ everywhere in Ω. This can easily be achieved; for instance, for the samples described in Figure 1, if $\inf \phi$ on one connected component of $\partial \Omega_c$ is greater than the $\sup \phi$ on the other connected component, then $\nabla \phi$ never vanishes.

Once (1.2) is solved, one can solve for the magnetic field. Here we need to solve a problem in \mathbb{R}^n,

$$\begin{cases}
\nabla \times H = -\frac{\sigma}{\kappa^2} \nabla \phi = \frac{1}{\kappa^2} J & \text{in } \Omega, \\
\nabla \times H = 0 & \text{in } \mathbb{R}^n \setminus \Omega, \\
H \to h_{ex} & \text{as } |x| \to \infty,
\end{cases}$$

(1.3)

with H continuous across $\partial \Omega$. We assume zero applied magnetic field ($h_{ex} = 0$). To simplify our problem further we shall assume $A = H = 0$. This assumption can be justified in the case where $\kappa \gg 1$ in view of (1.3). However, since we intend to consider large domains, one must assume that $\kappa \gg \text{diam } \Omega$. In real-world coordinates this means that our domain size must be much larger than the coherence length ξ but also much smaller than the penetration depth λ, which is the length-scale characterizing variations in H ($\kappa = \lambda/\xi$). While this assumption significantly limits the validity of our results, it has been made very often by physicists [15, 8] and is reasonable to adopt as a starting point.

Once the above assumption is adopted one obtains

$$\begin{cases}
\frac{\partial \psi}{\partial t} - \Delta \psi + i\phi \psi - \psi(1 - |\psi|^2) = 0 & \text{in } \Omega, \\
\psi = 0 & \text{on } \partial \Omega_c, \\
\frac{\partial \phi}{\partial \nu} = 0 & \text{on } \partial \Omega_i, \\
\psi(x, 0) = \psi_0(x) & \text{in } \Omega.
\end{cases}$$

It should be noted that in [6] Du and Gray prove, within the framework of a more general case, convergence in the limit $\kappa \to \infty$ of (1.1) to a different limit problem where the magnetic field is not negligible. The domain size considered there is, however, much larger than in our case, as it is comparable with the penetration depth.
Linearizing the above near the normal state, we obtain

\[
\begin{align*}
\partial_t \psi - \Delta \psi + i\phi \psi - \psi &= 0 \quad \text{in } \Omega, \\
\psi &= 0 \quad \text{on } \partial\Omega_c, \\
\partial_n \psi &= 0 \quad \text{on } \partial\Omega_i, \\
\psi(x,0) &= \psi_0(x) \quad \text{in } \Omega.
\end{align*}
\]

(1.4)

The above problem has been analyzed by physicists in one-dimensional settings. Ivlev and Kopnin review these results in [8]. In these settings we have \(\phi = Jx + \mu \), where \(J \) (denoting the current) and \(\mu \) are constants. Previous results include the closed form solution of (1.4) in \(\mathbb{R} \) for any initial condition. In \(\mathbb{R}_+ \), the first critical current \(J_c \) for which a steady state solution (\(\partial|\psi|/\partial t = 0 \)) exists is found. Then weakly nonlinear analysis is performed, where it is shown that [9] the bifurcation taking place near \(J = J_c \) is subcritical (i.e., unstable).

We consider (1.4) in three-dimensional settings. While all the results are stated for three-dimensional objects, they are equally valid for two-dimensional objects as well. We deal with (1.4) in the large domain limit; i.e., we consider a domain \(\Omega_R \) which is obtained from \(\Omega \) via the transformation

\[
x \to Rx.
\]

(1.5)

The portions of the boundaries \(\partial\Omega_n^c \) and \(\partial\Omega_n^i \) are similarly obtained from \(\partial\Omega_c \) and \(\partial\Omega_i \), respectively. To keep \(\nabla \phi \) unaltered we consider also potentials of the form

\[
\phi_R = R\phi(x/R).
\]

Thus, we consider the following problem:

\[
\begin{align*}
\partial_t \psi_R - \Delta \psi_R + i\phi_R \psi_R - \psi_R &= 0 \quad \text{in } \Omega_R, \\
\psi_R &= 0 \quad \text{on } \partial\Omega_c^R, \\
\partial_n \psi_R &= 0 \quad \text{on } \partial\Omega_i^R, \\
\psi_R(x,0) &= \psi_0(x) \quad \text{in } \Omega_R.
\end{align*}
\]

(1.6)

Our main result is the following.

Theorem 1.1. Let \(\phi \) satisfy (1.2). Let \(\partial\Omega^n_c \) denote the portion of \(\partial\Omega_c \) on which \(\nabla \phi \) is perpendicular to the boundary. Let further

\[
J_m = \min_{x \in \partial\Omega^n_c} \left| \frac{\partial \phi}{\partial n} \right|,
\]

and let \(J_c \) denote the critical current for the problem in \(\mathbb{R}_+ \) (which is precisely defined in (2.19)). Suppose further that \(|J| > 0 \) everywhere on \(\partial\Omega_c \). Then, if \(J_m > J_c \) , or if \(\partial\Omega^n_c \) is empty, there exists \(R_0 > 0 \) such that \(\psi_R \equiv 0 \) is a stable solution of (1.6) in the sense of \(L^2(\Omega_R) \) for all \(R > R_0 \).

Furthermore, if \(J_m < J_c \), there exists \(\psi_0 \in L^2(\Omega_R) \) and \(T_R > 0 \) such that

\[
\liminf_{R \to \infty} \frac{T_R}{\ln R} > 0,
\]
and such that the solution ψ_R of (1.6) has the following property:

$$t < T_R \Rightarrow \|\psi_R\|_{L^2(\Omega_R)} > \frac{1}{2}\|\psi_0\|_{L^2(\Omega_R)}e^{\beta t},$$

where

$$\beta = 1 - (J/J_c)^{2/3}.$$

In the next section we review and enhance the results in [8] in the one-dimensional case. In section 3 we extend some of the results in section 2 to unbounded three-dimensional domains. In section 4 we provide the proof of the theorem. Finally, in the last section we highlight some possible directions for future research. The appendix provides a technical result needed in section 2.

2. One-dimensional problems. In this section we consider (1.4) in two different one-dimensional settings: on \mathbb{R} and on \mathbb{R}_+. The solution of these simple problems would provide us with some important intuition on the solution of (1.6) in three-dimensional bounded domains in the large domain limit. In both cases we shall assume $\phi = Jx$, i.e., that the current is uniform and equals J throughout the sample.

2.1. Infinite one-dimensional domain. Here we consider the problem

$$\frac{\partial \psi}{\partial t} - \psi'' - \psi + iJx\psi = 0.$$

We consider here only the case $J > 0$. Otherwise, if $J < 0$, we can consider the complex conjugate of (2.1). Applying the coordinate transformation

$$x \rightarrow J^{1/3}x; \quad t \rightarrow J^{2/3}t,$$

we obtain the problem

$$\frac{\partial \psi}{\partial t} + \mathcal{L}\psi = \lambda_J\psi,$$

where

$$\mathcal{L}\psi = -\psi'' + ix\psi,$$

and $\lambda_J = J^{-2/3}$.

We first focus our interest on the spectrum of the operator $\mathcal{L} : D_R(\mathcal{L}) \rightarrow L^2(\mathbb{R}, \mathbb{C})$, where $D_R(\mathcal{L})$ is the dense subset of $L^2(\mathbb{R}, \mathbb{C})$ defined as

$$D_R(\mathcal{L}) = \{u \in L^2(\mathbb{R}, \mathbb{C}) | -u'' + ixu \in L^2(\mathbb{R}, \mathbb{C})\}.$$

Lemma 2.1. The operator $\mathcal{L} - \lambda I$ is invertible for all $\lambda \in \mathbb{C}$. (Thus $\sigma(\mathcal{L}) = \phi$.)

Proof. It is sufficient to consider here $\lambda \in \mathbb{R}$. Otherwise, if $\lambda = \lambda_r + i\lambda_i$, we apply the transformation $x \rightarrow x - \lambda_i$.

Though it is not necessary, we first prove injectivity of $\mathcal{L} - \lambda I$. We shall later make use of a similar argument in three dimensions. To the problem

$$\mathcal{L}u = \lambda u$$

we apply the Fourier transform

$$\hat{u}(\omega) = \mathcal{F}(u) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{-i\omega x} u(x)dx$$

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
to obtain
\[\omega^2 \hat{u} - \frac{\partial \hat{u}}{\partial \omega} = \lambda \hat{u}. \]

Since the above equation doesn’t possess any nontrivial solutions with bounded \(L^2(\mathbb{R}) \) norm, \(\mathcal{L} - \lambda I \) must be injective.

To find the spectrum of \(\mathcal{L} \) we construct the Green’s function of \(\mathcal{L} - \lambda I \). Let
\[
\begin{cases}
 w_1(x, \lambda) = A_i(e^{i\pi/6}x + \lambda e^{i2\pi/3}), \\
 w_2(x, \lambda) = A_i(-e^{-i\pi/6}x + \lambda e^{-i2\pi/3}),
\end{cases}
\]
where \(A_i \) denotes Airy’s function [1] (cf. (A.2) in Appendix A for the asymptotic behavior of \(A_i \)). It is easy to show that \(u_1, u_2 \) constitute a fundamental set of solutions to \((\mathcal{L} - \lambda I)u = 0\) [13]. We can now write the Green’s function in the form
\[
G(x, \xi, \lambda) = \begin{cases}
 w_2(\xi, \lambda) W(w_1, w_2) w_1(x, \lambda), & x > \xi, \\
 w_1(\xi, \lambda) W(w_1, w_2) w_2(x, \lambda), & x < \xi,
\end{cases}
\]
where \(W(w_1, w_2) \) denote the Wronskian (which is a constant that clearly doesn’t vanish since \(w_1 \) and \(w_2 \) are linearly independent).

Using the asymptotic behavior of Airy’s functions [1], we can show, using the same procedure applied in Appendix A to the semi-infinite case, that \(G(\cdot, \lambda) \in L^2(\mathbb{R}, \mathbb{C}) \) for all \(\lambda \in \mathbb{R} \). The lemma is proved.

The spectrum of the operator \(\mathcal{L} : D(\mathcal{L}) \rightarrow L^2(\mathbb{R}, \mathbb{C}) \) can therefore teach us very little on the stability of the normal state in this case. The following lemma proves its stability in a direct manner.

Lemma 2.2. The trivial solution of (2.1), \(\psi \equiv 0 \), is globally stable in \(L^2 \); i.e., if \(f(x) \in L^2(\mathbb{R}, \mathbb{C}) \), then the solution of (2.1), \(\psi(x, t) \), satisfying the initial condition \(\psi(x, 0) = f(x) \) satisfies \(\psi(x, t) \xrightarrow{t \to \infty} 0 \) in \(L^2(\mathbb{R}, \mathbb{C}) \).

Proof. As long as \(\psi(x, t) \in L^2(\mathbb{R}, \mathbb{C}) \), we can apply to (2.1) the Fourier transform (2.4). We obtain
\[
\frac{\partial \hat{\psi}}{\partial t} + \omega^2 \hat{\psi} - \frac{\partial \hat{\psi}}{\partial \omega} - \lambda J \hat{\psi} = 0.
\]

The unique solution to the above problem is given by
\[
\hat{\psi}(\omega, t) = \hat{f}(\omega) \exp \left\{ -\omega^2 t - \omega t^2 - \frac{1}{3} t^3 + \lambda J t \right\},
\]
in which \(\hat{f}(\omega) \) denotes the Fourier transform of \(f \). Integrating the modulus square of the above over \(\mathbb{R} \) with respect to \(\omega \), we obtain
\[
\|\psi(., t))\|_2 \leq C\|f\|_2 \exp \left\{ -\frac{1}{12} t^3 + \lambda J t \right\},
\]
where \(\|\cdot\|_2 \) denotes the \(L^2(\mathbb{R}, \mathbb{C}) \) norm. \(\square \)

The above superlinear convergence is in accordance with the result proved in the previous lemma by which the spectrum of \(\mathcal{L} \) is empty. We note that in [8] the inverse transform of (2.6) is obtained, but no decay proof is given.
2.2. Semi-infinite one-dimensional domain. We now consider (2.1) on \mathbb{R}_+. We concentrate here on the Dirichlet boundary condition $\psi(0) = 0$; however, the same analysis applies to Neumann and mixed boundary conditions as well.

We start by proving the following result on the spectrum of the operator $L : D_{\mathbb{R}_+}(L) \rightarrow L^2(\mathbb{R}, \mathbb{C})$, where

$$D_{\mathbb{R}_+}(L) = \{ u \in L^2(\mathbb{R}_+, \mathbb{C}) \mid -u'' + iux \in L^2(\mathbb{R}_+, \mathbb{C}), u \in H^1_0(\mathbb{R}_+, \mathbb{C}) \}.$$

Lemma 2.3.
1. There exists a sequence of eigenvalues $\{ \lambda_n \}_{n=1}^{\infty}$ and eigenfunctions of L, with unity norm, $\{ u_n \}_{n=1}^{\infty} \subset D_{\mathbb{R}_+}(L)$, i.e.,

$$Lu_n = \lambda_n u_n.$$

2. We have

$$(2.7) \quad m = \max_{n \in \mathbb{N}} \Re \lambda_n > 0.$$

3. $\text{span} \{ u_n \}_{n=1}^{\infty} = L^2(\mathbb{R}_+, \mathbb{C})$.

4. Suppose that $u, v \in L^2(\mathbb{R}_+, \mathbb{C})$ can be represented in the form

$$v = \sum_{n=1}^{\infty} \alpha_n u_n; \quad w = \sum_{n=1}^{\infty} \beta_n u_n,$$

where the convergence is in the L^2 sense. Let then

$$(2.8) \quad \langle v, w \rangle_U = \sum_{n=1}^{\infty} \alpha_n \bar{\beta}_n.$$

Then,

$$(2.9) \quad \inf_{v \in D_{\mathbb{R}_+}(L)} \Re \langle v, Lv \rangle_U \geq m \| v \|_U^2,$$

where $\| \cdot \|_U$ denotes the norm induced by (2.8).

Proof. Let

$$z = -ix + \lambda.$$

Let $u(x, \lambda) \in D_{\mathbb{R}_+}(L)$ denote an eigenfunction of L, i.e., $Lu = \lambda u$. Let $v(z, \lambda) = u(x, \lambda)$. We have

$$(2.10) \quad \begin{cases} \frac{\partial^2 v}{\partial z^2} - zv = 0, & z \in \mathbb{C}, \\ v(\lambda, \lambda) = 0. \end{cases}$$

Since $u \in L^2(\mathbb{R}_+, \mathbb{C})$, v must be subdominant (i.e., it decays exponentially fast [13]) in the sector

$$S_1 : -\pi < \arg z < -\frac{\pi}{3}.$$

The decaying solution of (2.10) in S_1 is given by (cf. [13])

$$v = A_i (e^{2\pi i/3} z).$$
Since the zeros of Airy’s functions are eigenvalues of the self-adjoint operator \(d^2/dx^2 - x \) in \(D_{\mathbb{R}_+}(\mathcal{L}) \), they must all be real. Let \(\{\mu_n\}_{n=1}^\infty \subset \mathbb{R} \) denote the zeroes of Airy’s function on the real axis. By the maximum principle they must all be strictly negative. We arrange them so that \(\mu_n \downarrow -\infty \). As every eigenvalue of \(\mathcal{L} \) must satisfy \(v(\lambda, \lambda) = 0 \), the set \(\{\lambda_n\}_{n=1}^\infty \), where

\[
\lambda_n = e^{-i2\pi/3} \mu_n,
\]
contains all the eigenvalues of \(\mathcal{L} \). Since \(\mu_1 < 0 \) we have that \(m = \Re \lambda_1 = -\frac{\mu_1}{2} > 0 \).

The set \(\{\tilde{\mu}_n\}_{n=1}^\infty \) of eigenfunctions of \(\mathcal{L} \) in \(D_{\mathbb{R}_+}(\mathcal{L}) \) is given by

\[
\tilde{u}_n = A_i(e^{i2\pi/3}(-ix + \lambda_n)) = A_i(e^{i\pi/6}x + \mu_n) \quad \forall n \in \mathbb{N}.
\]

We then set

\[
(2.13) \quad u_n = \frac{\tilde{u}_n}{\|\tilde{u}_n\|_{L^2(\mathbb{R}_+)}},
\]

To prove that \(\{u_n\}_{n=1}^\infty \) is complete in \(L^2(\mathbb{R}, \mathbb{C}) \) we consider the resolvent \(\mathcal{L}^{-1}_\lambda = (\mathcal{L} - \lambda I)^{-1} \) (which is also the modified resolvent of \(\mathcal{L}^{-1} \)). We have

\[
(2.14a) \quad \mathcal{L}^{-1}_\lambda f = \int_0^\infty \tilde{G}(x, \xi, \lambda) f(\xi) d\xi,
\]

in which

\[
(2.14b) \quad \tilde{G}(x, \xi, \lambda) = \begin{cases} \frac{\tilde{w}_2(\xi, \lambda)}{W(w_1, \tilde{w}_2)} w_1(x, \lambda), & x > \xi, \\ \frac{w_1(\xi, \lambda)}{W(w_1, \tilde{w}_2)} \tilde{w}_2(x, \lambda), & x < \xi, \end{cases}
\]

where

\[
(2.15) \quad \tilde{w}_2(x, \lambda) = \frac{w_1(0, \lambda)}{w_2(0, \lambda)} w_1(x, \lambda) - w_2(x, \lambda),
\]

and \(w_1 \) and \(w_2 \) are given in (2.5). In Appendix A, we prove that \(\tilde{G} \in L^2(\mathbb{R}_+ \times \mathbb{R}_+) \), and that

\[
(2.16) \quad \|\tilde{G}(\cdot, \cdot, \lambda)\|_{L^2(\mathbb{R}_+ \times \mathbb{R}_+)} \leq e^{M|\lambda|^{3/2}},
\]

as long as \(\lambda \notin \{\lambda_n\}_{n=1}^\infty \).

Let \(u \in D_{\mathbb{R}_+}(\mathcal{L}) \). We now multiply \(\mathcal{L} u \) by \(e^{i\theta} \tilde{u} \) and integrate over \(\mathbb{R}_+ \) to obtain

\[
\Re < e^{i\theta} \mathcal{L} u, u > = \int_0^\infty (\cos \theta |u'|^2 - \sin \theta x |u|^2) dx.
\]

By Theorem 12.8 in [2] we have that every direction \(e^{i \arg \lambda} \) with

\[
\pi/2 < \arg \lambda < 3\pi/2
\]
is a direction of minimal growth of the resolvent of \(e^{i\theta}L \) for every \(-\pi/2 < \theta < 0\). Consequently, every direction \(e^{i\arg \lambda} \) with

\[
\frac{\pi}{2} < \arg \lambda < 2\pi
\]

is a direction of minimal growth of \(L^{-1}_\lambda \), i.e. (cf. [2]),

\[
(2.17) \quad \|L^{-1}_\lambda\| \sim O(|\lambda|^{-1}) \quad \frac{\pi}{2} < \arg \lambda < 2\pi.
\]

We now apply the same argument used in the proof of Theorem 16.4 in [2]. Let \(f \in L^2(\mathbb{R}+) \), and let \(g \in V^\perp \), where \(V = \text{span}\{A_i(e^{i\pi/6}x + \mu_n)\}_{n=1}^\infty = \text{sp}'(L^{-1}) \). Then,

\[
F(\lambda) = \langle L^{-1}_\lambda f, g \rangle
\]

is an entire function (cf. [2]) of \(\lambda \) satisfying, by (2.16) and (2.17),

\[
\begin{cases}
|F(\lambda)| \leq \frac{C}{|\lambda|}, & \frac{\pi}{2} < \arg \lambda < 2\pi, \\
|F(\lambda)| \leq C e^{M|\lambda|^{3/2}}, & \lambda \in \mathbb{C}.
\end{cases}
\]

By Theorem 16.1 in [2] (or the Phragmen–Leindelöf theorem) and Liouville’s theorem, we must have \(F(\lambda) \equiv 0 \). Hence, \(V = \text{range}(L^{-1}) = \mathcal{D}_{\mathbb{R}+}(L) \).

It remains still necessary to prove (2.9). Let \(w \in \mathcal{D}_{\mathbb{R}+}(L) \). Then,

\[
w = \sum_{n=1}^\infty \alpha_n u_n
\]

and

\[
Lw = \sum_{n=1}^\infty \alpha_n \lambda_n u_n.
\]

Hence

\[
\Re \langle w, Lw\rangle_U = \sum_{n=1}^\infty \Re \lambda_n |\alpha_n|^2 \geq m \|w\|^2_U.
\]

Similar techniques were used in [12, 10] to prove completeness of the system of eigenfunctions of some nonlinear eigenvalue problems in \(\mathbb{R} \). We note that the set \(\{u_n\}_{n=1}^\infty \) is not a basis in the usual sense in Banach spaces. In fact, it has been demonstrated in [5] that the system \(\{\tilde{u}_n, u_n\}_{n=1}^\infty \), which is a biorthogonal system after we appropriately normalize it, is wild. This means that \(\|\tilde{u}_n\|_2 \) grows faster than any algebraic rate as \(n \to \infty \).

We now prove the existence of a critical current \(J_c \) obtained in [8, 9].

Lemma 2.4. Let \(\psi(x, t) \in H_0^2(\mathbb{R}_+ \times \mathbb{R}_+, \mathbb{C}) \) denote a solution of the equation

\[
(2.18) \quad \frac{\partial \psi}{\partial t} - \frac{\partial^2 \psi}{\partial x^2} - \psi + iJx \psi = 0 \quad \text{in} \ \mathbb{R}_+ \times \mathbb{R}_+.
\]

If

\[
(2.19) \quad J > J_c = \left(-\frac{\mu_1}{2} \right)^{-3/2},
\]

\(\psi \) is a solution of the equation

\[
(2.20) \quad \frac{\partial \psi}{\partial t} - \frac{\partial^2 \psi}{\partial x^2} - \psi + iJ \psi = 0 \quad \text{in} \ \mathbb{R}_+ \times \mathbb{R}_+.
\]
in which \(\mu_1 \) is the rightmost zero of Airy’s function, then \(\| \psi(\cdot,t) \|_U \xrightarrow{t \to \infty} 0 \). Otherwise, if \(J < J_c \), then \(\psi \equiv 0 \) is an unstable solution of (2.18).

Proof. We first apply (2.2) to obtain

\[
\begin{cases}
\frac{\partial \psi}{\partial t} + \mathcal{L} \psi - \lambda J \psi = 0, \\
\psi(0,t) = 0, \\
\psi(x,0) = \psi_0(x),
\end{cases}
\]

where \(\| \psi_0 \|_U < \infty \). Taking the inner product (2.8) of the above equation with \(\psi \), we obtain

\[
\frac{1}{2} \frac{d}{dt} \| \psi \|^2_U \leq \left(\lambda J + \frac{\mu_1}{2} \right) \| u \|^2_U.
\]

Hence, if (2.19) is satisfied, we have \(\lambda J + \mu_1 / 2 < 0 \), and hence \(\psi \) tends to 0 exponentially fast as \(t \to \infty \), in the \(\| \cdot \|_U \) sense.

If \(J < J_c \), let \(\psi(x,0) = u_1(x) \), where \(u_1 \) is given in (2.13). Then

\[
\psi(x,t) = u_1(x)e^{(\lambda J + \mu_1 / 2)t}.
\]

Returning to the original variables by applying the inverse of (2.2), we obtain

\[
\psi(x,t) = u_1(J^{1/3}x)e^{(1-(J/J_c)^{2/3})t},
\]

and hence \(\psi \equiv 0 \) is unstable. \(\square \)

3. **Unbounded domains in \(\mathbb{R}^3 \).** In this section we consider several different problems: in \(\mathbb{R}^3 \), in \(\mathbb{R}^3_+ \), and in a quarter-space. In contrast with the previous section, we consider these problems only to the extent needed in the next section, that is, we analyze the existence of eigenvalues with nonpositive real part of the elliptic operator in the right-hand side of (1.4).

3.1. **Eigenfunctions in \(\mathbb{R}^3 \).** We consider here (1.4) with \(\phi = Jx_1 \). This choice summarizes all possible electric potentials with constant gradients, as the problem is invariant to translations and rotations. Thus, we have for every eigenfunction \(u \),

\[
(1.1) \quad -\Delta u - u + iJx_1 u = -\lambda u.
\]

We shall assume here that \(\lambda \in \mathbb{R} \); otherwise we can apply the transformation \(x_1 \to x_1 - \Im \lambda / J \).

It is easy to find all \(L^2 \) solutions of (3.1) in \(\mathbb{R}^3 \) as follows: apply the Fourier transform (2.4) in the \(x_2 \) and \(x_3 \) directions (using the respective Fourier coordinates \(\omega_2 \) and \(\omega_3 \)) to obtain

\[
(3.2) \quad \mathcal{L} \hat{u} = ((1-\lambda)J^{-2/3} - \omega_2^2 - \omega_3^2) \hat{u},
\]

where assuming \(J > 0 \) we have applied the transformation

\[
 x \to J^{1/3}x.
\]

(We confine the discussion in what follows to the case \(J > 0 \). If \(J < 0 \), we can consider the complex conjugate of (3.2) to obtain a new problem with \(J > 0 \).)
By Lemma 2.1 we have that $\hat{u} \equiv 0$ is the unique L^2 solution of (3.2). However, for the blow-up arguments employed in the next section we need to obtain the above result for any uniformly bounded solution of (3.1) in \mathbb{R}^3. This is exactly what the next lemma states.

Lemma 3.1. Let u denote a uniformly bounded solution of (3.1) in \mathbb{R}^3. Then, $u \equiv 0$.

Proof. We first show that $u(x_1,x_2,x_3) \in L^2(\mathbb{R}, \mathbb{C})$. Let $\chi_r \in C^\infty(\mathbb{R}_+, [0,1])$ satisfy

\begin{equation}
\chi_r(x) = \begin{cases}
1 & x < r/2, \\
0 & x > r,
\end{cases} \quad |\chi'| \leq C/r.
\end{equation}

Multiplying (3.1) by $\chi_r^2(|x - x_0|)\hat{u}$ we obtain, taking the real part of identity, that

\begin{equation}
\int_{B(x_0,r)} |\nabla (\chi_r u)|^2 \leq \int_{B(x_0,r)} [\chi^2 + |\nabla \chi|^2] |u|^2.
\end{equation}

Consequently, since u is bounded in $L^\infty(\mathbb{R}^3)$, we have

\begin{equation}
\int_{B(x_0,r/2)} |\nabla u|^2 \leq C \quad \forall x_0 \in \mathbb{R}^3.
\end{equation}

From the imaginary part of the identity, we obtain that

\begin{equation}
\int_{B(x_0,r)} \left(\nabla (\chi_r^2) \cdot \Im(\bar{u} \nabla u) + Jx_1 \chi_r |u|^2 \right) = 0.
\end{equation}

Let $x_0 = (x_0^1, x_0^2, x_0^3)$. Then,

\begin{equation}
\int_{B(x_0,r/2)} |x_1|^2 |u|^2 dx_1 \leq C \int_{B(x_0,r)} [|u|^2 + |\nabla u|^2].
\end{equation}

Consequently, for $|x_0^1| > r$, since u is bounded and in view of (3.5), we have

\begin{equation}
\int_{B(x_0,r/2)} |u|^2 \leq \frac{C}{|x_0^1| - r/2} \leq \frac{C}{|x_0^1|}.
\end{equation}

Repeating the above steps (from (3.4) to the above inequality) k times we obtain that

\begin{equation}
\int_{B(x_0,r/2^k)} |u|^2 \leq \frac{C_k}{|x_0^1|^{k}}.
\end{equation}

Hence,

\begin{equation}
\int_{B(x_0,r/2^k)} |x_1|^2 |u|^2 \leq \frac{C_k}{|x_0^1|^{k-2}},
\end{equation}

which allows us to apply standard elliptic estimates [3] to obtain that

\begin{equation}
|u| \leq \frac{C_k}{(|x_1| + 1)^k} \quad \forall k \in \mathbb{N}.
\end{equation}

In view of the above we have that $x_1^k \hat{u}(x_1,x') \in L^2(\mathbb{R}, \mathbb{C})$ for all fixed $x' \in \mathbb{R}^2$. Thus, one can apply to (3.1) the Fourier transform (2.4) to obtain

\begin{equation}
-\Delta \hat{u} + (\omega^2 - 1 + \lambda)\hat{u} - J \frac{\partial \hat{u}}{\partial \omega} = 0,
\end{equation}
where

\[-\Delta_\perp = \frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_3^2}.\]

Let

\[
\tilde{x}_r(x) = \begin{cases}
1, & |x| < r, \\
\frac{1}{r} \exp\left(-\frac{1}{2}(|x| - r)\right), & |x| > r.
\end{cases}
\]

Multiplying (3.6) by \(\tilde{x}_r^2(|x' - x^0|)\tilde{u}\) and integrating over \(\mathbb{R}^2\), we obtain

\[-J \frac{dU_r}{d\omega} + (\omega^2 - 1 + \lambda)U_r = \int_{\mathbb{R}^2} \left(-|\nabla(\tilde{x}_r \tilde{u})|^2 + |\nabla \tilde{x}_r|^2 |\tilde{u}|^2 \right) dx',\]

where

\[U_r(\omega) = \int_{\mathbb{R}^2} \tilde{x}_r^2 |\tilde{u}|^2 dx'.\]

For the last term, we have

\[\int_{\mathbb{R}^2} |\nabla \tilde{x}_r|^2 |\tilde{u}|^2 \leq \frac{1}{r^2} U_r.\]

Consequently,

\[-J \frac{dU_r}{d\omega} + (\omega^2 - 1 + \lambda - r^{-2})U_r \leq 0,\]

and therefore, for every \(\omega_0 \in \mathbb{R}\) and \(\omega > \omega_0\), we have

\[U_r(\omega) \geq U_r(\omega_0) \exp\left\{ \frac{1}{3} (\omega^3 - \omega_0^3) - (1 + \lambda + r^{-2})(\omega - \omega_0) \right\}.\]

Thus, since \(U_r\) is positive, it must diverge exponentially fast, unless

\[U_r \equiv 0,\]

from which the lemma easily follows. \(\square\)

3.1.1. Eigenfunctions in \(\mathbb{R}_+^3\): Perpendicular current. Let

\[\mathbb{R}_+^3 = \{(x_1, x_2, x_3) \mid x_1 > 0\}.
\]

We consider here solutions of (3.1) in \(\mathbb{R}_+^3\) satisfying a Dirichlet boundary condition on \(\partial\mathbb{R}_+^3\). Instead of considering complex eigenvalues, we consider only real ones and treat their imaginary part as part of the electric potential.

Lemma 3.2. Let \(u \in H^2(\mathbb{R}_+^3)\) denote a uniformly bounded solution of

\[
\begin{cases}
-\Delta u - u + iJ(x_1 - \mu)u = -\lambda u & \text{in } \mathbb{R}_+^3, \\
u = 0 & \text{on } \partial\mathbb{R}_+^3,
\end{cases}
\]

with \(\lambda \in \mathbb{R}_+\). Then, if \(J > J_c\), where \(J_c\) is defined as in (2.19), \(u\) must vanish identically.
Proof. Let \(u_n(x_1) \) be defined as in (2.12). Let further
\[
a_n(x_2, x_3) = \int_0^\infty u_n(x_1) u(x_1, x_2, x_3) dx_1 = \langle u_n, \bar{u} \rangle,
\]
where the inner product is in the regular \(L^2 \) sense. Clearly, \(a_n \) is uniformly bounded in \(\mathbb{R}^2 \) as \(u \in L^\infty(\mathbb{R}^3, \mathbb{C}) \) and \(u_n \in L^1(\mathbb{R}, \mathbb{C}) \).

Applying the transformation
\[
x \to J^{1/3}x,
\]
multiplying (3.8) by \(u_n \), and integrating over \(\mathbb{R}_+ \) with respect to \(x_1 \) we obtain, in view of the boundedness of \(u \) and the exponential rate of decay of \(u_n \) as \(x_1 \to \infty \), that
\[
(3.10) \quad -\Delta_{\perp} a_n + (\lambda_n - \tilde{\lambda}_J - i\mu) a_n = 0,
\]
where \(\tilde{\lambda}_J = (1-\lambda)J^{-2/3} \) and the definition of \(\lambda_n \) is given as in Lemma 2.3. Multiplying (3.10) by \(\tilde{\chi}_r(|x'|) \), we obtain for the real part
\[
\left(\frac{|\mu_n|}{2} - \tilde{\lambda}_J\right) \int_{\mathbb{R}^2} |\tilde{\chi}_r|^2 |a_n|^2 = -\int_{\mathbb{R}^2} |\nabla(\tilde{\chi}_r a_n)|^2 + \int_{\mathbb{R}^2} |\nabla\tilde{\chi}_r|^2 |a_n|^2 \leq C \int_{\mathbb{R}^2} |\tilde{\chi}_r|^2 |a_n|^2.
\]
Since \(\tilde{\lambda}_J < |\mu_1|/2 \leq |\mu_n|/2 \) by our assumption we obtain that for sufficiently large \(r \) we must have
\[
\int_{\mathbb{R}^2} |\tilde{\chi}_r|^2 |a_n|^2 = 0.
\]
Hence, \(a_n \equiv 0 \) in \(\mathbb{R}^2 \). Since by Lemma 2.3 \(\{u_n\}_{n=1}^{\infty} \) is a basis for \(L^2(\mathbb{R}_+, \mathbb{C}) \), we must have \(u \equiv 0 \). \(\square \)

3.1.2. Steady solutions in \(\mathbb{R}^3_+ \): Nonperpendicular current. This problem is very similar to the problem in \(\mathbb{R}^3 \). Consider the equation
\[
(3.11) \quad \begin{cases}
-\Delta u - u + i(J_1 x_1 + J_2 x_2 - \mu) u = -\lambda u & \text{in } \mathbb{R}^3_+, \\
u = 0 & \text{on } \partial \mathbb{R}^3_+,
\end{cases}
\]
with \(J_2 \neq 0 \) and \(\lambda \in \mathbb{R}_+ \). Like the problem in \(\mathbb{R}^3 \), there is no need to consider \(\mu \neq 0 \) here since the transformation
\[
x_2 \to x_2 + \frac{\mu}{J_2}
\]
sets \(\mu = 0 \) in the transformed problem. Furthermore, we also obtain the following result, which is exactly the same as the result obtained in \(\mathbb{R}^3 \).

Lemma 3.3. Let \(u \) denote a bounded solution of (3.11) with \(J_2 \neq 0 \). Then \(u \equiv 0 \).

Proof. Consider first the case where \(J_1 \neq 0 \). We first apply the transformation (3.9) with \(J = J_1 \) to obtain
\[
(3.12) \quad -\Delta_{\perp} u + Lu - \tilde{\lambda}_{J_1} u + i\gamma x_2 u = 0,
\]
where \(\tilde{\lambda}_{J_1} = (1-\lambda)J_1^{-2/3} \) and \(\gamma = J_2/J_1 \). Multiplying (3.12) by \(u_n \) and integrating over \(\mathbb{R}_+ \) with respect to \(x_1 \), we obtain
\[
-\Delta_{\perp} a_n + (\lambda_n - \tilde{\lambda}_{J_1}) a_n + i\gamma x_2 a_n = 0 \quad \text{in } \mathbb{R}^2,
\]
where $a_n = \langle u_n, \bar{u} \rangle$. The above equation cannot have any nontrivial bounded solution in \mathbb{R}^2; otherwise it would also be a bounded solution in \mathbb{R}^3, which by Lemma 3.1 must identically vanish. Consequently, since a_n must be bounded, we must have $a_n \equiv 0$ for all n, from which the lemma easily follows in this case.

Consider now the case where $J_1 = 0$. Here we define

$$
\tilde{u}(x_1, x_2, x_3) = \begin{cases}
 u(x_1, x_2, x_3), & x_1 > 0, \\
 -u(-x_1, x_2, x_3), & x_1 < 0.
\end{cases}
$$

Clearly, \tilde{u} is a bounded weak solution of (3.1) in \mathbb{R}^3 and hence, by Lemma 3.1, $\tilde{u} \equiv 0$.

For later reference we shall also need the following lemma.

Lemma 3.4. Let u denote a bounded solution of

$$
\begin{cases}
-\Delta u - u + iJ_2 x_2 u = -\lambda u & \text{in } \mathbb{R}_+^3, \\
\frac{\partial u}{\partial x_1} = 0 & \text{on } \partial \mathbb{R}_+^3,
\end{cases}
$$

with $\lambda \in \mathbb{R}_+$. Then $u \equiv 0$.

Proof. Once again we define, this time an even function,

$$
\tilde{u}(x_1, x_2, x_3) = \begin{cases}
 u(x_1, x_2, x_3), & x_1 > 0, \\
 u(-x_1, x_2, x_3), & x_1 < 0.
\end{cases}
$$

Clearly, \tilde{u} is a bounded weak solution of (3.1) in \mathbb{R}^3 and hence, by Lemma 3.1, $\tilde{u} \equiv 0$.

The last result in this section is needed in the next section in order to deal with the interface between $\partial \Omega^i$ and $\partial \Omega^j$ (that are perpendicular by assumption).

Lemma 3.5. Let

$$
Q = \{(x_1, x_2, x_3) \in \mathbb{R}_+^3 \mid x_2 > 0\}.
$$

Let u denote a bounded solution of

$$
\begin{cases}
-\Delta u - u + i(J_2 x_2 + J_3 x_3) u = -\lambda u & \text{in } Q, \\
\frac{\partial u}{\partial x_1}(0, x_2, x_3) = 0, & x_2 > 0, \ x_3 \in \mathbb{R}, \\
u(x_1, 0, x_3) = 0, & x_1 > 0, \ x_3 \in \mathbb{R},
\end{cases}
$$

with $\lambda \in \mathbb{R}_+$. Then $u \equiv 0$.

Proof. Once again we define an even extension of u,

$$
\tilde{u}(x_1, x_2, x_3) = \begin{cases}
 u(x_1, x_2, x_3), & x_1 > 0, \\
 u(-x_1, x_2, x_3), & x_1 < 0.
\end{cases}
$$

By Lemma 3.3, $\tilde{u} \equiv 0$.

4. Large bounded domains in \mathbb{R}^3. We consider here (1.6) in the limit $R \to \infty$ which is the large domain limit. We first show that any eigenfunctions of the elliptic operator in (1.6) must decay exponentially fast, as $R \to \infty$ away from the boundary. As in the previous section we insert the imaginary part of λ into the electric potential.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
(and consequently consider a family of potentials) and then confine the discussion to real values of λ.

Before getting into the main discussion we repeat here the definition of ϕ_R from section 1 and list some of its properties. Recall that ϕ is the unique solution of (1.2), and that

$$\phi_R(x) = R\phi(x/R).$$

The following proposition lists some of the properties of ϕ and ϕ_R.

Proposition 4.1. Let ϕ denote a solution of (1.2) and $\phi_R(x) = R\phi(x/R)$. Let $\mu \in \mathbb{R}$ and $\mu_R = R\mu$. Let further $x_j \in \Omega_{R_j}$ where $R_j \uparrow \infty$, and $\{\mu_j\}_{j=1}^{\infty} \subset \mathbb{R}$. Then

(i) we have either $|\phi_{R_j}(x_j) - \mu_j|$ is unbounded, or else we must have, to up to a subsequence,

$$\exists (b, J) \in \mathbb{R} \times \mathbb{R}^3 : \|\phi_{R_j} - \mu_j - J \cdot x - b\|_{L^\infty(D_r(x_j))} \to 0 \quad \forall r > 0,$$

where $D_r(x_j) = \Omega_R \cap B(x_j, r)$.

(ii) we let Γ_μ denote the level set $\phi = \mu$. Let $M = \max_{x \in \partial \Omega} \phi(x)$ and $m = \min_{x \in \partial \Omega} \phi(x)$. If $\mu \not\in [m, M]$, then Γ_μ is empty.

(iii) assume that $\partial \Omega_\mu$ is composed of exactly two connected sets as in Figure 1, and that Ω is diffeomorphic to a cylinder. If $\mu \in [m, M]$, but $\mu \not\in \phi(\partial \Omega_\mu)$, then $\Gamma_\mu \cap \partial \Omega_\mu$ is a simple closed contour, separating $\partial \Omega$ into two subsets, such that none of them is a subset of $\partial \Omega_\mu$. Furthermore, $\nabla \phi \not\equiv 0$ on Γ_μ.

Proof. Let $b_j = \phi_{R_j}(x_j) - \mu_j$ and $J_j = \nabla \phi_{R_j}(x_j)$. To prove (i) we first choose a subsequence such that $(b_j, J_j) \to (b, J)$. The claim then follows from the Taylor expansion of ϕ_{R_j} near x_j.

The proof of (ii) follows immediately from the maximum principle.

To prove (iii) we notice first that since ϕ is real analytic, Γ_μ must either be closed or intersect $\partial \Omega$. If it is closed, then $\phi \equiv \mu$ inside Γ_μ, and hence also outside Γ_μ (in view of its analyticity), which is clearly a contradiction. Thus Γ_μ must intersect the boundary on $\partial \Omega$.

Since ϕ is continuous and since on one of the connected sets we must have $\phi < \mu$ and on the other one $\phi > \mu$, the intersection of $\partial \Omega_i$ with Γ_μ must contain at least one closed contour. This contour separates $\partial \Omega$ into two disjoints subsets $\partial \Omega_+ \cap \partial \Omega_-$, the first of them contains the connected subset of $\partial \Omega_\mu$; over which $\phi > \mu$, and contains a portion of $\partial \Omega_\mu$. Moreover, this contour is the boundary of a continuous subset of Γ_μ which we denote by A.

To see this, define cylindrical coordinates (r, θ, z) in Ω, where $\theta \in [-\pi, \pi)$ and $0 \leq r < R(\theta, z)$. Then, for each (r, θ) there exists a finite (as ϕ is real analytic) set $\{z_j\}$ such that $(r, \theta, z_j) \in \Gamma_\mu$. Denote the minimum in this set by z_m. Clearly, $z = z_m(r, \theta)$ is continuous, and thus we can define

$$A = \{(r, \theta, z) \mid z = z_m(r, \theta)\}.$$
Since (1.6) contains the term \(i(\phi_R - \mu_R)\psi_R\) which might be unbounded as \(R \to \infty\), we must provide here the following elliptic estimate.

Lemma 4.1. Let \(u_R\) denote a solution of

\[
\begin{align*}
-\Delta u_R - u_R + i(\phi_R - \mu_R)u_R &= -\lambda u_R & \text{in } \Omega_R, \\
\frac{\partial u_R}{\partial \nu} &= 0, & \text{on } \partial \Omega_R, \\
\psi_R &= 0, & \text{on } \partial \Omega_R,
\end{align*}
\]

in which \(\lambda \in \mathbb{R}_+.\) Let \(D_r(x_0) = \Omega_R \cap B_r(x_0),\) where \(x_0 \in \Omega_R\) is chosen such that either

(i) \(D_r(x_0) = B_r(x_0),\) or

(ii) \(x_0 \in \partial \Omega_R\) and either \((\partial D_r(x_0) \cap \partial \Omega_R) \subset \partial \Omega_R\) or \((\partial D_r(x_0) \cap \partial \Omega_R) \subset \partial \Omega_R^i.\)

Then,

\[
\exists \tilde{r} > 0 : \|u_R\|_{L^\infty(D_r(x_0))} \leq C_r \|u_R\|_{L^2(D_{2\tilde{r}}(x_0))} \quad \forall x_0 \in \Omega_R, \; r < \tilde{r},
\]

where \(C_r\) is independent of \(R\) and \(x_0.\)

Proof. Let \(\rho_R = |u_R|\). By (4.1) we have that

\[-\Delta \rho_R - \rho_R \leq 0\]

in \(\Omega_R.\) Let \(x_0 \in \Omega_R.\) We set \(U_r\) to be the solution (we discuss its existence below) of

\[
\begin{align*}
-\Delta U_r - U_r &= 0 & \text{in } D_r(x_0), \\
U_r &= 0 & \text{on } \partial D_r(x_0), \\
\frac{\partial U_r}{\partial \nu} &= 0 & \text{on } \partial D_r^i(x_0), \\
U_r &= \rho_R & \text{on } \partial D_r^i(x_0),
\end{align*}
\]

where \(\partial D_r^i(x_0) = \partial D_r(x_0) \cap \partial \Omega_R^i\); \(\partial D_r^i(x_0) = \partial D_r(x_0) \cap \partial \Omega_R^i\); and \(\partial D_r^i(x_0) = \partial D_r(x_0) \setminus (\partial D_r(x_0) \cap \partial \Omega_R).\) Note that either \(\partial D_r^i(x_0) = \phi\) or \(\partial D_r^i(x_0) = \phi.\) Clearly, there exists \(\tilde{r},\) independent of \(x_0\) and \(R,\) such that for every \(r < \tilde{r},\) we have

\[
\inf_{u \in D} \frac{\int_{D_r(x_0)} |
abla u|^2}{\int_{D_r(x_0)} |u|^2} > 1,
\]

where

\[
D = \{u \in H^1(D_r) | u = 0 \text{ on } \partial D_r(x_0) \setminus \partial D_r^i(x_0)\}.
\]

For \(r < \tilde{r}\) the elliptic operator in (4.3) is invertible, and hence a unique \(U_r\) exists.

Let then \(V = \rho_R - U_r.\) Clearly,

\[
\begin{align*}
-\Delta V - V &\leq 0 & \text{in } D_r(x_0), \\
\frac{\partial V}{\partial \nu} &= 0 & \text{on } \partial D_r^i(x_0), \\
V &= 0 & \text{on } \partial D_r(x_0) \setminus \partial D_r^i(x_0).
\end{align*}
\]

Let further

\[
V_+ = \begin{cases} V, & V \geq 0, \\
0, & V < 0.\end{cases}
\]
Multiplying (4.5) by V_+ and integrating over $D_r(x_0)$, we obtain that
\[
\int_{D_r} |\nabla V_+|^2 - |V_+|^2 \leq 0,
\]
and since $V \in D$, we obtain by (4.4) that $V_+ = 0$. Consequently we have
\[
\rho_R \leq U_r \quad \text{in } D_r(x_0).
\]

To complete the proof of (4.2) it is thus necessary to obtain an estimate of $\|U_r\|_{L^\infty(D_r)}$ in terms of $\|\rho_R\|_{L^2(D_r)}$. In case (i) above, since U_r is unique, we can use Theorem 10.5 in [3], together with Sobolev embeddings, to obtain
\[
\|U_r\|_{L^\infty(D_r(x_0))} \leq C_r \|\rho_R\|_{H^{1/2}(\partial D_r)},
\]
where C_r is independent of x_0 and R.

In case (ii) $D_r(x_0)$ is diffeomorphic to a hemisphere with radius r. Denote the diffeomorphism by T_{R,x_0}. Note that $T_{R,x_0} \to I$ as $R \to \infty$ uniformly in x_0 (as long as the assumption in (ii) holds) in view of the transformation (1.5). Let $B_r = T_{R,x_0}(D_r)$. On the flat surface of B_r we have either $\partial U_r/\partial \nu = 0$ or $U_r = 0$. In the first case one can extend U_r evenly to a sphere B, whereas in the second case we use an odd extension for that matter. In both cases U_r satisfies
\[
A : \nabla (A' \nabla U_r) + U_r = 0 \quad \text{in } B,
\]
where $A = DT_{R,x_0}$ is smooth in B and satisfies $A \to I$ uniformly in B as $R \to \infty$. On ∂B, U_r is equal to either the even extension or the odd extension of ρ_R. Hence, for sufficiently large R, U_r must satisfy (4.7) in case (ii) as well.

Clearly,
\[
\|\rho_R\|_{H^{1/2}(\partial D_r)} \leq \|\rho_R\|_{H^1(D_r(x_0))}.
\]

Multiplying (4.1) by $\chi_{2r}(|x-x_0|)\bar{u}_R$ and integrating over Ω_R, we obtain from the real part of the identity
\[
\int_{D_{2r}(x_0)} |\nabla (\chi_{2r}u_R)|^2 - (|\nabla \chi_{2r}|^2 + (1 - \lambda)\chi_{2r}^2)|u_R|^2 = 0.
\]

Hence,
\[
\int_{D_r(x_0)} |\nabla \rho_R|^2 \leq C_r \int_{D_{2r}(x_0)} |\rho_R|^2.
\]

Combining the above with (4.6)–(4.8) yields (4.2).

As an immediate conclusion of Lemma 4.1 we prove the following lemma

Lemma 4.2. Let u_R denote a solution of (4.1) with $\lambda \in \mathbb{R}_+$. Let X_R denote a maximum point of $|u_R|$ in Ω_R. Then, $|\phi_R(x_R) - \mu_R|$ is bounded as $R \to \infty$.

Proof. We first normalize u_R by $|u_R(x_R)|$ so that $\|u_R\|_\infty = 1$. Let $D_r(x_R) = B(x_R,r) \cap \Omega_R$. Multiplying (4.1) by $\chi_r^2(|x-x_R|)\bar{u}_R$ and integrating over Ω_R, we obtain from the imaginary part of the identity
\[
\int_{D_r} \nabla (\chi_r^2) \cdot \frac{1}{2i}(\bar{u}_R \nabla u_R - \nabla \bar{u}_R) + \int_{D_r} \chi_r^2(\phi_R - \mu_R)|u_R|^2 = 0.
\]
Let \(b_R = \phi_R(x_R) - \mu_R \). Since \(\nabla \phi_R \) is bounded in \(\Omega_R \), and since \(r \) is fixed, we have
\[
\inf_{x \in D_r} |\phi_R - \mu_R| \geq \frac{1}{2} b_R.
\]
Thus,
\[
b_R \int_{D_r/2} |u_R|^2 \leq C_r \int_{D_r} |u_R|^2 + |\nabla u_R|^2.
\]
Using (4.9) and the fact that \(|u_R| \leq 1 \), we obtain that
\[
\int_{D_r/2} |u_R|^2 \leq \frac{C_r}{b_R}.
\]
By Lemma 4.1 we then have that
\[
1 = |u_R(x_R)| \leq \frac{C_r}{b_R},
\]
from which the lemma immediately follows.

Remark 4.2. Note that if \(\phi_R \neq \mu_R \) for all \(x \in \Omega_R \), then \(u_R \equiv 0 \) must be the unique solution of (4.1). To see this multiply (4.1) by \(\bar{u}_R \) and integrate over \(\Omega_R \) to obtain from the imaginary part,
\[
\int_{\Omega_R} (\phi_R - \mu_R)|u_R|^2 = 0.
\]
Since \(\phi_R - \mu_R \) is either positive or negative throughout \(\Omega_R \), \(u_R \) must vanish everywhere.

Denote the curve in \(\Omega \) along which we have \(\phi = \mu \) by \(\Gamma \). Denote its image under the mapping (1.5) by \(\Gamma_R \). By the previous lemma we have that \(d(x_R, \Gamma_R) \) is bounded as \(R \to \infty \). We now prove that \(u_R \) must decay exponentially fast away from \(\Gamma_R \).

Lemma 4.3. Let \(u_R \) denote a solution of (4.1) with \(\lambda \in \mathbb{R}_+ \). Then, there exists \(\alpha > 0 \) such that
\[
(4.10) \int_{\Omega_R} |u_R|^2 e^{2\alpha s} \leq C,
\]
where \(s = d(x, \Gamma_R) \) and \(C \) is independent of \(R \).

Recall that by Proposition 4.1, for domains that are diffeomorphic to a cylinder, when \(\phi \neq \mu \) for every \(x \in \partial \Omega^c \), \(\Gamma \) must be a surface whose boundary is a closed simple contour on \(\partial \Omega^c \). We also have \(\nabla \phi \neq 0 \) on \(\Gamma \). Note also that by the above remark, if \(\Gamma \) is empty, then \(u_R \equiv 0 \).

Proof. It is convenient to consider here \(u_R \) for which \(\|u_R\|_{L^2(\Omega_R)} = 1 \). Let \(\Omega_R^+ \) and \(\Omega_R^- \) be, respectively, defined by
\[
\Omega_R^+ = \{ x \in \Omega_R | \phi_R - \mu_R > \beta \},
\]
\[
\Omega_R^- = \{ x \in \Omega_R | \phi_R - \mu_R < -\beta \}
\]
for some \(\beta > 0 \) which is independent of \(R \).
Let $\eta_+^\beta \in C^\infty(\Omega_R, [0, 1])$ and η_-^β, respectively, be defined by

$$\eta_+^\beta = \begin{cases} 1, & x \in \Omega_+^\beta, \\ 0, & x \in \Omega_0^\beta, \end{cases}$$

and

$$\eta_-^\beta = \begin{cases} 1, & x \in \Omega_-^\beta, \\ 0, & x \in \Omega_0^\beta. \end{cases}$$

Let C_{\pm}^β denote the portion of $\partial \Omega_{\pm}^\beta$ which is not on $\partial \Omega_R$. As $\nabla \phi_R(x) = \nabla \phi(x/R)$ and since $\nabla \phi$ is bounded in Ω, we have that

$$d(C_{\pm}^\beta, \Gamma_\mu) \geq \frac{\beta}{\|\nabla \phi\|_{L^\infty(\Omega)}}.$$

Hence, we can choose η_+^β such that $|\nabla \eta_+^\beta| < C$. Let

$$D_+^\beta = \{ x \in \Omega_R | 0 < \eta_+^\beta < 1 \}.$$

We choose η_0^β such that

$$\sup_{x \in D_+^\beta} s \leq 1.$$

Multiplying (4.1) by $(\eta_+^\beta)^2 e^{2\alpha s} \bar{u}_R$ and integrating over Ω_R we obtain, for the imaginary part and the real part, respectively,

(4.11a)

$$\int_{\Omega_R} \nabla((\eta_+^\beta)^2 e^{2\alpha s}) \cdot \frac{1}{2t} (\bar{u}_R \nabla u_R - u_R \nabla \bar{u}_R) + \int_{\Omega_R} (\phi_R - \mu_R)(\eta_+^\beta)^2 |u_R|^2 e^{2\alpha s} = 0,$$

(4.11b)

$$\int_{\Omega_R} (\eta_+^\beta)^2 |\nabla u_R|^2 e^{2\alpha s} = (1 - \lambda) \int_{\Omega_R} (\eta_+^\beta)^2 |u_R|^2 e^{2\alpha s} - \frac{1}{2} \int_{\Omega_R} \nabla((\eta_+^\beta)^2 e^{2\alpha s}) \cdot \nabla |u_R|^2.$$

From the real part, (4.11b), we obtain that for every $\epsilon > 0$ we have

(4.12)

$$(1 - 2\alpha) \int_{\Omega_R} (\eta_+^\beta)^2 e^{2\alpha s} |\nabla u_R|^2 \leq \left(1 + \frac{\alpha}{2\epsilon} \right) \int_{\Omega_R} (\eta_+^\beta)^2 e^{2\alpha s} |u_R|^2 + C \int_{D_+^\beta} e^{2\alpha s} |\nabla u_R|^2.$$

From (4.11a), or the imaginary part, we obtain

$$\beta \int_{\Omega_R} |u_R|^2 e^{2\alpha s} \leq \alpha \int_{\Omega_R} (\eta_+^\beta)^2 e^{2\alpha s} |u_R|^2 + |\nabla u_R|^2 + C \int_{D_+^\beta} e^{2\alpha s} |u_R|^2 + |\nabla u_R|^2.$$

Combining the above with (4.12) for $\epsilon = 4\alpha^{-1}$, we obtain

(4.13) $$(\beta - 2\alpha - 4\alpha^3) \int_{\Omega_R} |u_R|^2 e^{2\alpha s} \leq C \int_{D_+^\beta} e^{2\alpha s} |u_R|^2 + |\nabla u_R|^2.$$
Multiplying (4.1) by \bar{u}_R and integrating over Ω_R, we obtain (for the real part)

$$\int_{\Omega_R} |\nabla u_R|^2 = (1 - \lambda) \int_{\Omega_R} |u_R|^2 = 1 - \lambda.$$

Consequently, we obtain from (4.13) that for any given α we may choose β to be sufficiently large (but still independent of R) so that $\beta > 2\alpha + 4\alpha^3$, and hence

$$\int_{\Omega_R^\beta} |u_R|^2 e^{2\alpha s} \leq Ce^{2\alpha} \int_{D_R^\beta} [|u_R|^2 + |\nabla u_R|^2] \leq 2Ce^{2\alpha}.$$

\[\Box \]

Remark 4.3. By Lemma 4.1 it follows that $|u_R|$ decays exponentially fast away from Γ_R also in a pointwise sense.

We now prove that any eigenfunction corresponding to a nonpositive eigenvalue must decay exponentially fast away from the boundary.

Lemma 4.4. Let u_R denote a solution of (4.1). Then

$$(4.14) \quad \exists \alpha > 0: |u_R| \leq Ce^{-\alpha d(x, \partial \Omega)} \quad \forall \mu_R \in \mathbb{R},$$

where α is independent of R, μ_R, and λ. Furthermore, denote by x_R the maximum point of $|u_R|$. Then $d(x_R, \partial \Omega_R)$ is bounded as $R \to \infty$.

Proof. We apply standard blow-up arguments to prove the lemma. Let

$$\Omega(R, k, s) = \{ x \in \Omega_R \mid d(x, \partial \Omega_R) \geq ks \}.$$

We prove the exponential rate of decay by showing first that

$$(4.15) \quad \exists R_0, s_0: \|u_R\|_{L^\infty(\Omega(R, k, s))} \leq \frac{1}{2} \|u_R\|_{L^\infty(\Omega(R, k+1, s))} \quad \forall s > s_0, R > R_0, k \in \mathbb{N}.$$

Suppose, for contradiction, that (4.15) does not hold. Then, there exist sequences $\{R_j\}_{j=1}^\infty$, $\{s_j\}_{j=1}^\infty$, and $\{k_j\}_{j=1}^\infty$ satisfying $R_j \uparrow \infty$, $s_j \uparrow \infty$, $k_j \in \mathbb{N}$, and

$$(4.16) \quad \|u_{R_j}\|_{L^\infty(\Omega(R_j, k_j+1, s_j))} \geq \frac{1}{2} \|u_{R_j}\|_{L^\infty(\Omega(R_j, k_j, s_j))} \overset{def}{=} \frac{1}{2} m_j.$$

Let

$$\tilde{u}_{R_j} = \frac{u_{R_j}}{m_j}.$$

By (4.15) there exists $x_j \in \Omega(R_j, k_j + 1, s_j)$ such that

$$(4.17) \quad |\tilde{u}_{R_j}(x_j)| \geq \frac{1}{2}.$$

For notational convenience we also let $f_j(x) = \tilde{u}_{R_j}(x_j + x)$.

We now distinguish between two different cases.

Case 1.

$$b_j = \inf_{x \in B(x_j, s_j)} |\phi_{R_j} - \mu_{R_j}| \to \infty$$

up to a subsequence.
Let \(\chi_r \in C^\infty(\mathbb{R}_+, [0, 1]) \) be defined by (3.3). Since \(f_j \) satisfies (4.1) we multiply it by \(\chi_r(0)f_j \) and integrate over \(B(0, r) \) to obtain, for the imaginary part,

\[
\int_{B(0,r)} \nabla (\chi_r^2) \cdot \frac{1}{2i} (f_j \nabla f_j - f_j \nabla \bar{f}_j) + \int_{B(0,r)} \chi_r^2 (\phi_{R_j} - \mu_{R_j})|f_j|^2 = 0,
\]
yielding

(4.18) \[b_j \int_{B(0, r/2)} |f_j|^2 \leq C_r \int_{B(0, r)} |f_j|^2 + |\nabla f_j|^2 \]
for all \(r < s_j \). For the real part we obtain that

\[
\int_{B(0,r)} |\nabla (\chi_r f_j)|^2 - \left(|\nabla \chi_r|^2 + (1 - \lambda) \chi_r^2 \right) |f_j|^2 = 0,
\]
and hence

(4.19) \[\int_{B(0, r/2)} |\nabla f_j|^2 \leq C \int_{B(0, r)} |f_j|^2 . \]

Combining (4.18) with (4.19), we obtain

\[
\int_{B(0, r/2)} |f_j|^2 \leq \frac{C_r}{b_j} \int_{B(0, 2r)} |f_j|^2 .
\]

As \(|f_j| \leq 1 \) we obtain that

\[
\int_{B(0, r/2)} |f_j|^2 \to 0
\]
as \(j \to \infty \), and by Lemma 4.1 also that \(f_j(0) \to 0 \), a contradiction.

Case 2. \(\limsup_{j \to \infty} b_j < \infty \).

Let \(J = |\nabla \phi| \). We choose a coordinate system, where \(\nabla \phi(x_j) \) is parallel to the \(x_1 \) axis. Then, by Lemma 4.2 we have a subsequence for which

\[
\phi_{R_j} - \mu_{R_j} \to Jx_1 + b
\]
uniformly in \(B(0, r) \) for all \(r > 0 \), where \(b \) is a constant. Thus, by standard elliptic estimates and Sobolev embeddings, there exists a subsequence \(\{f_{j_k}\}_{k=1}^\infty \) such that \(f_{j_k} \to f_\infty \) uniformly on every compact set in \(\mathbb{R}^3 \) and such that \(f_\infty \) is a bounded solution of

\[
-\Delta f_\infty - f_\infty + i(Jx_1 + b)f_\infty = -\lambda f_\infty \quad \text{in} \quad \mathbb{R}^3.
\]

By Lemma 3.1 we must have \(f_\infty \equiv 0 \), a contradiction.

Thus, we have proved (4.15), and hence also (4.14). The boundedness of \(d(x_R, \partial \Omega_R) \) follows from (4.14) as well.

Lemma 4.5. Let \(\partial \Omega_n \) denote the subset of \(\partial \Omega_c \) where \(\nabla \phi \) is perpendicular to \(\partial \Omega \). Suppose that either \(|\nabla \phi| > J_c \) for all \(x \in \partial \Omega_n \) or that \(\partial \Omega_n \) is empty. Then, for sufficiently large \(R \), \(u_R \equiv 0 \) is the unique solution of (4.1) for all \(\mu_R \in \mathbb{R} \).
Proof. Let \(x_R \) be the point where \(u_R \) obtains its maximum in \(\Omega_R \). Let \(x_0^R \) denote its projection on \(\partial \Omega_R \). Recall that by Lemma 4.4 \(|x_R - x_0^R| \) is bounded as \(R \to \infty \). Note that by Lemma 4.2 \(\phi_R \) converges uniformly to a linear function in \(D_r(x_0^R) \) for all fixed \(r > 0 \) as \(R \to \infty \). Suppose first that \(x_0^R \in \partial \Omega^R_i \). Following [11], let \((t_1, t_2, t_3) \) denote a local curvilinear coordinate system, whose origin lies at \(x_0^R \), such that \(t_3 = d(x, \partial \Omega_R) \) when \(x \in \Omega_R \) and such that the \(t_1 \) and \(t_2 \) curves on \(\partial \Omega \) are the lines of curvature. Let further \(\kappa_1^R \) and \(\kappa_2^R \) denote the respective principal curvatures on \(\partial \Omega_R \). Clearly, \(\kappa_i^R = \kappa_i / R \) (\(i = 1, 2 \)), where \(\kappa_i \) is the corresponding principal curvature on \(\partial \Omega \), at \(x_0 = x_0^R / R \).

Since \(\partial \Omega \) is smooth near \(x_0^R \), this curvilinear coordinate system is properly defined in some neighborhood of \(x_0^R \). Let \(B^+(0, r) = \{(t_1, t_2, t_3) \in B(0, r) \mid t_3 > 0 \} \).

Then, the above coordinate system is well defined in \(B^+(0, \delta R) \) for some \(\delta > 0 \). We can now present any \(x \) in this neighborhood by
\[
x = r(t_1, t_2) - t_3 \nu,
\]
where \(\nu \) is the outward normal at \((t_1, t_2, 0) \). Let
\[
g_{ij}(t_1, t_2) = \frac{\partial r}{\partial t_i} \cdot \frac{\partial r}{\partial t_j}, \quad i, j = 1, 2,
\]
and
\[
G_{ij} = [1 - \kappa_i t_3 / R]g_{ij}, \quad i, j = 1, 2.
\]
Since our coordinate system is orthogonal, we have
\[
g_{12} = 0.
\]
Furthermore, we can scale \(t_1 \) and \(t_2 \) so that
\[
g_{11} = g_{22} = 1 + O(1/R) \quad \text{as } R \to \infty
\]
uniformly in \(B^+(0, r) \) for every fixed \(r > 0 \). Finally, we define
\[
\begin{cases}
G = \sqrt{G_{11} G_{22}}, \\
\alpha_j = \frac{G}{G_{jj}}, \quad j = 1, 2, \\
\alpha_3 = G,
\end{cases}
\]
Let \(w_R(x) = u_R(x)/|u_R(x_R)| \). In the new coordinates, (4.1) takes the form
\[
-\sum_{j=1}^{3} \frac{1}{G} \frac{\partial}{\partial t_j} \left(\alpha_j \frac{\partial w_R}{\partial t_j} \right) - w_R + i(\phi_R - \mu_R)w_R = -\lambda w_R
\]
in \(B^+(0, \delta R) \). Standard elliptic estimates then prove the existence of a sequence \(\{w_{R_j}\}_{j=1}^{\infty} \) such that \(w_{R_j} \to w_\infty \) uniformly on every compact set in \(\mathbb{R}^3_+ \), where here
\[
\mathbb{R}^3_+ = \{(t_1, t_2, t_3) \mid t_3 > 0 \}.
\]
By standard elliptic estimates again we have that w_∞ satisfies the following problem:

$$
\begin{cases}
-\Delta w_\infty - w_\infty + i(J_1 t_1 + J_2 t_2 + b)w_\infty = -\lambda w_\infty & \text{in } \mathbb{R}_+^3, \\
\frac{\partial w_\infty}{\partial \nu} = 0 & \text{on } \partial \mathbb{R}_+^3.
\end{cases}
$$

By Lemma 3.4 we have $w_\infty \equiv 0$ in \mathbb{R}_+^3, a contradiction since $|w_R(x_R)| = 1$ and $|x_R - x_R^0|$ is bounded.

Consider now the case where $x_R^0 \in \partial \Omega_c^R$. Following the same procedure as before we obtain that $w_R \to w_\infty$ uniformly on every compact set in \mathbb{R}_+^3, where w_∞ must satisfy

$$
\begin{cases}
-\Delta w_\infty - w_\infty + i(J_1 t_1 + J_2 t_2 + J_3 t_3 + b)w_\infty = -\lambda w_\infty & \text{in } \mathbb{R}_+^3, \\
\frac{\partial w_\infty}{\partial \nu} = 0 & \text{on } \partial \mathbb{R}_+^3.
\end{cases}
$$

If $\partial \Omega_n$ is empty, we have $J_1^2 + J_2^2 > 0$. By Lemma 3.3 we then have $w_\infty \equiv 0$. Otherwise, if $x_0 \in \partial \Omega_n$, we must have $w_\infty \equiv 0$ by Lemma 3.2 since $J_3 > J_c$.

Finally, if x_0 lies on the interface between $\partial \Omega_i$ and $\partial \Omega_c$, we obtain that w_∞ must satisfy, since the two surfaces are perpendicular to each other at the interface, a problem in Q, where

$$Q = \{(t_1, t_2, t_3) \mid t_3 > 0, t_1 > 0\}.$$

We have

$$
\begin{cases}
-\Delta w_\infty - w_\infty + i(J_1 t_1 + J_2 t_2 + b)w_\infty = 0 & \text{in } Q, \\
\frac{\partial w_\infty}{\partial \nu} = 0, & x \in \partial Q : t_3 = 0, \\
w_\infty = 0, & x \in \partial Q : t_1 = 0.
\end{cases}
$$

By Lemma 3.5 we have $w_\infty \equiv 0$. (Note that some modification of the local coordinate system is necessary in this case.)

Proof of Theorem 1.1. Since the principal part of the differential operator on the left-hand side of (4.1) is the Laplacian, it can be regarded as a perturbation of a self-adjoint operator. Thus, it follows from the discussion below Theorem 15.2 in [2] regarding such perturbations that it has exactly one direction which is not a direction of minimal growth, that is, $\arg \lambda = 0$. Hence, it follows from Theorem 15.1 in [2] that the spectrum of this differential operator must be discrete and that all its eigenvalues must have finite multiplicity. Furthermore, by Theorem 16.5 in [2], the eigenfunctions span $L^2(\Omega_R, \mathbb{C})$. Hence, for $J > J_c$, since all the eigenvalues of the above operator must have positive real part, the normal state must be stable.

Consider now the case when a point $x \in \partial \Omega_c$ exists, where

$$\left| \frac{\partial \phi}{\partial \nu} \right| = |\nabla \phi| = J < J_c.$$

To prove the short-time instability we look at the solution of (1.6), after applying to it the transformation (2.2), with the initial condition

$$\psi(x, 0) = u_1(t_3) x_{R^{1/2}}(t_1, t_2) \eta_R(t_3),$$
where \((t_1, t_2, t_3)\) are the above-defined system of local curvilinear coordinates, \(\chi_r\) is defined in \((3.3)\), and

\[
\eta_R(x) = \begin{cases}
1, & x < \frac{1}{2} \delta R, \\
0, & x > \delta R,
\end{cases}
\]

is a smooth cutoff function.

Let \(\bar{\beta} = \lambda_J - \lambda_{Jc}\). We write

\[
(4.20) \quad \psi_R = v + \psi_0(x)e^{\bar{\beta}t}
\]

to obtain

\[
(4.21) \quad \frac{\partial v}{\partial t} - \Delta v - \lambda_J v = f.
\]

The precise form of \(f\) need not concern us except for the fact that

\[
(4.22) \quad \|f\|_2 \leq \frac{C_\alpha}{R^\alpha} \|\psi_0\|_2 e^{\bar{\beta}t} \quad \forall \alpha < 1.
\]

Multiplying \((4.21)\) by \(\bar{v}\) and integrating by parts, we obtain for the real part

\[
\left\{ \begin{array}{l}
\frac{d\|v\|_2}{dt} - \lambda_J \|v\|_2 = \|f\|_2, \\
\|v\|_2(0) = 0.
\end{array} \right.
\]

Consequently,

\[
\|v\|_2(t) \leq \int_0^t e^{\lambda_J(t-\tau)}\|f\|_2(\tau)d\tau,
\]

and hence,

\[
\|v\|_2 \leq \frac{C_\alpha}{R^\alpha} \|\psi_0\|_2 e^{(\lambda_J + \bar{\beta})t}.
\]

Clearly, there exist \(T_R \sim O(\ln R)\), as \(R \to \infty\), such that

\[
t < T_R \Rightarrow \frac{C_\alpha}{R^\alpha} e^{\lambda_J t} < \frac{1}{2},
\]

and thus

\[
t < T_R \Rightarrow \|\psi\|_2 \geq \frac{1}{2} \|\psi_0\|_2 e^{\bar{\beta}t}.
\]

Applying the inverse of \((2.2)\), we obtain \((1.7)\). \qed

The above instability result is valid, of course, only for \(T < T_R\). Proving long-time instability appears to be a much more difficult problem. The stability proof presented above relies on the convergence of any solution of \((4.1)\) to a solution of \((3.8)\) uniformly on every compact set near the point on the boundary where \(J\) is perpendicular to it. This, however, does not prove convergence of the spectrum or even of its bottom. What has been demonstrated is only the upper semicontinuity of the spectrum of the differential operator on the left-hand side of \((4.1)\). Lower semicontinuity of the spectrum appears to be much harder to prove, especially since the operator is not self-adjoint. Nevertheless, it does seem reasonable to conjecture that the solution would continue to grow exponentially fast as \(t \to \infty\), in view of the above short-time instability result. Further research is necessary in order to establish that result.
5. Concluding remarks. In the previous section we proved that the normal state remains stable in the large domain limit, as long as the current on the boundary, at points where it is perpendicular to it, is greater than J_c. If the current is nowhere perpendicular to the boundary, then as long as it doesn’t vanish there, the normal state must be stable. We also demonstrate short-time instability when $J_m < J_c$.

In the following we provide a short list of interesting problems that are waiting to be resolved:

1. Proving long-time instability when $J > J_c$. We have elaborated on this matter at the end of the preceding section.
2. Adding the effect of magnetic fields. This magnetic field can be either induced by the electric current (via (1.3)) or else be applied externally (or both). It has been verified experimentally that an induced magnetic field can generate vortices [14] if the current is sufficiently large and the material is close to the wholly superconducting state. However, its effect on the critical current J_c has not been investigated. It is reasonable to believe that J_c would become smaller if we add the effect of the magnetic field.
3. Adding the effect of temperature, since electric currents have the tendency to heat the sample, thereby creating vortices [14]. Incorporating this effect requires modification of (1.1), and the use of different nondimensionalization; otherwise the domain would become temperature-dependent.
4. Proving that the bifurcating branch (at $J = J_c$) is unstable.

Appendix A. The Hilbert–Schmidt norm of L^{-1}.

Lemma A.1. Let \tilde{G} be as given by (2.14b). Then, for any $\lambda \in \mathbb{C} \setminus \{\lambda_n\}_{n=1}^{\infty}$, where $\{\lambda_n\}_{n=1}^{\infty}$ are given as in (2.11),

(A.1)

$$\exists C, M > 0 : \|\tilde{G}\| \leq Ce^{M\lambda^{3/2}}.$$

Proof. We first note that

$$W(w_1, \tilde{w}_2)(x, \lambda) = w'_2(x, \lambda)w_1(x, \lambda) - w'_1(x, \lambda)w_2(x, \lambda)$$

is independent of x by Abel’s formula. Furthermore, for $y = x + i\lambda$ we have

$$W(w_1, \tilde{w}_2)(x, \lambda) = W(w_1, \tilde{w}_2)(y, 0) = W(w_1, \tilde{w}_2)(0, 0).$$

Therefore, W is independent of both x and λ.

Since W is constant, it follows that \tilde{G} is symmetric, i.e.,

$$\tilde{G}(x, \xi, \lambda) = \tilde{G}(\xi, x, \lambda).$$

Consequently, it suffices to prove that

$$\int_{0}^{\infty} d\xi \int_{\xi}^{\infty} dx |\tilde{G}(x, \xi)|^2 = C_1 \int_{0}^{\infty} d\xi |\tilde{w}_2(\xi)|^2 \int_{\xi}^{\infty} dx |\tilde{w}_1(x)|^2 \leq Ce^{M\lambda^{3/2}},$$

where C, C_1, and M are all independent of λ.

To obtain the above estimate we use asymptotic properties of Airy’s functions [1, 13], from which it follows that

(A.2)

$$|A_4(z)| \leq \frac{C}{|z|^{1/4}} \left| e^{-\frac{2}{3}z^{3/2}} \right|.$$
Consider then first the domain \(\xi > M_0 \lambda \) for sufficiently large \(M_0 > 0 \). We have
\[
\int_{\xi}^{\infty} |w_1(x)|^2 \, dx \leq \int_{\xi}^{\infty} \frac{dx}{|x + i\lambda|^1/2} e^{-\beta(x)|x + i\lambda|^{3/2}},
\]
where
\[
\beta(x) = \frac{4}{3} \cos \left(\frac{3}{2} \arg(x + i\lambda) + \frac{\pi}{4} \right).
\]
It is easy to show that
\[
|\beta'(x)| \leq C \frac{|\lambda|}{|x + i\lambda|^2},
\]
\[
|\beta''(x)| \leq C \frac{|\lambda|}{|x + i\lambda|^3}.
\]
Let then
\[
\gamma(x) = \beta(x)|x + i\lambda|^{3/2}.
\]
By (A.3) we have
\[
\begin{cases}
|\gamma'(x)| \geq \frac{3}{2} \beta(x)|x + i\lambda|^{1/2} \left[1 - C \frac{|\lambda|}{|x + i\lambda|^3} \right], \\
|\gamma''(x)| \leq \frac{3}{4} \beta(x)|x + i\lambda|^{-1/2} \left[1 + C \frac{|\lambda|}{|x + i\lambda|^3} \right].
\end{cases}
\]
Using (A.4) and integration by parts, we obtain
\[
\int_{\xi}^{\infty} e^{-\gamma(x)} \, dx \leq \frac{1}{|\gamma'(\xi)|} e^{-\gamma(\xi)} + \int_{\xi}^{\infty} \frac{|\gamma''(x)|}{|\gamma'(x)|} e^{-\gamma(x)} \, dx \leq \frac{C}{|\xi + i\lambda|^{1/2}} e^{-\gamma(\xi)} + \frac{C}{|\xi + i\lambda|^{3/2}} \int_{\xi}^{\infty} e^{-\gamma(x)} \, dx.
\]
Hence,
\[
\int_{\xi}^{\infty} e^{-\gamma(x)} \, dx \leq \frac{C}{|\xi + i\lambda|^{1/2}} e^{-\gamma(\xi)} ,
\]
from which we easily obtain that
\[
\int_{\xi}^{\infty} |w_1(x)|^2 \, dx \leq \frac{C}{|\xi + i\lambda|^{1/2}} e^{-\gamma(\xi)} .
\]
From the asymptotic behavior of Airy’s function (A.2), we obtain again
\[
|\tilde{w}_2(\xi)|^2 \leq \frac{C}{|\xi + i\lambda|^{1/2}} e^{\gamma(\xi)} .
\]
Thus,
\[
\int_{M_0 \lambda}^{\infty} d\xi |\tilde{w}_2(\xi)|^2 \int_{\xi}^{\infty} \, dx |\tilde{w}_1(x)|^2 \leq \frac{C}{\lambda^{1/2}} .
\]
To complete the proof we need to bound the norm for $0 < \xi < M_0 \lambda$. By (A.2) and (2.14b) we have
\[|\tilde{G}(x, \xi, \lambda)| \leq C \exp \left\{ \frac{2}{3} (M_0 + 1)^{3/2} |\lambda|^{3/2} \right\}. \]

Consequently, from the above and (A.5) we obtain
\[
\int_{M_0 \lambda}^{M_0 \lambda} d\xi |\tilde{w}_2(\xi)|^2 \int_{\xi}^{\infty} dx |\tilde{w}_1(x)|^2 = \int_{M_0 \lambda}^{M_0 \lambda} d\xi |\tilde{w}_2(\xi)|^2 \int_{\xi}^{\infty} dx |\tilde{w}_1(x)|^2 \\
+ \int_{M_0 \lambda}^{M_0 \lambda} d\xi |\tilde{w}_2(\xi)|^2 \int_{M_0 \lambda}^{\infty} dx |\tilde{w}_1(x)|^2 \leq C M_0^2 \lambda^2 \exp \left\{ \frac{2}{3} (M_0 + 1)^{3/2} |\lambda|^{3/2} \right\},
\]
from which (A.1) easily follows.

\[\square \]

Acknowledgments. The author wishes to thank Professor Bernard Helffer and Professor Yehuda Pinchover for their comments.

REFERENCES