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1. Regular elements in semisimple Lie algebras

Let G be a connected semisimple algebraic group over C, and let g = Lie(G) be its Lie algebra.

Definition 1.1. A semisimple element s ∈ g is regular if its centralizer

Zg(s) = {x ∈ g | [x, s] = 0}

is a Cartan subalgebra.

Recall that a Cartan subalgebra is a nilpotent subalgebra which is self-normalizing. Cartans are

maximal abelian subalgebras (though not all maximal abelian subalgebras are Cartans!), and they

consist entirely of semisimple elements. All Cartans are conjugate under the adjoint action of G,

and every semisimple element is contained in a Cartan.

Remark 1.2. Equivalently, a semisimple element s ∈ g is regular if and only if the centralizer

ZG(s) = {g ∈ G | Adg(s) = s} is a maximal torus.

We will denote by grs the subset of regular semisimple elements of g. Fix a Cartan h, and let Φ

be the corresponding root system. This produces a corresponding root space decomposition

g = h⊕

(⊕
α∈Φ

gα

)
,

where

gα = {x ∈ g | h · x = α(h)x ∀h ∈ h}.
1
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Lemma 1.3. An element s ∈ h is regular iff α(s) 6= 0 for all α ∈ Φ.

Proof. The centralizer Zg(s) just the sum of the root spaces on which the operator ads has eigenvalue

0:

Zg(s) = h⊕

 ⊕
α(s)=0

gα

 .

The statement follows. �

Example 1.4. A diagonalizable element of sln is regular if and only if its eigenvalues are distinct.

Remark 1.5. Since the semisimple elements are dense in g, and since every semisimple element is

contained in a Cartan, Lemma 1.3 implies that grs is a dense subset of g.

Let l = dim h be the rank of g.

Proposition 1.6. Let x ∈ g. Then Zg(x) contains an l-dimensional abelian subalgebra.

Proof. Let {x′n} be a sequence of regular semisimple elements that converges to x. Consider the

Grassmannian Gr = Gr(l, g) of l-dimensional subspaces of g. Since Gr is projective, there is a

subsequence {xn} such that the sequence {Zg(xn)} ⊂ Gr converges—call its limit u. We will prove

that u is an abelian subalgebra contained in Zg(x).

Let w1, . . . , wl be a basis for u, and choose for each i a sequence {win ∈ Zg(xn)} such that

win −→ wi. Then

[win, w
j
n] = 0 ⇒ [wi, wj ] = 0 ⇒ u is abelian, and

[win, xn] = 0 ⇒ [wj , x] = 0 ⇒ u ⊆ Zg(x). �

Corollary 1.7. For any x ∈ g, dimZg(x) ≥ l and dimZG(x) ≥ l.

This justifies the following definition.

Definition 1.8. An element x ∈ g is regular if the dimension of Zg(x) is equal to l. In other words,

x is regular if the dimension of its centralizer is minimal, and the dimension of the G-orbit G · x is

maximal.

Example 1.9. There exist non-semisimple regular elements. When g = sl3, the maximal nilpotent

Jordan block 0 1

0 1

0

 is regular with centralizer


0 a b

0 a

0


 .

We will give a more general criterion for regularity. Recall the Jordan decomposition, which says

that for every x ∈ g there exists a unique decomposition x = xss + xn into a semisimple part xss

and a nilpotent part xn such that [xss, xn] = 0. Uniqueness implies in particular that

Zg(x) = Zg(xss) ∩ Zg(xn).
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Proposition 1.10. The element x ∈ g is regular if and only if xn is regular in the derived subalgebra

of Zg(xss).

Proof. The semisimple Lie algebra l′ = [Zg(xss), Zg(xss)] has rank l − k, where k is the dimension

of the center of Zg(xss). Then

dimZl′(xn) = l − k ⇐⇒ dimZZg(xss)(xn) = l

⇐⇒ dimZg(xss) ∩ Zg(xn) = l

⇐⇒ dimZg(x) = l. �

Exercise 1.11. Give a criterion for an element of sln to be regular.

2. The flag variety and the Bruhat decomposition

Most of the next four sections will follow the exposition in [CG]. Fix a Borel subalgebra b ⊂ g,

with corresponding Borel subgroup B. Let B denote the set of all Borel subalgebras—this is

naturally a closed subvariety of the Grassmannian

Gr(dim b, g),

and so it is a projective variety.

Borel subgroups are self-normalizing, so the stabilizer of b under theG-action on B isNG(B) = B.

The isomorphism

G/B
∼−−→ B

gB 7−→ g · b

gives a natural bijection

B\G/B (1)−−→ {B-orbits on B}.

The product G × G acts on B × B. Let G∆ denote the diagonal embedding of G into G × G.

There is a bijection

{B-orbits on B} (2)−−→ {G∆-orbits on B × B}

B · b′ 7−→ G∆ · (b, b′).

Under map (2), the unique B-fixed point b is mapped to the unique closed G∆-orbit of minimal

dimension, G∆ · (b, b).

Now fix a maximal torus T ⊂ B, and let WT = NG(T )/T denote the corresponding Weyl group.

There is a third map

WT
(3)−−→ B\G/B

w 7−→ BẇB,

where ẇ is any coset representative of w in NG(T ). (This is well-defined because any two coset

representative differ by an element of T , and T ⊂ B.)
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These maps concatenate:

WT
(3)−−→ B\G/B (1)−−→ {B-orbits on B} (2)−−→ {G∆-orbits on B × B}.

Theorem 2.1. (The Bruhat Decomposition) Map (3) is also a bijection.

The proof of this theorem will be an application of the Bialynicki-Birula decomposition, which

we recall here. Let X be a smooth complex projective variety equipped with an algebraic action of

C∗. It is a standard fact that, for every x ∈ X, the limit

lim
z→0

z · x

exists and is a C∗-fixed point of X. Let W ⊂ X be the set of C∗-fixed points, and assume for our

purposes that it is discrete. Then, for every w ∈W , one defines the attracting set

Xw = {x ∈ X | lim
z→0

z · x = w}.

Note that w ∈ Xw.

Since w is fixed there is an action of C∗ on the tangent space TwX, which induces a weight space

decomposition

TwX =
⊕
n∈Z

TwX[n], where TwX[n] = {v ∈ TwX | z · v = znv}.

Because W is discrete, TwZ[0] = 0, and we get a natural decomposition

TwX = T+
wX ⊕ T−wX.(2.1)

Theorem 2.2 (Bialynicki-Birula). The decomposition

X =
∐
w∈W

Xw

is a decomposition into smooth locally-closed subvarieties, and there is a natural C∗-equivariant

isomorphism

Xw
∼= TwXw = T+

wX.

Remark 2.3. The Bialynicki-Birula decomposition generalizes to the case where W is not discrete,

and the attracting sets are parametrized by the connected components of W .

Proof of Theorem 2.1. We will prove the following sequence of bijections:

WT {T -fixed points on B} {C∗-fixed points on B}

{B-orbits on B} {attracting sets Bw}

(a) (b)

BB

(c)

(a) The first bijection is clear:

{T -fixed points on B} ←→ {b′ ∈ B | h ⊂ b} ←→ {w · b | w ∈WT } ∼= WT .
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(b) Choose an embedding C∗ ↪→ T such that the Lie algebra Lie C∗ ⊂ h is spanned by a regular

semisimple element h ∈ h. This induces a C∗-action on g and on B, and

C∗ fixes b′ ∈ B ⇐⇒ h ∈ b′ ⇐⇒ h ⊂ b′ ⇐⇒ T fixes b′.

Then Bialynicki-Birula gives us a decomposition

B =
∐

w∈WT

Bw.

(c) We will show that every Bw is a single B-orbit. Fix w ∈W and let U ⊂ B be the unipotent

radical. The C∗-action on g induces a weight space decomposition

g =
⊕
n∈Z

gn =

(⊕
n>0

gn

)
⊕ h⊕

(⊕
n<0

gn

)
= n+ ⊕ h⊕ n−,

where

gn = {x ∈ g | h · x = nx}.

We can choose the embedding C∗ ↪→ G such that b = h⊕ n+, and in this case n+ = Lie U.

Because B is a homogeneous space, the tangent space of B at the point wB is canonically

isomorphic to the quotient of g by the Lie algebra of StabG(wB) = wb. The differential of the

action map of G is the quotient

g −→ g/wb ∼= TwBB,

and because h ⊂ wb it factors through g/h:

g g/wb ∼= TwBB

g/h

The surjection g/h −→ TwbB is compatible with the decompositions

g/h ∼= n+ ⊕ n− and TwbB = T+
wbB ⊕ T

−
wbB,

(the second of which comes from (2.1)), and by Theorem 2.2 this produces a surjection

n+ −→ TwbBw.

This is just the differential of the action map U −→ Bw, and its surjectivity implies that UwB is

an open dense subset of Bw.

But U is a unipotent group acting on the affine (by Theorem 2.2) space Bw, so all its orbits are

closed by Lemma 2.4. It follows that

Bw = UwB = BwB. �

Lemma 2.4. Suppose U is a unipotent group acting on an affine space X. Then any orbit of U is

closed.
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Proof. Let O be a U -orbit and O its closure. If O 6= O, the boundary C = O\O is a nonempty,

closed, U -stable subvariety of O. Let I ⊂ C[O] be its (nonempty) defining ideal.

Because C is U -stable, the group U acts on I, and because U is unipotent it has a fixed point—a

nonzero function g ∈ IG. Because g is G-invariant, it is constant on the orbit closure O, and

because g ∈ I, g|C = 0. So, g must be identically 0 on O—a contradiction. �

3. The Grothendieck-Springer resolution

Proposition 3.1. Let b and b′ be any two Borel subalgebras. There is a canonical isomorphism

b/[b, b]
∼−−→ b′/[b′, b′].

Proof. Since all Borels are conjugate, there is some g ∈ G with b′ = gb. This gives an isomorphism

ϕ̃g : b
∼−−→ b′

that descends to an isomorphism

ϕg : b/[b, b]
∼−−→ b′/[b′, b′].

Suppose g′ is some other group element such that b′ = g′b. Because Borels are self-normalizing,

g′ = gb for some b ∈ B. But then ϕg = ϕg′ , because the action of the element b on b/[b, b] is

trivial. �

Definition 3.2. The quotients b/[b, b] are canonically identified with an l-dimensional vector space

H called the universal Cartan.

Remark 3.3. We emphasize that H is not a subalgebra of g.

Let T be a maximal torus with Lie algebra h as before, and fix a Borel subgroup B such that

Lie B = b contains h. The pair (T,B) is equipped with the data of a root system ΦT (depending

on T ), and a set of simple roots ∆TB (which depends also on the choice of B.) The corresponding

Weyl group WT is the Coxeter group generated by the simple reflections {sα | α ∈ ∆TB} under the

usual braid relations.

The composition of the morphisms

h ↪−→ b −→ b/[b, b] ≡ H

gives an isomorphism h
∼−−→ H (which depends on the choice of b.) This induces a root system Φ

on H, together with a set of simple roots ∆, a corresponding Weyl group W, called the universal

Weyl group, and an isomorphism

WT
∼−−→W.

Definition 3.4. The Grothendieck-Springer resolution is the incidence variety

g̃ = {(x, b) ∈ g× B | x ∈ b}.
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We first consider the projection π : g̃ −→ B. For every b ∈ B,

π−1(b) ∼= b.

Fix a Borel subgroup B with Lie algebra b. The isomorphism

G×B b
∼−−→ g̃

(g, x) 7−→ (gx, gb)

makes g̃ into a G-equivariant vector bundle on B, and π is simply the bundle map.

Now we consider the projection µ : g̃ −→ g. The fiber above a point x ∈ g is the set of Borel

subalgebras containing x:

µ−1(x) = {b ∈ B | x ∈ b}

—in other words, it is the set of zeros of the vector field induced by x on B.

The fiber above 0 ∈ g is the entire flag variety B. The fiber above a regular semisimple element

s ∈ grs is finite, of the same cardinality as the Weyl group, because the Borel subalgebras containing

s are freely permuted by the Weyl group corresponding to the maximal torus ZG(s). Let

g̃rs = µ−1(grs)

be the regular semisimple locus of g̃.

Proposition 3.5. For every s ∈ grs, there is a canonical action of the universal Weyl group W on

the fiber µ−1(s), which makes g̃rs into a principal W-bundle of grs.

Proof. Let s ∈ grs and let the maximal torus T = ZG(s) be its centralizer. There is a natural action

of the Weyl group WT on the fiber µ−1(s). Any b ∈ µ−1(s) induces an isomorphism WT
∼= W, and

one defines the action of every w ∈W on b accordingly. �

We also record here the following observation, which will be useful later:

Proposition 3.6. The map µ is proper.

Proof. The map µ is just the restriction of the first projection α : g × B −→ g to the subvariety

g̃ ⊂ g× B, and α is proper because B is projective. �

There is also a natural map

ν : g̃ −→ H

(x, b) 7−→ x+ [b, b].

This will be useful in the proof of the following theorem, where we will work our way right-to-left

along the diagram

(3.1)

g̃

g H.

νµ
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Fix a Cartan h with associated Weyl group W . The usual restriction C[g] −→ C[h] descends to

a homomorphism of algebras

ϕ : C[g]G −→ C[h]W .

Theorem 3.7 (Chevalley restriction). The restricton map ϕ is an isomorphism.

Proof. Injectivity is clear—if P ∈ C[g]G is such that P|h = 0, then by G-invariance P|gss = 0, and

because semisimple elements are dense in g this means that P = 0.

To prove surjectivity, let P ∈ C[h]W and let b be a Borel subalgebra containing h. This choice

of b induces an isomorphism

h ↪−→ b −→ b/[b, b] ∼= H,

and this identification produces a corresponding PH ∈ C[H]W. Because PH is W-invariant, it is

independent of the choice of b.

Pulling PH back through the morphism ν, we obtain a polynomial P̃ = PH ◦ ν ∈ O(g̃). This

polynomial G-invariant:

P̃ (g · x, g · b) = PH(gx+ [gb, gb]) = PH(x+ [b, b]) = P̃ (x, b)

because of the canonical isomorphism b/[b, b] ∼= gb/[gb, gb] of Proposition 3.1.

By Proposition 3.5, grs is the G-equivariant quotient of g̃rs by the free action of the finite group

W. This gives an identification

C(grs) ∼= C(g̃rs)W,

and P̃ descends to a G-invariant regular function R on grs.

We will show that R extends to all of g. Let D ⊂ g be any relatively compact set. Because µ is

proper, µ−1(D∩ grs) ⊂ g̃rs is also relatively compact. Then P̃|µ−1(D∩grs) is bounded because P̃ is a

regular function, so R|D∩grs is also bounded. Since R is bounded on every relatively compact set,

it has no poles, and R ∈ C[g]G.

Last, we check that R restricts to P . Let x ∈ hr be a regular element and let b be any Borel

containing x. Then

R(x) = P̃ (x, b) = PH(x+ [b, b]) = P (x).

Since R and P agree on the regular locus hr, they agree on all of h. �

Remark 3.8. A Borel subalgebra b containing h induces an isomorphism

h
∼−−→ H.

Because all such Borel subalgebras are permuted by the Weyl group W , the induced isomorphism

of invariant coordinate rings

C[H]W
∼−−→ C[h]W

is independent of the choice of b. So, the Chevalley restriction theorem actually gives a well-defined

canonical isomorphism

C[g]G
∼−−→ C[H]W.
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Reversing this isomorphism produces an injection

(3.2) C[H]W ↪−→ C[g].

Because W is finite, the polynomials in C[H]W separate W -orbits on H (see for example the proof

of Proposition 7.3), and therefore

Specm C[H]W ∼= H/W.

Because the algebra of polynomial invariants is a free polynomial algebra, the quotient H/W is

a vector space of dimension dimH = l. So the injection (3.2) induces a morphism of algebraic

varieties

ρ : g −→ H/W.

Diagram (3.1) is now extended to

(3.3)

g̃

g H

H/W

νµ

ρ π

Proposition 3.9. Diagram (3.3) commutes.

Proof. Because the polynomials in C[H]W separate points on H/W, it is sufficient to show that for

any P ∈ C[H]W,

f ◦ ρ ◦ µ(x, b) = f ◦ π ◦ ν(x, b) for all (x, b) ∈ g̃.

This is equivalent to commutativity of the diagram

O(g̃)

C[g] C[H]

C[H]W

µ∗ ν∗

ρ∗ π∗

But then, using the notation defined in the proof of Theorem 3.7,

µ∗(ρ∗(P )) = µ∗(R) = P̃ = ν∗(π∗(P )). �

Example 3.10. Let g = sln, and let h denote the subalgebra of diagonal matrices. The Weyl

group is W = Sn, and the algebra C[h]W is generated by the elementary symmetric polynomials.

Under the Chevalley restriction, they pull back to the coefficients of the characteristic polynomial.

That is, for any x ∈ sln,

charx(t) = tn + 0 · tn−1 + p1(x)tn−2 + . . .+ pn−1(x)
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and the algebra of polynomial invariants on sln is a polynomial algebra generated by p1, . . . , pn−1:

C[sln]SLn = C[p1, . . . , pn−1].

The map ρ is then given by

ρ : g −→ Cl

x 7−→ (p1(x), . . . , pn−1(x))

So the image of matrix x under ρ depends only on the eigenvalues of x, with multiplicity.

Proposition 3.11. Let b be a Borel subalgebra, n = [b, b] its nilradical, and x ∈ b. Then for any

P ∈ C[g]G, the restriction P|x+n is constant.

Proof. Let y = x+ n for some n ∈ n. Then (x, b), (y, b) ∈ g̃, and

ν(x, b) = ν(y, b).

Let P ∈ C[g]G and let PH ∈ C[H]W be its image under the Chevalley restriction, so that P ◦ µ =

PH ◦ ν. Then

PH(ν(x, b)) = PH(ν(y, b))⇒ P (µ(x, b)) = P (µ(y, b))⇒ P (x) = P (y). �

4. The nilpotent cone

Definition 4.1. The set of nilpotent element

N = {x ∈ g | x is nilpotent}

is closed, G-stable, and stable under scaling by C∗, and it is called the nilpotent cone.

Let

Ñ = µ−1(N ) = {(x, b) ∈ N × B | x ∈ b}.

The projection π : Ñ −→ B has fibers

π−1(b) = [b, b].

Fix a point b ∈ B and let n = [b, b] be its nilradical. Because every nilpotent element in g is

conjugate to an element of n, there is an isomorphism

G×B n
∼−−→ Ñ

that makes Ñ into a G-equivariant vector bundle on B.

Proposition 4.2. There is an isomorphism Ñ ∼= T ∗B.

Proof. Fix b ∈ B with corresponding Borel subgroup B. Because B = G/B is a homogeneous space,

T ∗B ∼= G×B b⊥,



PART I: GEOMETRY OF SEMISIMPLE LIE ALGEBRAS 11

where b⊥ = {ϕ ∈ g∗ | ϕ|b = 0}. Under the identification g ∼= g∗ via the Killing form, the space b⊥

is identified with [b, b]. Then

T ∗B ∼= G×B n ∼= Ñ . �

Let C[g]G+ be the ideal of C[g]G consisting of polynomials with zero constant term. This is the

ideal generated by the polynomials that generate C[g]G ∼= C[H]W as a free algebra.

Proposition 4.3. An element x ∈ g is nilpotent if and only if P (x) = 0 for every P ∈ C[g]G+.

Proof. The proposition amounts to showing that

N = ρ−1(0).

Let x ∈ g and b a Borel subalgebra containing x. Then ρ(x) = π(ν(x, b)) because of the com-

mutativity of diagram (3.3). The element x is nilpotent if and only if x ∈ [b, b], if and only if

π(x+ [b, b]) = π(0) = 0, if and only if ρ(x) = 0. �

Corollary 4.4. The nilpotent cone N is an irreducible variety of dimension 2 dim n.

Proof. The cotangent bundle T ∗B is smooth and connected, so it is irreducible. Because N is its

image under the morphism µ, N is also irreducible.

The nilpotent cone is the vanishing locus of the l algebraically independent polynomials that

generate C[g]G, so

dimN = dim g− l = 2 dim n. �

Proposition 4.5. The number of G-orbits in N is finite.

The proof will require the following lemma (cf. [Dix] 8.1.2 and 8.1.3.):

Lemma 4.6. Let g be a Lie algebra and suppose that a is a Lie subalgebra that has an a-stable

complement W—that is, a subspace W ⊂ g with g = a ⊕W and [a,W ] ⊂ W . Let G and A be

connected algebraic groups so that G = Lie g and A = Lie a. Then for any G-orbit Ω on g, any

irreducible component of Ω ∩ a is a single A-orbit.

Proof. Let Z ⊂ Ω ∩ a be such a component, and let x ∈ Z. Identifying g with its tangent space at

any point,

TxΩ = [g, x] = [a, x] + [W,x].

Because x ∈ a, [a, x] ⊆ a, and because W is a-stable, [W,x] ⊆W . Then

TxZ = TxΩ ∩ Txa = [a, x] = Tx(A · x).

So the orbit A · x is open dense in Z. Because this is true for every x, and because intersecting

orbits are equal, A · x = Z. �

Proof of Proposition 4.5. The statement is clearly true for gln, since there are finitely many con-

figurations of nilpotent Jordan blocks. We can embed g ↪−→ gln, and this embedding preserves

nilpotency.
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Because g is semisimple the image of this embedding has a g-stable complement. By Lemma 4.6,

so that the intersection of each of the finitely many nilpotent GLn-orbits on gln decomposes into

finitely many G-orbits on g. �

Corollary 4.7. The set N reg of regular nilpotents is an open dense G-orbit in N .

Proof. Because N is irreducible with finitely many orbits, it contains a unique open dense orbit O.

If x ∈ O, then

2 dim n = dimO = dimG− dimZG(x),

and therefore dimZG(x) = l, so x is regular. �

Fix now a Borel subgroup B containing a maximal torus T , let U be its unipotent radical,

b = Lie B, and n = [b, b]. There is a natural action

T y n/[n, n]

which gives a basis of weight vectors ē1, . . . , ēl which are the images of the simple root vectors

e1, . . . , el under the projection

n −→ n/[n, n]

x 7−→ x̄

Define the set nr = {x ∈ n | x̄ =
∑l

i=1 aiēi, ai ∈ C∗}.

Proposition 4.8. The set nr is a single B-orbit consisting of regular elements.

Proof. The image of nr in n/[n, n] is an open dense T -orbit, so there exists a regular element x ∈ nr.

The set x+ [n, n] is U -stable and

dimU · x ≥ dim n− dimZG(x) = dim[n, n],

so the orbit U ·x is open and dense in x+[n, n]. But because U is unipotent this orbit is also closed

by Lemma 2.4, so U · x = x+ [n, n]. Then

B · x = T · (x+ [n, n]) = nr. �

Corollary 4.9. The element
∑l

i=1 ei is a regular nilpotent.

Remark 4.10. In sln, it follows that every regular nilpotent is conjugate to the unique maximal

nilpotent Jordan block.

Proposition 4.11. Every regular nilpotent element is contained in a unique Borel subalgebra.

Proof. By Proposition 4.4

dimN = 2 dim n = dimT ∗B = dim Ñ ,

so the generic fiber of µ : Ñ −→ N is discrete.

It is sufficient to prove the proposition for the regular nilpotent e =
∑l

i=1 ei. Let

α1, . . . , αl
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be the simple roots determined by T and B, let h = Lie T , and let h ∈ h be such that αi(h) = 1

for every index i. Then h is regular by Lemma 1.3, and [h, e] = e.

Consider a one-parameter subgroup C∗ ⊂ G such that Lie C∗ = Ch. For any t ∈ C∗,

t · e = exp(t)e,

and so C∗ stabilizes the fiber µ−1(e). Since this fiber is discrete, C∗ fixes every point, and therefore

h ∈ b′ for all b′ ∈ µ−1(e).

Because h is regular, this means that h ⊂ b′ for every such b′.

But then µ−1(e) ⊆ W · b, and it is clear that there is only one point in this orbit—b itself—

containing the nilpotent e. �

Remark 4.12. This makes µ : Ñ −→ N a resolution of singularities, because Ñ = T ∗B is smooth

and µ is an isomorphism onto the open dense regular locus in N . It is called the Springer resolution.

5. The Jacobson-Morozov theorem

For any x ∈ g, let Gx := ZG(x) and gx := Zxg .

Theorem 5.1 (Jacobson-Morozov). Let e ∈ N be a (not necessarily regular) nilpotent element.

There exist h, f ∈ g such that h is semisimple, f is nilpotent, and

[h, e] = 2e, [h, f ] = −2f, [e, f ] = h.

Corollary 5.2. For any e ∈ N , there is a rational group homomorphism

SL2 −→ G

whose differential sends the nilpotent

(
0 1

0 0

)
to e.

Proof. Because SL2 is simply-connected, the homomorphism of Lie algebras

sl2 −→ g

given by the Jacobson-Morozov theorem descends to a morphism of groups. �

The proof will require an important lemma. Recall that the Killing form is the symmetric

G-invariant bilinear form

(·, ·) : g× g −→ C

(x, y) 7−→ tr(adxady)

In particular, G-invariance implies that for any x, y, z ∈ g,

([x, y], z) = (x, [y, z]).

Lemma 5.3. Suppose e is a nilpotent element such that the centralizer ge is consists entirely of

nilpotent elements. Then (e, ge) = 0.
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Proof. Let x ∈ ge. Because e and x commute, there is some integer k such that

(adeadx)k = (ade)
k(adx)k = 0,

so the operator adeadx is nilpotent. Then

(e, x) = tr(adeadx) = 0. �

Proof of Theorem 5.1. In order to apply the lemma, first we will reduce the proof to the case that ge

consists entirely of nilpotent elements. This is by induction—suppose that the statement is known

for semisimple Lie algebras of dimension smaller than g, and suppose that x ∈ ge is a non-nilpotent

element.

Then x has a nontrivial Jordan decomposition x = s+ n, and because e is an eigenvector of adx

it is also an eigenvector of ads and adn. But n is nilpotent, so all its eigenvalues are 0. Therefore

0 = [x, e] = [s, e] + [n, e] = [s, e],

and s ∈ ge.

The element s is nonzero and semisimple, so its centralizer gs is a proper reductive Lie subalgebra

of g, and e ∈ gs. Because e is nilpotent,

e ∈ [gs, gs].

But [gs, gs] is a semisimple Lie algebra of strictly smaller dimension that g. By the inductive

hypothesis, we are done.

So it is sufficient to consider the case where ge is nilpotent. By G-invariance, the operator ade

is skew-symmetric with respect to the Killing form:

([e, x], y) = −(x, [e, y]).

This implies that

Im ade = (ker ade)
⊥ = (ge)⊥.

Since e ∈ (ge)⊥ by Lemma 5.3, it follows that e ∈ Im ade, so there is some h ∈ g such that

[h, e] = 2e.

Consider the Jordan decomposition h = s+ n. As before, since e is an eigenvector of adh, it is an

eigenvector of ads and adn, and since n is nilpotent we have

2e = [h, e] = [s, e].

So we may assume that h is semisimple.

It remains to find f . The action of h on g gives a decomposition

g =
⊕
k∈C

gk

into eigenspaces gk = {x ∈ g | [h, x] = kx}. Then

h ∈ g0 and e ∈ g2,
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and the commutation relation [h, e] = 2e implies that

e : gk −→ gk+2.

To find an element f ∈ g−2 such that [e, f ] = h, it is enough to show as before that h ∈ Im ade, or

in other words that h ∈ (ge)⊥.

Since [h, e] = 2e, [h, ge] ⊂ ge, and so the subspace

Ch+ ge

is a solvable Lie subalgebra of g. By the theorems of Lie and Engel, for an appropriate choice of

basis in End g, adh is upper triangular and any x ∈ Ch + ge is strictly upper triangular. So the

product

adhadx

is also strictly upper triangular, and its trace is 0:

(h, x) = tr(adhadx) = 0 for any x ∈ ge.

So there is some f ∈ g such that [e, f ] = h.

It remains to show that f is nilpotent. This is clear because the triple (e, h, f) induces a Lie

algebra homomorphism

sl2 −→ g,

and the element which maps to f under this homomorphism is a nilpotent element. �

Proposition 5.4. Let e ∈ N . All sl2-triples containing e are conjugate by Ge.

Fix a triple (e, h, f). Then any representation V of g decomposes into a direct sum of irreducible

representations of sl2. These are indexed by non-negative integers and are usually represented

diagrammatically as:

• • • • •
e

f

where each dot is an h-eigenspace, the action of e shifts the dots to the right, and the action of f

shifts them to the left.

Then the representation V looks like:
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(5.1)

•

• •

• • •

• • • •

• • • •

• • • • •
e

f

The left-most dots in each row span the kernel of f , and their complement spans the image of e.

This gives a decomposition

V = ker f ⊕ Im e.

The Lie algebra g also decomposes in this way, with

(5.2) g = gf ⊕ [g, e].

As before, action of h on g induces a grading

g =
⊕
k∈Z

gk, [gk, gj ] ⊆ gk+j

by the eigenvalues of h.

Remark 5.5. In general,

dim ge = dim gf ≥ dim gh.

Equality holds if and only if all the eigenvalues of h are even, so that every irreducible representation

contains a 0-eigenspace. Equivalently, this happens if and only if every sl2-irrep is of odd dimension.

This inequality also shows that if e is regular, then h and f are also regular, and the number

of irreducible representations of sl2 in the decomposition of g is equal to dim gh = l. In this case

(e, h, f) is called a principal sl2-triple. Because all regular nilpotents are conjugate, and in view of

Proposition 5.4, it is clear that all principal triples are conjugate.

Remark 5.6. It is immediate that ge ⊆ ⊕k≥0g
k. However, ge is not generally contained in the

strictly positive eigenspaces if e is not regular. Define

u = ge ∩

(⊕
k>0

gk

)
.

This is a nilpotent ideal of ge, and from diagram (5.1) it is easy to see that

u = ge ∩ [g, e].
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Let U ⊂ Ge be the unipotent normal subgroup such that Lie U = u.

Lemma 5.7. The affine space h+ u is a single U -orbit.

Proof. Because of the grading, [u, u] ⊆ u, and because u is a sum of h-eigenspaces, [h, u] = u.

Therefore h+ u is U -stable.

Because uh = 0, we also have

dimU · h = dimh+ u,

so U · h ⊆ h+ u is open dense.

Because U is unipotent, U · h is closed by Lemma 2.4, so U · h = h+ u. �

Proof of Proposition 5.4. Let (e, h, f) and (e, h′, f ′) be two sl2-triples containing e. Notice that if

h = h′, then

[e, f ′] = [e, f ] ⇒ f ′ − f ∈ ge.

But ge ⊆ ⊕k≥0gk and f ′ − f ∈ g−2, so f ′ − f = 0.

Otherwise,

[h′, e] = [h, e] ⇒ h′ − h ∈ ge

[e, f ′ − f ] = h′ − h ⇒ h′ − h ∈ [g, e].

So h′ − h ∈ u, which means that h′ ∈ h + u and by Lemma 5.7 there is some u ∈ U such that

h′ = u · h.

Now (e, h′, f ′) and (e, h′, u ·f) are two sl2-triples containing e with the same semisimple element,

so by the first part of this proof f ′ = u · f. �

Let H be the simultaneous centralizer in G of the sl2-triple (e, h, f). When e is regular, ge = u

is nilpotent and H = Z(G). More generally,

Proposition 5.8. The unipotent subgroup U is the unipotent radical of the centralizer Ge, and H

is a maximal reductive subgroup of Ge.

Proof. Because the centralizer of a reductive subgroup is reductive, H is reductive. It is enough to

show that

Ge = HU.

Because the intersection H ∩ U is a normal unipotent subgroup of the reductive group H, it is

trivial.

Let g ∈ Ge, and consider the sl2-triple

(g−1e, g−1h, g−1f) = (e, g−1h, g−1f).

By Proposition 5.4 there is some u ∈ U such that

(e, uh, uf) = (e, g−1h, g−1f).

But then (e, h, f) = (e, guh, guf), and so gu ∈ H, and g ∈ HU . �
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6. The exponents of g

The restriction map C[g] −→ C[h] is a graded algebra homomorphism, and so the Chevalley

isomorphism

C[g]G −→ C[h]W

of Theorem 3.7 is an isomorphism of graded subalgebras.

The algebra of invariants C[h]W is a free polynomial algebra with l = rk g homogeneous gener-

ators by the Chevalley-Shephard-Todd theorem [Bou], and these generators pull back to homoge-

neous generators of C[g]G:

C[g]G = C[P1, . . . , Pl].

Let di = degPi, ordered so that d1 ≤ . . . ≤ dl. The integers d1, . . . , dl are called the exponents of

the Lie algebra g, and they are independent of the choice of homogeneous generators. The following

theorem, due to Kostant [Kos2], gives a way of computing these exponents explicitly.

Theorem 6.1 (Kostant). Let (e, h, f) be a principal sl2-triple, and let g = ⊕Vi be the corresponding

decomposition into irreducible representations of sl2. Let

dimVi = 2λi + 1,

ordered so that λ1 ≤ . . . ≤ λl. Then di = λi + 1.

The proof on the following proposition, which will be proved at the end of Section 10:

Proposition 6.2. Let g be a semisimple Lie algebra of rank l and d1, . . . , dl its exponents. Then

d1 + . . .+ dl =
1

2
(l + dim g).

Proof of Theorem 6.1. (See [Dix] 8.1.1. for this proof and the next.) Consider the decomposition

g = gf ⊕ [g, e],

as in (5.2), and let {ζ1, . . . , ζl} be a basis of h-eigenvectors for gf such that

[h, ζi] = −2λiζi.

Define the map

ψ : G× Cl −→ g

(g, a1, . . . , al) 7−→ g ·
(
e+

∑
aiζi

)
The differential of ψ at (1, a1, . . . , al) is

d(1,a1,...,al)ψ : g× Cl −→ g(6.1)

(x, b1, . . . , bl) 7−→
[
x, e+

∑
aiζi

]
+
∑

biζi.(6.2)

The image of d(1,a1,...,al)ψ is [g, e]⊕gf = g, so the differential is surjective. It follows that the image

G(e+ gf ) of ψ is open dense in g, and the restriction map

C[g]G −→ C[e+ gf ]



PART I: GEOMETRY OF SEMISIMPLE LIE ALGEBRAS 19

is an injection.

For every homogeneous generator Pj of C[g]G, define Rj ∈ C[a1, . . . , an] by

Rj(a1, . . . , al) = Pj ◦ ψ(1, a1, . . . , al) = Pj

(
e+

∑
aiζi

)
.

Because the polynomials P1, . . . , Pl are algebraically independent, so are R1, . . . , Rl.

We use the following criterion of Euler: For any P ∈ C[x1, . . . , xn],

x1
∂P

∂xi
+ . . .+ xn

∂P

∂xn
= deg(P )P (x1, . . . , xl).

So for every Pj , considering u as a tangent vector in Tug and denoting by 〈·, ·〉 the usual pairing

between vector and covectors,

〈u,duPj〉 = djPj(u).

On the other hand, any element

u = e+
∑

aiζi ∈ e+ gf

can be written as

u = e+
∑

aiζi

=
(
e−

∑
λiaiζi

)
+
∑

(1 + λi)aiζi

= d(1,a1,...,al)ψ

(
h

2
, (1 + λ1)a1, . . . , (1 + λl)al

)
.

Then

〈u,duPj〉 =

〈
d(1,a1,...,al)ψ

(
h

2
, (1 + λ1)a1, . . . , (1 + λl)al

)
, duPj

〉
=

〈(
h

2
, (1 + λ1)a1, . . . , (1 + λl)al

)
, d(1,a1,...,al)(Pj ◦ ψ)

〉
=
〈
((1 + λ1)a1, . . . , (1 + λl)al), d(a1,...,al)Rj

〉
= (1 + λ1)a1

∂Rj
∂a1

+ . . .+ (1 + λl)al
∂Rj
∂al

.

The second-to-last equality follows because Pj is G-invariant, so Pj · ψ is independent of the first

coordinate. We get the equality of polynomials

(1 + λ1)a1
∂Rj
∂a1

+ . . .+ (1 + λl)al
∂Rj
∂al

= djRj(a1, . . . , al).

The polynomial Rj is a sum of monomials of the form a
m1j

1 . . . a
mkj

k such that∑
(1 + λi)mij = dj .

Suppose towards a contradiction that there is some j0 such that dj0 < 1 + λj0 . Then for any

j ≤ j0, dj < 1 + λj0 , and mij = 0 for all i ≥ j0. So for all j ≤ j0, Rj only depends on the variables

x1, . . . , xj0−1.
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But this contradicts the algebraic independence of the polynomials R1, . . . , Rj0 . So, we must always

have dj ≥ 1 + λj .

But by (6.2),

d1 + . . .+ dl =
1

2
(l + dim g) = (1 + λ1) + . . .+ (1 + λl),

so equality must hold everywhere and dj = 1 + λj . �

Proposition 6.3. The differentials dP1, . . . ,dPl are linearly independent at every point of the slice

e+ gf .

Proof. Because dψ is a bijective linear transformation, it is enough to show that the differentials

dR1, . . . ,dRl are linearly independent at every point of Cl.
From the proof of Theorem 6.1, for every index j we have the formula∑

i

dimij = dj ,

where mij is the cumulative exponent of ai in Rj . Then

di > dj ⇒ mij = 0,

so Rj depends only on the set {ar | dr ≤ dj}. Moreover, if di = dj , then either mij = 0 or mij = 1

and for all i′ 6= i we have mi′j = 0.

Let Cj = {i | di = dj}. Then

Rj(a1, . . . , al) =
∑
i∈Cj

αija
mij

i + gj ,

where αij ∈ C are constants and gj is a polynomial that depends only on {ar | dr < dj}.
Then the Jacobian matrix (

∂Rj
∂ai

)
is block-upper triangular, and its diagonal blocks are the matrices (αij), i, j ∈ Ck, listed over all

equivalence sets Ck without multiplicity.

For each Ck, the matrix (αij), i, j ∈ Ck, has exactly one nonzero entry in each row and in

each column, because the polynomials R1, . . . , Rl are algebraically independent and so no subset

R1, . . . , Rk can depend on less than k distinct variables. Therefore,

det

(
∂Rj
∂ai

)
= det (αij) 6= 0,

and the polynomials R1, . . . , Rl have linearly independent differentials at every point. �

Corollary 6.4. The morphism

ρ : e+ gf −→ Cl

x 7−→ (P1(x), . . . , Pl(x))

is an isomorphism.
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Proof. The map

ψ : e+ gf −→ Cl

e+
∑

aizi 7−→ (a1, . . . , al)

from the proof of Theorem 6.1 is an isomorphism whose pullback takes each polynomial Pj to

Rj = αjaj + gj . (Without loss of generality we can rearrange the indices so that the leading term

of Rj is aj , and then gj is a polynomial in the variables a1, . . . , aj−1.)

Its composition with ρ,

ρ ◦ ψ−1 : Cl −→ Cl

(a1, . . . , al) 7−→ (α1a1, α2a2 + g2(a1), . . . , αlal + gl(a1, . . . , al−1)),

is an isomorphism.

�

7. Regular elements and the principal slice

Now let b− be the unique Borel containing the regular nilpotent f .

Proposition 7.1. Every element of f + b− is regular.

Proof. (See [Kos2] Lemma 10.) The action of the regular semisimple element h gives g a grading

by even eigenvalues (cf. Remark 5.5):

g =
⊕
k∈2Z

gk.

The principal nilpotent e lives in degree 2, and maps

ade : gk −→ gk+2.

Consider the ascending filtration

g≤j =
⊕
k≤j

gk,

and let x = e+ v ∈ e+ b−. The element

v ∈ b− =
⊕
k≤0

gk

preserves this filtration, and there is an induced filtration on gx:

gx≤j = gx ∩ g≤j .

We claim that the image of the injection

gx≤j/g
x
≤(j−2) ↪−→ gj

lies in the centralizer ge.

Let y ∈ gx≤j—then y = yj + y′, where yj ∈ gj and y′ ∈ g≤(j−2). We have

0 = [y, x] = [yj , e] + [y′, e] + [y, v],
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where the first term is in gj+2 and the other terms are in g≤j . This implies that [yj , e] = 0, proving

the claim.

Therefore,

dim gx =
∑
j

dim
(
gx≤j/g

x
≤(j−2)

)
≤
∑
j

dim (ge ∩ gj) = dim ge = l. �

Theorem 7.2. The composition

e+ gf ↪−→ greg −→ greg/G

is a bijection.

Proof. Because the polynomials P1, . . . , Pl are G-invariant, the morphism ρ of Corollary 6.4 de-

scends to a map

ρ : greg/G −→ Cl.

This gives the diagram

e+ gf greg/G

Cl
ρ

ρ

where the top arrow is the composition we are interested in. We know that ρ is an isomorphism

from Corollary 6.4, and we will prove in the next proposition that ρ is an injection. The theorem

then follows. �

Proposition 7.3. The map ρ : greg/G −→ Cl is injective.

Proof. It is enough to show that invariant polynomials on g separate regular G-orbits. Suppose

x, y ∈ greg have the same semisimple part in their Jordan decompositions:

x = s+ n, y = s+ n′.

Then n, n′ are regular nilpotent elements in gs by Proposition 1.10, so they lie in the same Gs-orbit,

and x and y lie in the same G-orbit.

In particular, x = s+ n is conjugate to x = s+ cn for any c ∈ C∗. So for any P ∈ C[g]G,

P (x) = P (s+ cn) ∀c ∈ C∗,

and by continuity

P (x) = P (s).

Because of this, it is equivalent to show that invariant polynomials separate semisimple G-orbits,

or equivalently that C[h]W separates W -orbits.

Let s, t ∈ h such that Ws∩Wt = ∅, and let R ∈ C[h] be a polynomials such that R(ws) = 1 and

R(wt) = 0 for all w ∈W . Consider the invariant averaged polynomial

P =
1

#W

∑
w ·R ∈ C[h]W

—P (s) = 1 and P (t) = 0, so P separates the orbits of s and t. �
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Let B− be the Borel whose Lie algebra is b−, let N− be its unipotent radical, and let n− =

Lie N−.

Proposition 7.4. The action map

α : N− × (e+ gf ) −→ e+ b−

is an isomorphism.

This result is due to Kostant [Kos1], but the proof will use a different approach, see [Gin]

Theorem 7.5 and the subsequent Remarks.

Definition 7.5. Let X be an affine variety with an algebraic action of C∗. This action is called

contracting if there exists a point x0 ∈ X such that for all x ∈ X,

lim
t→0

t · x = x0, t ∈ C∗.

Lemma 7.6 ([Gin], (7.7)). Let X1 and X2 be smooth irreducible affine varieties with contracting

C∗-actions, to x1 ∈ X1 and x2 ∈ X2 respectively. Suppose α : X1 −→ X2 is a C∗-equivariant

morphism such that

dx1α : Tx1X1 −→ Tx2X2

is an isomorphism. Then α is an isomorphism.

Proof of Proposition 7.4. From diagram (5.1), it is clear that

b− = [n−, e]⊕ gf .

In view of (6.1), the differential of α at (1, e) is

d(1,e)α : n− × gf −→ b−

(n, x) 7−→ [n, e] + x,

so the image of d(1,e)α is [n−, e]⊕ gf = b−. Since the two tangent spaces have the same dimension

and since d(1,e)α is surjective, it is an isomorphism.

We will define compatible C∗-actions so that we can apply the previous lemma. The group

homomorphism

SL2 −→ G

given by the sl2-triple (e, h, f) induces a homomorphism

γ : C∗ −→ G

such that the Lie algebra of the image of γ is Ch.

Define an action of C∗ on e+ b− by

t · (e+ x) = t2γ(t−1)(e+ x) = e+ t2γ(t−1) · x,

where the second equality follows because e ∈ g2 under the grading by h-eigenvalues. Then

lim
t→0

t · (e+ x) = e,
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because b− consists of the non-positive h-eigenspaces.

Similarly, define the action of C∗ on N− × (e+ gf ) by

t · (g, e+ x) = (γ(t−1)nγ(t), t2γ(t−1)(e+ x)) = (γ(t−1)nγ(t), e+ t2γ(t−1) · x).

This action is also contracting, because N− is generated by the root groups corresponding to

negative h-eigenspaces:

lim
t→0

t · (n, e+ x) = (1, e).

The action map α is C∗-equivariant with respect to these actions, so from Lemma 7.6 it follows

that α is an isomorphism. �

8. The first Kostant theorem

Fix a Cartan subalgebra h ⊂ g, and identify it with the universal Cartan H. The Grothendieck-

Springer diagram becomes

(8.1)

g̃

g h

h/W

νµ

ρ π

and for every h̄ ∈ h/W we are interested in the fiber Vh = ρ−1(h̄).

When h̄ = 0, the fiber V0 is exactly the nilpotent cone N . We have already shown that N is a

G-stable variety of dimension dim g− rk g (Corollary 4.4), that it consists of finitely many G-orbits

(Proposition 4.5), and that the regular locus N reg is its unique open dense G-orbit (Corollary 4.7).

Moreover, for any c ∈ C∗, the element n ∈ N is G-conjugate to cn (see the proof of Proposition

7.3). Therefore, the point 0 ∈ N is the unique closed G-orbit of minimal dimension that lies in the

closure of every other nilpotent orbit.

We will generalize these results to arbitrary fibers of ρ.

Theorem 8.1. The morphism ρ is surjective, and for every h̄ ∈ h/W ,

(1) The dimension of Vh is dim g− rk g.

(2) The fiber Vh is irreducible, G-stable, and consists of finitely many G-orbits.

(3) The regular locus V reg
h is the unique open dense G-orbit.

(4) The semisimple locus V ss
h is the unique closed G-orbit of minimal dimension.

Proof. The surjectivity of ρ follows from diagram (8.1). Fix a semisimple h ∈ h. Then gh is a

reductive Lie algebra of the same rank as g, and it decomposes as

gh = Z(gh)⊕ [gh, gh].

The element h is contained in the center Z(gh), and the cone of nilpotent elements N h ⊂ gh is

contained in the semisimple derived subalgebra [gh, gh].



PART I: GEOMETRY OF SEMISIMPLE LIE ALGEBRAS 25

Suppose n ∈ N h—then h + n is a Jordan decomposition and by the argument in the proof of

Proposition 7.3 we have

P (h) = P (h+ n) for any P ∈ C[g]G,

so h+ n ∈ Vh. It follows by G-invariance that G(h+N h) ⊂ Vh.

Claim. There is an isomorphism

G×Gh (h+N h) −→ Vh

(g, x) 7−→ g · x.

Proof of claim. Take any element x ∈ Vh and write its Jordan decomposition x = s+ v. Then s is

conjugate to some h′ ∈ h, and for any P ∈ C[g]G,

P (h′) = P (s) = P (s+ v) = P (h).

It follows that h and h′ are G-conjugate, so x is in fact conjugate to an element of h +N h. This

proves surjectivity.

Now suppose g · (h + n) = g′ · (h + n′). By uniqueness of the Jordan decomposition, gh = g′h

and gn = g′n′. Then g−1g′ = a ∈ Gh, and

(g′, h+ n′) = (ga, h+ n′) ∼ (g, h+ n),

proving injectivity. �

Now we can prove parts (1)–(4).

(1) If h is regular, gh = h, and N h = 0. Then Vh = G · h, and

dimVh = dimG− dimGh = dim g− rk g,

so the generic fibers have the desired dimension. Since fiber dimension can only jump up, for

arbitrary h we have

dim g− rk g ≤ dimVh

= dimG×Gh (h+N h)

= dimG− (dimGh − dimN h)

= dim g− rk gh

= dim g− rk g,

where the first equality follows from the Claim, and second-to-last quality follows from Corollary

4.4. Equality must hold throughout, proving (1).

(2) The isomorphism proved in the Claim shows that Vh is irreducible. The G-orbits on G×Gh

(h+N h) are in bijection with the Gh-orbits on h+N h. The latter set is finite by Proposition 4.5.

(3) By (2), Vh contains a unique open dense G-orbit, which must be of dimension

dim g− rk g.

But this is exactly the orbit of a regular element.
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(4) Since h is the unique semisimple element in h+N h, its orbit G ·h is the semisimple locus V ss
h

of Vh. Every Gh-orbit in N h contains 0 in its closure, so every G-orbit on G ×Gh (h +N h) = Vh

contains G · h in its closure. It follows that G · h is the unique closed orbit of minimal dimension

in Vh. �

Corollary 8.2. The fiber Vh is a single G-orbit if and only if h is a regular semisimple element.

Example 8.3. Concretely, let g = sl4 and let

h =


2

2

−2

−2

 .
Theorem 8.1 says that the fiber Vh contains an open dense orbit of elements conjugate to

2 1

2

−2 1

−2

 ,
a unique closed semisimple orbit of elements conjugate to

2

2

−2

−2

 ,
and two intermediate orbits of elements conjugate to

2 1

2

−2

−2

 and


2

2

−2 1

−2

 .

9. The second Kostant theorem

View the point h̄ ∈ h/W = Spec C[g]G as a maximal ideal in mh ⊂ C[g]G.

Theorem 9.1. (1) The ring of regular functions on Vh is

C[Vh] ∼= C[g]/C[g]mh.

(2) The variety Vh is normal.

Proof. Part (1) follows from Lemma 9.2 below, after noting that Vh is a complete intersection, and

so Cohen-Macaulay, and that the differentials dP1, . . . , dPl are linearly independent at every point
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of the open dense subset

G(e+ g)f = greg.

For (2), since Vh is a complete intersection, it is sufficient to check that it has no singularities in

codimension 1. In other words, to check that

codim Vh\V reg
h ≥ 2.

This follows immediately from the standard fact that the G-orbits on g are even-dimensional, which

we prove in Lemma 9.3. �

Lemma 9.2 ([CG], 2.2.11). Let I = (f1, . . . , fl) ⊂ C[x1, . . . , xn] be an ideal such that the quotient

C[x1, . . . , xl]/I

is Cohen-Macaulay and such that the differentials df1, . . . , dfl are linearly independent at every

points of an open dense subset X◦ ⊂ X. Then I =
√
I.

Lemma 9.3. Any G-orbit in g has even dimension.

Proof. Let ξ ∈ g—we define a bilinear form on

Tξ(G · ξ) = [g, ξ] ∼= g/gξ

by the formula

ωξ(x, y) = (ξ, [x, y]).

where (·, ·) is the Killing form.

Then

ωξ(y, x) = (ξ, [y, x]) = −(ξ, [x, y]) = −ωξ(x, y),

so ωξ is skew-symmetric. Moreover,

ker ωξ = {x ∈ g | ωξ(x, y) = 0∀y ∈ g}

= {x ∈ g | (ξ, [x, y]) = 0∀y ∈ g}

= {x ∈ g | ([ξ, x], y) = 0∀y ∈ g}

= {x ∈ g | [ξ, x] = 0}

= gξ,

so ωξ is nondegenerate on the tangent space Tξ(G · ξ). �

Remark 9.4. The form defined in Lemma 9.3 is usually defined on the dual g∗. This form is in

fact symplectic, called the Kirillov-Kostant-Souriau form, and it gives every coadjoint orbit of G in

g∗ the structure of a symplectic variety.

10. The third Kostant theorem

Theorem 10.1. (1) The polynomial algebra C[g] is a free C[g]G-module.
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(2) Let H ⊂ C[g] denote the space of G-harmonic polynomials. The multiplication map

C[g]G ⊗H −→ C[g]

is an isomorphism of graded C[g]G-modules.

(3) The ring O(Vh) is a sum of finite-dimensional simple G-modules, and any such G-module

W appears with multiplicity

[O(Vh) : W ] = dimW T

—the dimension of the set of fixed points of the action of a maximal torus on W .

The proof will follow [CG], which takes the approach of [BL]. It will make essential use of the

following theorem, cf. [Ste], Theorem 2.2 and Remark 2.3:

Theorem 10.2 (Pittie-Steinberg). The algebra C[h] is a free graded C[h]W -module. There is a

natural embedding

C[W ] ↪−→ C[h]

w 7−→ w−1λw

where λw =
∏
α is the product of all positive roots α ∈ h∗ such that wα is a negative root. The

multiplication map

C[h]W ⊗ C[W ] −→ C[h]

is an isomorphism.

For any vector space V , the coordinate ring of V has a natural grading by degree:

C[V ] = ⊕iCi[V ].

Proposition 10.3. Suppose that A ⊂ C[V ] is a graded subalgebra such that the restriction

res : A −→ C[E]

is injective, and such that C[E] is a free graded A-module. Then the multiplication map

C[V/E]⊗A −→ C[V ]

is injective, and C[V ] is a free graded C[V/E]⊗A-module.

Proof of Theorem 10.1 (1). Apply Proposition 10.3 with V = g, E = h, and A = C[g]G. By the

Chevalley isomorphism, the restriction

C[g]G −→ C[h]

factors through the isomorphism C[g]G ∼= C[h]W , so it is injective. By the Pittie-Steinberg theorem,

C[h] is a free module over its image C[h]W .

Then Proposition 10.3 implies that

C[g/h]⊗ C[g]G −→ C[g]



PART I: GEOMETRY OF SEMISIMPLE LIE ALGEBRAS 29

is an injection, and that C[g] is free over its image. �

Now let V be a finite-dimensional vector space and let G be a reductive group acting on V .

Let D denote the algebra of differential operators with constant coefficients—this is a commutative

algebra with a natural G-action. Let DG+ be the ideal of the invariant subalgebra DG consisting of

invariant differential operators with zero constant term.

Definition 10.4. A polynomial P ∈ C[V ] is G-harmonic if DP = 0 for every D ∈ DG+.

Let H be the space of G-invariant polynomials on V . The goal is to prove the following propo-

sition, from which part (2) of Theorem 10.1 follows in view of part (1).

Proposition 10.5. Suppose that C[V ] is a free graded C[V ]G-module. Then the multiplication map

C[V ]G ⊗H −→ C[V ]

is an isomorphism of graded C[V ]G-modules.

Consider the symmetric algebras

Sym V =
⊕

Sym iV and Sym V ∗ =
⊕

Sym iV ∗

with the usual gradings. There are canonical graded isomorphisms

Sym V = D and Sym V ∗ = C[V ]

and there is a natural pairing

〈·, ·〉 : D × C[V ] −→ C

〈D,P 〉 7−→ (DP )(0).

If D and P are homogeneous of the same degree, then DP is a constant, and so this pairing is

a perfect pairing on Di × Ci[V ].

For any graded G-algebra A, let IA be the ideal generated by AG+ in A.

Lemma 10.6. A polynomial P is G-harmonic if and only if P ∈ (ID)⊥.

Proof. The forward direction is clear. Suppose conversely that P ∈ (ID)⊥, and fix D ∈ DG+. Then

(D′DP )(0) = 〈D′D,P 〉 = 0 ∀D′ ∈ D,

so every derivative of DP vanishes at 0—therefore DP = 0. �

Let K ⊂ G be a maximal compact subgroup. Then every connected component of G intersects

K, and g is the complexification of Lie K, so K is Zariski-dense in G. It follows that for every

G-module A,

AG = AK .

Fix a K-invariant positive-definite Hermitian form on V—this gives a K-equivariant skew-linear

isomorphism of vector spaces

V −→ V ∗,
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which extends to a K-equivariant skew-linear isomorphism

ϕ : Sym V −→ Sym V ∗.

Moreover, ϕ takes G-invariants to G-invariants:

ϕ((Sym V )G) = ϕ((Sym V )K) = (Sym V ∗)K = (Sym V ∗)G.

Recall that if E = ⊕Ei is any graded vector space, the Poincaré polynomial of E is

P (E) =
∑

(dimEi)t
i.

Lemma 10.7.

P (H) = P (C[V ]/IC[V ]).

Proof. This is immediate from basic properties of the Poincaré polynomial:

P (H) = P ((ID)⊥)

= P (D/ID)

= P (C[V ]/IC[V ]),

where the last equality follows from the isomorphism ϕ. �

Lemma 10.8. There is a G-stable graded direct sum decomposition

C[V ] = H⊕ IC[V ].

Proof. Under the isomorphism ϕ, the pairing 〈·, ·〉 becomes the K-invariant positive-definite Her-

mitian form

(·, ·) : Sym V × Sym V −→ C

(v1, v2) 7−→ 〈v1, ϕ(v2)〉.

By positive-definiteness,

(ISym V )⊥ ∩ ISym V = 0,

where the orthogonal complement is with respect to the form (·, ·). Pulling this through ϕ,

(ID)⊥ ∩ ISym V ∗ = 0,

where the orthogonal complement is now with respect to the pairing 〈·, ·〉. But the left-hand side

is exactly H ∩ IC[V ].

Then the graded composition

H ↪−→ C[V ] −→ C[V ]/IC[V ]

is injective. Since it is injective on any graded component, and each graded component is finite-

dimensional, it is enough to check that the graded components have the same dimension. But

dimHi = dim
(
C[V ]/IC[V ]

)
i

by the equality of Poincaré polynomials from Lemma 10.7. �
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We are now ready to prove Proposition 10.5.

Proof of Proposition 10.5. First we will show that the multiplication map is surjective, by showing

inductively that every graded component Ck[V ] is contained in the image. When k = 0 this is

clear, so assume now that it is true for degrees less than k and let P ∈ Ck[V ].

By the direct sum decomposition in Lemma 10.8,

P = P0 +
∑
i

QiZi,

where P0 ∈ H, Qi ∈ C[V ], and Zi ∈ C[V ]G+. Because the decomposition of Lemma 10.8 is graded,

every summand must have degree k. In particular, because deg Zi > 0, each Qi has degree strictly

less than k.

Applying the induction hypothesis,

Qi =
∑
j

PijYij

where Pij ∈ H and Yij ∈ C[V ]G. Then

P = P0 +
∑
i,j

PijYijZi

is in the image of the multiplication map.

Because the multiplication is surjective on every graded component, it is again enough to check

that the graded components have the same dimension—in other words, that C[V ]G ⊗H and C[V ]

have the same Poincaré polynomials.

Since C[V ] is free over C[V ]G by assumption, let E ⊂ C[V ] be a graded subspace such that

C[V ] = C[V ]G ⊗ E,

Then

C[V ] = C[V ]G ⊗ E

= (C[V ]G+ ⊕ C)⊗ E

= (C[V ]G+ ⊗ E)⊕ E

= IC[V ] ⊕ E,

and on Poincaré polynomials

P (C[V ]G ⊗H) = P (C[V ]G)P (H)

= P (C[V ]G)P (C[V ]/IC[V ])

= P (C[V ]G)P (E)

= P (C[V ]). �

Proof of Theorem 10.1 (3). Let h̄ = (a1, . . . , al) ∈ H/W , consider the maximal ideal

mh = (P1 − a1, . . . , Pl − al) ⊂ C[g]G,
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and let (mh) be the ideal generated by mh inside C[g].

Since G is semisimple there is a direct sum decomposition of G-modules

C[g]G = mh ⊕ C,

and therefore, using part (2) of this theorem,

C[g] = C[g]⊗H

= (mh ⊗H)⊕H

= (mh)⊕H.

This implies that the composition

H −→ C[g] −→ C[g]/(mh) ∼= C[Vh]

is an isomorphism of G-modules, so the G-module structure of

C[Vh] ∼= H

does not depend on h.

Without loss of generality assume then that h is regular semisimple, so that Vh ∼= G/T is a single

closed G-orbit. Then

C[Vh] ∼= C[G]T

is the algebra of regular functions on G invariant under right-translation by T .

Recall the Peter-Weyl theorem:

C[G] =
⊕

V ⊗ V ∗,

where the sum is taken over all irreducible representations of G. For any fixed representation W ,

[C[G]T : W ] = [
⊕

V ⊗ (V ∗)T : W ]

=
∑

[V : W ] dim(V ∗)T

= dim(W ∗)T

and the statement of Theorem 10.1 (3) follows. �

It remains to prove only Proposition 6.2. We will use the Pittie-Steinberg Thereom (10.2), and

the formalism of Poincaré polynomials.

Remark 10.9. If C[x] is a graded polynomial ring in one variable, and deg x = d, then

P (C[x]) = 1 + td + t2d + . . . =
1

1− td
.

If C[x1, . . . , xn] = C[x1]⊗ . . .⊗ C[xn] is graded with deg xi = di, then

P (C[x1, . . . , xn]) =
n∏
i=1

1

1− tdi
.
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Proof of Proposition 6.2. As before, P1, . . . , Pl are the homogeneous polynomials generators of

C[h]W , and degPi = mi. We can then compute

P (C[h]) =
1

(1− t)l

P (C[h]W ) =

n∏
i=1

1

1− tmi

Recall from Theorem 10.2 the embedding

C[W ] ↪−→ C[h]

w 7−→ w−1λw,

where λw =
∏
α is the product over all positive roots α such that wα is a negative root. Since the

degree of α ∈ h∗ is 1, the degree of λw is

deg λw = #{α > 0 | wα < 0} = l(w),

which is called the length of w. Then

P (C[W ]) =
∑
w∈W

tl(w).

Again by Theorem 10.2, there is an equality of Poincaré polynomials

P (C[h]W )P (C[W ]) = P (C[h]),

which implies that ∑
w∈W

tl(w) =
n∏
i=1

1− tmi

1− t
.

The degree of the left-hand side is the length of the longest word in the Weyl group, which is

the number of positive roots:
1

2
(dim g− rk g).

The degree of the right-hand side is

l∑
i=1

(mi − 1) =

(
l∑

i=1

mi

)
− rk g.

Since these two are equal, we obtain

l∑
i=1

mi =
1

2
(dim g + rk g). �
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