PART II: THE WONDERFUL COMPACTIFICATION

Contents

1. Introduction 1
2. Construction of the compactification 2
3. The big cell 4
4. Smoothness of the compactification 7
5. The $G \times G$-orbits on the compactification 8
6. The structure of the orbits and their closures 10
7. Independence of regular dominant weight 13
8. Compactifications in more general spaces 16
9. The Lie algebra realization of the compactification 21
10. Log-homogeneous varieties 28
11. The logarithmic cotangent bundle of \bar{G} 32
12. Cohomology of the wonderful compactification 34
13. The Picard group 38
14. The total coordinate ring 41
References 47

1. Introduction

Let K be any algebraic group, let

$$
\tau: K \longrightarrow K
$$

be an involution of K, and let $H=K^{\tau}$ be its fixed point set. The homogeneous space

$$
K / H
$$

is called a symmetric space.
Any algebraic group G is naturally a symmetric space under the action of $K=G \times G$ by leftand right-multiplication, by the involution

$$
\begin{aligned}
\tau: G \times G & \longrightarrow G \times G \\
(g, h) & \longmapsto\left(h^{-1}, g^{-1}\right) .
\end{aligned}
$$

The fixed point set is

$$
H=G_{\Delta}=\left\{\left(g, g^{-1}\right) \in G \times G\right\}
$$

and there is an isomorphism

$$
G \cong(G \times G) / G_{\Delta} .
$$

In the 1980s, DeConcini and Procesi [DP] showed that any semisimple symmetric space \dot{X} has a wonderful compactification X-a variety satisfying the following properties:
(1) X is smooth and complete
(2) $X \subset X$ is an open dense subset, and the boundary

$$
X \backslash X=X_{1} \cup \ldots \cup X_{l}
$$

is a union of smooth prime divisors with normal crossings.
(3) The closures of the G-orbits on X are the partial intersections

$$
\bigcap_{i \in I} X_{i}, \quad \text { for } I \subset\{1, \ldots, l\} .
$$

In a more general framework, studying equivariant compactifications of homogeneous spaces, Luna and Vust [LV] showed that any homogeneous space \dot{X} that has a wonderful compactification is necessarily spherical-a Borel subgroup acts on \dot{X} with an open dense orbit. For example, any reductive algebraic group G is a spherical homogeneous space under the two-sided action of $G \times G$, and the open orbit of the Borel subgroup $B \times B \subset G \times G$ is the open dense Bruhat cell.

There are two distinguished classes of equivariant compactifications of spherical homogeneous spaces. The first is the class of toroidal compactifications - these are generalizations of toric varieties, and their boundary structure is described combinatorially by fans. Every compactification X of \dot{X} is dominated by a toroidal compactification X^{\prime}, in the sense that there is a proper birational G-equivariant morphism

$$
X^{\prime} \longrightarrow X
$$

that restricts to the identity along the open locus \dot{X}.
The second class is the class of simple compactifications, which are compactifications on which G acts with a unique closed orbit. Brion and Pauer gave in BP a necessary and sufficient criterion for a spherical variety X to have simple compactifications. When such compactifications exist, there is a unique one that is also toroidal. This compactification X has the universal property that for any toroidal compactification X^{\prime}, and any simple compactification $X^{\prime \prime}$, there are unique morphisms

$$
X^{\prime} \longrightarrow X \longrightarrow X^{\prime \prime}
$$

that restrict to the identity along \dot{X}. If X is smooth, it is the wonderful compactification of \dot{X} and it has the properties described by DeConcini and Procesi.

We will construct the wonderful compactification of a semisimple algebraic group of adjoint type G, following mostly the well-known survey of Evens and Jones EJ]. Then we will describe two other realizations of the wonderful compactification, one as a variety of Lagrangian subalgebras of $\mathfrak{g} \times \mathfrak{g}$, and one as a GIT quotient of the Vinberg monoid.

2. Construction of the compactification

From now on, let G be a semisimple connected complex algebraic group of adjoint type - that is, with trivial center. Let \widetilde{G} be its simply-connected cover, and choose a maximal torus and a Borel subgroup

$$
\widetilde{T} \subset \widetilde{B} \subset \widetilde{G}
$$

corresponding to

$$
T \subset B \subset G .
$$

Let $U \subset \widetilde{B}$ be the unipotent radical. Because the morphism $\widetilde{G} \longrightarrow G$ is a central quotient, it is an isomorphism on unipotent subgroups, and we can identify U with its image in B.

Let $\mathcal{X}^{*}(\widetilde{T})$ be the character lattice of the torus \widetilde{T}, Φ the set of nonzero roots, Φ^{+}the set of positive roots relative to \widetilde{B}, and

$$
\Delta=\left\{\alpha_{1}, \ldots, \alpha_{l}\right\}
$$

the set of simple roots, where $l=\operatorname{dim} \widetilde{T}$ is the rank of G. Let $W=N_{\widetilde{G}}(\widetilde{T}) / \widetilde{T}$ be the corresponding Weyl group.

There is a standard ordering on $\mathcal{X}^{*}(\widetilde{T})$ given by

$$
\lambda \geq \mu \quad \Leftrightarrow \quad \lambda-\mu=\sum_{i=1}^{l} n_{i} \alpha_{i}, \quad n_{i} \in \mathbb{Z}_{\geq 0}
$$

Definition 2.1. A weight $\lambda \in \mathcal{X}^{*}(\widetilde{T})$ is dominant if $\langle\lambda, \check{\alpha}\rangle \geq 0$ for every positive coroot $\check{\alpha} \in \check{\Phi}^{+}$. It is regular if $\langle\lambda, \check{\alpha}\rangle>0$ for every positive coroot $\check{\alpha} \in \check{\Phi}^{+}$.

The dominant weights form a cone - the dominant Weyl chamber-and the regular dominant weights are exactly the ones that fall in the interior of this cone. This is dual to the notion of a regular semisimple element in the Lie algebra of G. The following lemma, whose proof is left as an exercise, will be useful.

Lemma 2.2. Let λ be a dominant weight and let V an irreducible representation of \widetilde{G} of highest weight λ. Let v_{λ} be a highest weight vector of V. Then the following are equivalent:
(1) λ is regular.
(2) The stabilizer of the highest weight space $\mathbb{C} v_{\lambda}$ in \widetilde{G} is \widetilde{B}.
(3) The stabilizer of λ in the Weyl group W is trivial.

From now on let V be an irreducible \widetilde{G}-representation of regular highest weight λ. In the diagram

the top arrow is the representation map, the left arrow is a quotient by the center, and the right arrow is a quotient by scalars. All these maps are $\widetilde{G} \times \widetilde{G}$-equivariant, and the representation map
descends to the $G \times G$-equivariant morphism

$$
\psi: G \longrightarrow \mathbb{P}(\text { End } V)
$$

The map ψ is an injection-this is guaranteed by adjointness if G is simple, and also by the regularity of λ if it is not.

Definition 2.3. The wonderful compactification of G is $X=\overline{\psi(G)} \subset \mathbb{P}($ End $V)$.
Example 2.4. Let $G=P G L_{2}$ with $\widetilde{G}=S L_{2}$. Then all nonzero weights are regular, and we can take $V=\mathbb{C}^{2}$ to be the standard representation. In this case

$$
\psi: G \hookrightarrow \mathbb{P}\left(M_{2 \times 2}\right)
$$

is the embedding with image

$$
\psi(G)=\left\{\left.\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \right\rvert\, a d-b c \neq 0\right\}
$$

and the closure of this image is

$$
X=\mathbb{P}\left(M_{2 \times 2}\right) \cong \mathbb{P}^{3}
$$

The boundary of X is

$$
\partial X=\left\{\left.\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \right\rvert\, a d-b c=0\right\} \cong \mathbb{P}^{1} \times \mathbb{P}^{1}
$$

and it is a single smooth prime divisor.
Remark 2.5. Example 2.4 does not generalize. For $n \geq 3$, the standard representation of $S L_{n}$ is not regular, because it is a fundamental representation and it generates one of the edges of the dominant Weyl chamber. In general, the wonderful compactification of $P G L_{n}$ is not simply the projective space $\mathbb{P}^{n^{2}-1}$.

3. The big cell

Choose a basis of weight vectors of descending weight v_{0}, \ldots, v_{n} for V, such that v_{i} is in the weight space $V_{\lambda_{i}}$ of weight λ_{i}, and with the properties

- $v_{0} \in V_{\lambda}$
- $i=1, \ldots, l \Rightarrow v_{i} \in V_{\lambda-\alpha_{i}}$
- $\lambda_{i}>\lambda_{j} \quad \Rightarrow \quad i<j$

Let \widetilde{B}^{-}be the opposite Borel to \widetilde{B}, let B^{-}be its image in G, and let U^{-}be their common unipotent radical. Then

$$
U^{-} \cdot v_{i} \subset v_{i}+\sum_{j>i} V_{\lambda_{j}},
$$

and so U^{-}stabilizes the affine space

$$
\mathbb{P}_{0}(V)=\left\{\left[\sum a_{i} v_{i}\right] \mid a_{0} \neq 0\right\} \cong \mathbb{C}^{l} .
$$

Let $v_{0}^{*}, \ldots, v_{n}^{*}$ be a dual basis for the dual space V^{*}, so that each v_{i}^{*} has weight $-\lambda_{i}$. Then U stabilizes the affine space

$$
\mathbb{P}_{0}\left(V^{*}\right)=\left\{\left[\sum a_{i} v_{i}^{*}\right] \mid a_{0} \neq 0\right\} \cong \mathbb{C}^{l} .
$$

The following lemma is clear from Lemma 2.2 , and from the fact that the unipotent groups U and U^{-}act on the affine spaces $\mathbb{P}_{0}\left(V^{*}\right)$ and $\mathbb{P}_{0}(V)$ with closed orbits.

Lemma 3.1. The action maps

$$
U \longrightarrow U \cdot\left[v_{0}^{*}\right] \subset \mathbb{P}_{0}\left(V^{*}\right)
$$

and

$$
U^{-} \longrightarrow U^{-} \cdot\left[v_{0}\right] \subset \mathbb{P}_{0}(V)
$$

are isomorphisms, and their images are closed.
We use the usual $G \times G$-equivariant identification

$$
\begin{aligned}
V \otimes V^{*} & \longrightarrow \text { End } V \\
(v \otimes f) & \longmapsto(w \mapsto f(w) v) .
\end{aligned}
$$

Then the set $\left\{v_{i} \otimes v_{j}^{*}\right\}$ is a basis for End V. The affine space

$$
\mathbb{P}_{0}=\left\{\left[\sum a_{i j} v_{i} \otimes v_{j}^{*}\right] \mid a_{00} \neq 0\right\} \subset \mathbb{P}(\text { End } V)
$$

is $U^{-} T \times U$-stable, by the observations before Lemma 3.1. Define

$$
X_{0}=X \cap \mathbb{P}_{0}
$$

This intersection is called the big cell of the wonderful compactification.

Proposition 3.2. The intersection of the big cell with the open dense locus $\psi(G)$ is the image of the open Bruhat cell of G :

$$
X_{0} \cap \psi(G)=\psi\left(U^{-} T U\right)
$$

Proof. One containment is clear: $\psi(e) \in X_{0}, X_{0}$ is $U^{-} T \times U$-stable, and ψ is $G \times G$-equivariant, so it follows that

$$
\psi\left(U^{-} T U\right) \subseteq X_{0}
$$

For the other, choose a representative $\dot{w} \in N_{\widetilde{G}}(\widetilde{T})$ for each $w \in W$. Then by the Bruhat decomposition,

$$
G=\coprod_{w \in W} U^{-} T \dot{w} U .
$$

If $w \neq 1$, then $\dot{w} v_{0}$ is a weight vector of weight $w \lambda$, and $w \lambda \neq \lambda$ by Lemma 2.2. It follows that

$$
\begin{aligned}
\psi(\dot{w}) & =\dot{w} \psi(e) \\
& =\dot{w}\left[\sum v_{i} \otimes v_{i}^{*}\right] \\
& =\left[\sum\left(\dot{w} v_{i}\right) \otimes v_{i}^{*}\right] \notin \mathbb{P}_{0},
\end{aligned}
$$

and therefore

$$
\psi\left(U^{-} T \dot{w} U\right) \cap X_{0}=\emptyset .
$$

So the only Bruhat cell whose image intersects X_{0} is the open cell $U^{-} T U$.
Remark 3.3. Since $U^{-} T U$ is dense in G, its image $\psi\left(U^{-} T U\right)$ is dense in X_{0}, and

$$
X_{0}=\overline{\psi\left(U^{-} T U\right)} \subset \mathbb{P}_{0}
$$

Proposition 3.4. Let Z be the closure of $\psi(T)$ in \mathbb{P}_{0}. Then

$$
Z \cong \mathbb{C}^{l}
$$

Proof. Let $t \in T$ and choose a preimage $\tilde{t} \in \widetilde{T}$. Then

$$
\begin{aligned}
\psi(t) & =t\left[\sum v_{i} \otimes v_{i}^{*}\right] \\
& =\left[\sum\left(\tilde{t} v_{i}\right) \otimes v_{i}^{*}\right] \\
& =\left[\sum \lambda_{i}(\tilde{t}) v_{i} \otimes v_{i}^{*}\right] \\
& =\left[v_{0} \otimes v_{0}^{*}+\sum \frac{\lambda_{i}(\tilde{t})}{\lambda(\tilde{t})} v_{i} \otimes v_{i}^{*}\right] .
\end{aligned}
$$

Since $\lambda_{i} \leq \lambda$,

$$
\lambda-\lambda_{i}=\sum n_{i j} \alpha_{j}, \quad n_{i j} \in \mathbb{Z}_{\geq 0}
$$

Then the image of t becomes

$$
\begin{aligned}
\psi(t) & =\left[v_{0} \otimes v_{0}^{*}+\sum \frac{1}{\prod \alpha_{j}(t)^{n_{i j}}} v_{i} \otimes v_{i}^{*}\right] \\
& =\left[v_{0} \otimes v_{0}^{*}+\sum_{i=1}^{l} \frac{1}{\alpha_{i}(t)} v_{i} \otimes v_{i}^{*}+\sum_{i>l} \frac{1}{\prod \alpha_{j}(t)^{n_{i j}}} v_{i} \otimes v_{i}^{*}\right]
\end{aligned}
$$

Define a map

$$
\begin{aligned}
F: \mathbb{C}^{l} & \longrightarrow \overline{\psi(T)} \\
\left(z_{1}, \ldots, z_{l}\right) & \longmapsto\left[v_{0} \otimes v_{0}^{*}+\sum_{i=1}^{l} z_{i} v_{i} \otimes v_{i}^{*}+\sum_{i>l}\left(\Pi z_{j}^{n_{i j}}\right) v_{i} \otimes v_{i}^{*}\right]
\end{aligned}
$$

It is clear that F is an isomorphism.
Consider the action map

$$
\begin{aligned}
\chi: U^{-} \times U \times Z & \longrightarrow X_{0} \\
(u, v, z) & \longmapsto u z v^{-1} .
\end{aligned}
$$

Theorem 3.5. The morphism χ is an isomorphism, and therefore $X_{0} \cong \mathbb{C}^{\operatorname{dim} G}$ is smooth.
Lemma 3.6. There is a $U^{-} \times U$-equivariant morphism $\beta: X_{0} \longrightarrow U^{-} \times U$ such that

$$
\beta(\chi(u, v, z))=(u, v) .
$$

Proof. The morphism

$$
\begin{aligned}
\beta_{1}: \mathbb{P}_{0} & \longrightarrow \mathbb{P}_{0}(V) \\
{[A] } & \longmapsto\left[A v_{o}\right]
\end{aligned}
$$

is well-defined. Moreover, for any $(u, v, t) \in U^{-} \times U \times T$,

$$
\beta_{1}(\psi(u, v, t))=u t v\left[v_{0}\right]=u\left[v_{0}\right],
$$

so the image $\beta_{1}\left(\psi\left(U^{-} T U\right)\right)$ is the closed set $U^{-}\left[v_{0}\right] \cong U^{-}$by Lemma 3.1. Extending to the closure X_{0}, β_{1} gives a surjection

$$
\beta_{1}: X_{0} \longrightarrow U^{-} .
$$

Dually, define

$$
\begin{aligned}
\beta_{2}: & \mathbb{P}_{0} \\
\quad[A] & \longmapsto \mathbb{P}_{0}\left(V^{*}\right) \\
& \left.\longmapsto v_{0}^{*} \circ A^{-1}\right]
\end{aligned}
$$

Once again this induces

$$
\beta_{2}: X_{0} \longrightarrow U
$$

Define

$$
\begin{aligned}
\beta: X_{0} & \longrightarrow U^{-} \times U \\
x & \longmapsto\left(\beta_{1}(x), \beta_{2}(x)\right) .
\end{aligned}
$$

Lemma 3.7. Let A be an algebraic group acting on a variety Y. Suppose that there is an A equivariant morphism

$$
\beta: Y \longrightarrow A,
$$

where A is viewed as a left A-module. Then $Y \cong A \times f^{-1}(e)$.
Proof. Consider the maps

$$
\begin{aligned}
f: A \times \beta^{-1}(e) & \longrightarrow Y \\
(a, y) & \longmapsto a \cdot y
\end{aligned}
$$

and

$$
\begin{aligned}
g: Y & \longrightarrow A \times \beta^{-1}(e) \\
y & \longmapsto\left(\beta(y), \beta(y)^{-1} y\right) .
\end{aligned}
$$

They are inverses of one another.
Proof of Theorem 3.5. In view of the morphism β from Lemma 3.6. Lemma 3.7 implies that

$$
X_{0} \cong U^{-} \times U \times \beta^{-1}(e, e) .
$$

It is clear from the construction of β that $\psi(T) \subseteq \beta^{-1}(e, e)$, and since the fiber $\beta^{-1}(e, e)$ is closed, $Z \subseteq \beta^{-1}(e, e)$.

But X_{0} is irreducible of dimension $\operatorname{dim} G$, so the fiber $\beta^{-1}(e, e)$ is irreducible of dimension $\operatorname{dim} T$, and the inclusion $Z \subseteq \beta^{-1}(e, e)$ is actually an equality.

4. Smoothness of the compactification

We will show that X is smooth by showing that it is a union of copies of the big cell X_{0}. To this end, we will need the following lemmas.

Lemma 4.1. Let A be a semisimple group acting on an irreducible representation V with highest weight vector v_{0}. Then $A \cdot\left[v_{0}\right]$ is the unique closed orbit of the action of A on $\mathbb{P}(V)$.

Proof. An orbit $A \cdot[v]$ is closed if and only if it is projective, which is the case if and only if the stabilizer of $[v]$ is parabolic. Up to conjugation we may assume this parabolic is a standard parabolic, and then $[v]$ is stabilized by the Borel consisting of the positive roots, so it is a highest weight vector. Since V is irreducible it has a unique highest weight space, so $[v]=\left[v_{0}\right]$.

Lemma 4.2. Suppose A is an algebraic group acting on an irreducible variety Y with a unique closed orbit Z. If $U \subset Y$ is an open subset that intersects Z, then

$$
Y=\bigcup_{a \in A} a U .
$$

Proof. The set

$$
A U=\bigcup_{a \in A} a U
$$

is open, so its complement

$$
W=Y \backslash A U
$$

is closed and A-stable. Then W contains a closed A-orbit, which by uniqueness must be the closed orbit Z. But then $Z \subset W$, so $Z \cap U=\emptyset-$ a contradiction.

Proposition 4.3. Suppose that $W \subset X$ is a closed $G \times G$-stable subvariety. Then

$$
W=\bigcup_{a \in G \times G} a\left(W \cap X_{0}\right) .
$$

Proof. The tensor product $V \otimes V^{*}$ is an irreducible representation of $G \times G$, so by Lemma 4.1 the action of $G \times G$ on $\mathbb{P}\left(V \otimes V^{*}\right)$ has the unique closed orbit

$$
(G \times G)\left[v_{0} \otimes v_{0}^{*}\right] .
$$

If W is closed and $G \times G$-stable, it contains a closed orbit, so by uniqueness

$$
(G \times G)\left[v_{0} \otimes v_{0}^{*}\right] \subset W
$$

But since $W \cap X_{0}$ is open in W, and since $\left[v_{0} \otimes v_{0}^{*}\right] \in X_{0}$, it follows by Lemma 4.2 that

$$
W=\bigcup_{a \in G \times G} a\left(W \cap X_{0}\right) .
$$

The following theorem is immediate:

Theorem 4.4. For any $G \times G$-orbit \mathcal{O}, the closure $\overline{\mathcal{O}}$ has the property

$$
\overline{\mathcal{O}}=\bigcup_{a \in G \times G} a\left(\overline{\mathcal{O}} \cap X_{0}\right) .
$$

In particular, $X=\bigcup_{a \in G \times G} a X_{0}$, and so X is smooth.

5. The $G \times G$-orbits on the compactification

First we describe the T-orbits on the closure $Z \cong \mathbb{C}^{l}$ of the torus T from Proposition 3.4. For each $I \subset\{1, \ldots, l\}$, define

$$
Z_{I}=\left\{\left(z_{1}, \ldots, z_{l}\right) \mid z_{i}=0 \text { if } i \in I\right\} \cong \mathbb{C}^{l-|I|}
$$

and

$$
Z_{I}^{\circ}=\left\{\left(z_{1}, \ldots, z_{l}\right) \in Z_{I} \mid z_{i} \neq 0 \text { if } i \notin I\right\} .
$$

Then it is clear that the Z_{I}° are exactly the T-orbits on Z, and each such orbit has a distinguished basepoint

$$
z_{I}=\left(z_{1}, \ldots, z_{l}\right), \quad z_{i}=1 \text { if } i \notin I
$$

Each Z_{I} is the closure of Z_{I}° in Z, and the boundary

$$
Z \backslash \psi(T)=\bigcup_{i=1}^{l} Z_{i}
$$

is the union of the coordinate hyperplanes in \mathbb{C}^{l} —in particular, it is a divisor with normal crossings.
Now we describe the $U^{-} T \times U$-orbits on X_{0}. Using the isomorphism

$$
\chi: U^{-} \times U \times Z \longrightarrow X_{0}
$$

of Theorem 3.5, define

$$
\Sigma_{I}=\chi\left(U^{-} \times U \times Z_{I}\right) \cong \mathbb{C}^{\operatorname{dim} G-|I|}
$$

and

$$
\Sigma_{I}^{\circ}=\chi\left(U^{-} \times U \times Z_{I}^{\circ}\right) .
$$

Then each Σ_{I}° is a $U^{-} T \times U$-orbit on X_{0}, Σ_{I} is its closure, and the boundary

$$
X_{0} \backslash \psi\left(U^{-} T U\right)=\bigcup_{i=1}^{l} \Sigma_{i}
$$

is a divisor with normal crossings.
The closure of every $G \times G$-orbit on X is a union of translations of its intersection with X_{0}-so, there are at most 2^{l} such orbit closures.

Lemma 5.1. Suppose that W is a projective variety and $U \subset W$ is an open affine subset. Then the boundary $W \backslash U$ is a union of irreducible components of codimension 1.

Proposition 5.2. Let S_{i} be the closure of Σ_{i} in X. Then

$$
X \backslash \psi(G)=\bigcup_{i=1}^{l} S_{i} .
$$

Proof. Since X is projective and $\psi(G)$ is an affine open subset,

$$
X \backslash \psi(G)=\bigcup S_{\alpha}
$$

is a union of irreducible components of codimension 1 by Lemma 5.1.
This union is $G \times G$-stable, and because $G \times G$ is connected every component S_{α} is $G \times G$-stable. By Proposition 4.3,

$$
S_{\alpha}=\bigcup_{a \in G \times G} a\left(S_{\alpha} \cap X_{0}\right) .
$$

Then the intersection

$$
S_{\alpha} \cap X_{0}
$$

is a $U^{-} T \times U$-stable irreducible hypersurface in X_{0}, so it is equal to Σ_{i} for some i. It follows that $S_{\alpha}=\overline{\Sigma_{i}}=S_{i}$.

Define the intersection

$$
S_{I}=\bigcap_{i \in I} S_{i} .
$$

Then $S_{J} \subseteq S_{I}$ if and only if $J \supseteq I$, and $S_{I} \cap X_{0}=\Sigma_{I}$, so by Proposition 4.3

$$
S_{I}=\bigcup_{a \in G \times G} a \Sigma_{I}
$$

In particular, S_{I} is smooth.
Define

$$
S_{I}^{\circ}=S_{I} \backslash \bigcup_{I \subsetneq J} S_{J}
$$

Then

$$
S_{I}^{\circ}=\bigcup_{a \in G \times G} a \Sigma_{I}^{\circ}=(G \times G) \Sigma_{I}^{\circ}=(G \times G)\left(U^{-} T \times U\right) z_{I}=(G \times G) z_{I},
$$

and S_{I}° is a single $G \times G$-orbit. We collect all these results into a single theorem:

Theorem 5.3. There are exactly $2^{l} G \times G$-orbits in X, given by

$$
S_{I}^{\circ}=(G \times G) z_{I}, \quad I \subseteq\{1, \ldots, l\}
$$

Their closures S_{I} are smooth, and the boundary

$$
X \backslash \psi(G)
$$

of X is a divisor with normal crossings.

6. The structure of the orbits and their closures

Let $\mathfrak{g}=$ Lie G, and consider the root space decomposition

$$
\mathfrak{g}=\mathfrak{h}+\sum_{\alpha \in \Phi} \mathfrak{g}_{\alpha} .
$$

Fix a subset $I \subseteq\{1, \ldots, l\}$. Let

$$
\Delta_{I}=\left\{\alpha_{i} \mid i \notin I\right\},
$$

and let Φ_{I} be the set of roots spanned by Δ_{I}. This produces the standard Levi subalgebra

$$
\mathfrak{l}_{I}=\mathfrak{h}+\sum_{\alpha \in \Phi_{I}} \mathfrak{g}_{\alpha},
$$

and the parabolic subalgebras $\mathfrak{p}_{I}^{ \pm}=\mathfrak{l}_{I}+\mathfrak{b}^{ \pm}$with nilpotent radicals $\mathfrak{u}_{I}^{ \pm}$. Denote the corresponding subgroups of G by $L_{I}, P_{I}^{ \pm}, U_{I}^{ \pm}$.

Let V_{I} be the irreducible representation of L_{I} generated by applying L_{I} to the highest weight vector v_{0}-that is,

$$
V_{I}=\mathcal{U l}_{I} \cdot v_{0}
$$

where $\mathcal{U l}_{I}$ is the universal enveloping algebra of \mathfrak{l}_{I}. For any $x \in \mathfrak{u}_{I}, x \cdot v_{0}=0$. Because \mathfrak{u}_{I} is normal in \mathfrak{p}_{I}, it follows that V_{I} is \mathfrak{p}_{I}-stable.

Lemma 6.1. The stabilizer of V_{I} in G is exactly the parabolic subgroup P_{I}.
Proof. Let Q be the stabilizer of V_{I} in G. It is already clear that $P_{I} \subset Q$, so Q is a standard parabolic subgroup and in particular it is connected. It is enough to show that

$$
\mathfrak{p}_{I}=\operatorname{Lie} Q .
$$

Let $t \in T$ be such that $\alpha_{i}(t)=1$ whenever $\alpha_{i} \in \Delta_{I}$, and $\alpha_{i}(t) \neq 1$ otherwise. Then $t \in Z\left(L_{I}\right)$, and we pick a preimage $\tilde{t} \in \widetilde{T}$. Since V_{I} is an irreducible representation of L_{I}, \tilde{t} acts on it by the scalar $\lambda(\tilde{t})$.

Let $\alpha_{i} \notin \Delta_{I}$ be a root whose corresponding root space is not contained in \mathfrak{p}_{I}, and let $x \in \mathfrak{g}_{-\alpha_{i}}$ be nonzero. Then \tilde{t} acts on $x V_{I}$ by

$$
\frac{\lambda(\tilde{t})}{\alpha_{i}(\tilde{t})},
$$

and this scalar is distinct from $\lambda(t)$ because $\alpha_{i}(t) \neq 1$. It follows that

$$
V_{I} \cap x V_{I}=0 .
$$

Because λ is regular, $x V_{I} \neq 0$, so $x \notin$ Lie Q. So the only root spaces contained in Lie Q are the ones also contained in \mathfrak{p}_{I}.

Now let

$$
J=\left\{j \in\{0, \ldots, n\} \mid \lambda-\lambda_{j}=\sum_{\alpha_{i} \in \Phi_{I}} n_{i} \alpha_{i}, n_{i} \in \mathbb{Z}_{\geq 0}\right\} .
$$

The set $\left\{v_{j} \mid j \in J\right\}$, which consists of weight vectors whose weights can be obtained from λ by subtracting the simple roots in Δ_{I}, is a basis for V_{I}.

Proposition 6.2. Let $\operatorname{pr}_{V_{I}} \in \operatorname{End} V$ denote the projection onto V_{I}. Then

$$
z_{I}=\left[\mathrm{pr}_{V_{I}}\right] .
$$

Proof. Recall that $z_{I}=\left(z_{1}, \ldots, z_{l}\right) \in \mathbb{C}^{l}$ is the point whose coordinates are

$$
z_{i}=\left\{\begin{array}{l}
0, i \in I \\
1, i \notin I
\end{array}\right.
$$

From the isomorphism of Proposition 3.4, it is identified with the following point in X_{0} :

$$
z_{I}=\left[v_{0} \otimes v_{0}^{*}+\sum_{i \notin I} z_{i} v_{i} \otimes v_{i}^{*}+\sum_{i>l}\left(\prod z_{j}^{n_{i j}}\right) v_{i} \otimes v_{i}^{*}\right]=\left[\sum_{j \in J} v_{j} \otimes v_{j}^{*}\right] .
$$

Proposition 6.3. The stabilizer of z_{I} in $G \times G$ is

$$
\left\{(u x, v y) \in U_{I} L_{I} \times U_{I}^{-} L_{I} \mid x y^{-1} \in Z\left(L_{I}\right)\right\}
$$

Proof. Suppose $(r, s) \in G \times G$ stabilizes $z_{I}=\left[\operatorname{pr}_{V_{I}}\right]$. Then

$$
\left[r \mathrm{pr}_{V_{I}} s^{-1}\right]=\left[\mathrm{pr}_{V_{I}}\right],
$$

so in particular r stabilizes the image V_{I} of $\mathrm{pr}_{V_{I}}$. By Lemma 6.1, this means $r \in P_{I}$. Moreover, if $r=u x \in U_{I} L_{I}$, then

$$
\left[r \mathrm{pr}_{V_{I}}\right]=\left[x \mathrm{pr}_{V_{I}}\right]
$$

since the action of U_{I} on V_{I} is trivial.
Dually, $s \in P_{I}^{-}$, by applying the preceding discussion to V_{I}^{*} under the isomorphism

$$
\text { End } V \cong V \otimes V^{*} \xrightarrow{\sim} V^{*} \otimes V \cong \text { End } V^{*} \text {. }
$$

Moreover, if $s=v y \in U_{I}^{-} L_{I}$, then

$$
\left[\operatorname{pr}_{V_{I}} s^{-1}\right]=\left[\operatorname{pr}_{V_{I}} y^{-1}\right] .
$$

Then

$$
\left[\operatorname{pr}_{V_{I}}\right]=\left[r \operatorname{pr}_{V_{I}} s^{-1}\right]=\left[x \operatorname{pr}_{V_{I}} y^{-1}\right],
$$

so $x y^{-1}$ acts trivially on $\mathbb{P}\left(V_{I}\right)$, and so acts by a scalar on the irreducible representation V_{I} of L_{I}. It follows that

$$
x y^{-1} \in Z\left(L_{I}\right) .
$$

Remark 6.4. Because the stabilizer of z_{I} is contained in $P_{I} \times P_{I}^{-}$, there is a surjection

$$
S_{I}^{\circ}=(G \times G) / \operatorname{Stab}_{G \times G}\left(z_{I}\right) \longrightarrow G / P_{I} \times G / P_{I}^{-}
$$

The fiber of this surjection is

$$
P_{I} \times P_{I}^{-} / \operatorname{Stab}_{G \times G}\left(z_{I}\right) \cong L_{I} \times L_{I} /\left\{(x, y) \mid x y^{-1} \in Z\left(L_{I}\right)\right\} \cong L_{I} / Z\left(L_{I}\right),
$$

which is a semisimple group of adjoint type and smaller rank than G.

In particular, this gives an isomorphism

$$
S_{\{1, \ldots, l\}} \cong G / B \times G / B^{-}
$$

between the unique closed $G \times G$-orbit on X and the product of two copies of the flag variety of G.
The natural embedding

$$
\text { End } V_{I} \longleftrightarrow \text { End } V
$$

induces a closed embedding of projective varieties

$$
\mathbb{P}\left(\text { End } V_{I}\right) \hookrightarrow \mathbb{P}(\text { End } V),
$$

and $z_{K} \in \mathbb{P}\left(\right.$ End $\left.V_{I}\right)$ if and only if $I \subseteq K$.
Define the map

$$
\begin{aligned}
L_{I} & \longrightarrow \mathbb{P}\left(\text { End } V_{I}\right) \subset \mathbb{P}(\text { End } V) \\
& g \longmapsto\left[g \sum_{j \in J} v_{j} \otimes v_{j}^{*}\right]=\left[g z_{I}\right] .
\end{aligned}
$$

This descends to an injection

$$
G_{I}=L_{I} / Z\left(L_{I}\right) \xrightarrow{\psi_{I}} \mathbb{P}\left(\text { End } V_{I}\right) .
$$

Since V_{I} is a regular representation of L_{I}, it is a regular representation of the simply-connected cover of the semisimple adjoint group G_{I}, and we can apply the entire previous discussion to the compactification

$$
X_{I}=\overline{\psi_{I}\left(G_{I}\right)}
$$

-the wonderful compactification of G_{I}.
The quotient

$$
P_{I} \times P_{I}^{-} \longrightarrow P_{I} / U_{I} Z\left(L_{I}\right) \times P_{I}^{-} / U_{I}^{-} Z\left(L_{I}\right) \cong G_{I} \times G_{I}
$$

induces an action of $P_{I} \times P_{I}^{-}$on X_{I}.
Theorem 6.5. The map

$$
\varphi: G \times G \times_{P_{I} \times P_{I}^{-}} X_{I} \longrightarrow S_{I}
$$

is an isomorphism of $G \times G$-varieties. In particular, S_{I} fibers over the partial flag variety $G / P_{I} \times$ G / P_{I}^{-}with fiber X_{I}.

Proof. It is enough to show that φ is bijective, because the target S_{I} is smooth.
Recall that

$$
S_{I}=\bigcup_{I \subseteq K} S_{K}^{\circ}
$$

and $I \subseteq K$ if and only if $z_{K} \in X_{I}$. In this case

$$
\varphi\left(G \times G \times\left\{z_{K}\right\}\right)=S_{K}^{\circ}
$$

So every $G \times G$-orbit is contained in the image of φ, and φ is surjective.

Similarly, it is enough to show that φ is injective on orbits. Suppose that

$$
\varphi\left(g, h, z_{K}\right)=\varphi\left(e, e, z_{K}\right)
$$

Then $(g, h) \in \operatorname{Stab}_{G \times G}\left(z_{K}\right) \subseteq P_{K} \times P_{K}^{-} \subseteq P_{I} \times P_{I}^{-}$. It follows that

$$
\left(g, h, z_{K}\right) \sim\left(e, e, z_{K}\right)
$$

in the fiber product $G \times G \times_{P_{I} \times P_{I}^{-}} X_{I}$.

7. Independence of regular dominant weight

Suppose that λ and μ are two regular dominant weights of \widetilde{G}, with corresponding irreducible representations V and W. They produce two compactifications:

$$
X^{1} \subset \mathbb{P}(\text { End } V) \quad \text { and } \quad X^{2} \subset \mathbb{P}(\text { End } W)
$$

Let $v_{0}, \ldots v_{n}$ be the usual basis of V chosen in (3), and let $w_{0}, \ldots w_{n}$ be the analogous basis of W. Choose identity basepoints

$$
x_{1}=\left[\sum v_{i} \otimes v_{i}^{*}\right] \in X^{1} \quad \text { and } \quad x_{2}=\left[\sum w_{i} \otimes w_{i}^{*}\right] \in X^{2}
$$

and define

$$
X^{\Delta}=(G \times G)\left(x_{1}, x_{2}\right) \in X^{1} \times X^{2} .
$$

There are natural projections

Theorem 7.1. The projections p_{1} and p_{2} are both isomorphisms, and they induce an isomorphism

$$
p_{2} \circ p_{1}^{-1}: X^{1} \xrightarrow{\sim} X^{2} .
$$

We will apply superscripts to the notation of the previous sections, so that X_{0}^{i} will be the big cell of X^{i}, X^{i} the closure of the torus in the big cell, etc. Define

$$
Z^{\Delta}=\overline{T\left(x_{1}, x_{2}\right)} \subset X_{0}^{1} \times X_{0}^{2} .
$$

Lemma 7.2. There is an isomorphism $Z^{\Delta} \cong \mathbb{C}^{l}$ and the projections $p_{i}: Z^{\Delta} \longrightarrow Z^{i}$ are isomorphisms.

Proof. The proof is exactly as in Proposition 3.4 ,

$$
\begin{aligned}
t\left(x_{1}, x_{2}\right)=\left(\left[v_{0} \otimes v_{0}^{*}+\sum_{i=1}^{l} \frac{1}{\alpha_{i}(t)} v_{i} \otimes v_{i}^{*}\right.\right. & \left.+\sum_{i>l} \boldsymbol{\phi} v_{i} \otimes v_{i}^{*}\right] \\
& {\left.\left[w_{0} \otimes w_{0}^{*}+\sum_{i=1}^{l} \frac{1}{\alpha_{i}(t)} w_{i} \otimes w_{i}^{*}+\sum_{i>l} \boldsymbol{\phi}_{i} \otimes w_{i}^{*}\right]\right), }
\end{aligned}
$$

where $\boldsymbol{\&}$ and $\boldsymbol{\uparrow}$ are polynomials in

$$
\frac{1}{\alpha_{1}(t)}, \ldots, \frac{1}{\alpha_{l}(t)}
$$

As before, there is an isomorphism $\mathbb{C}^{l} \longrightarrow Z^{\Delta}$ given by

$$
\begin{aligned}
&\left(z_{1}, \ldots, z_{l}\right) \longmapsto\left(\left[v_{0} \otimes v_{0}^{*}+\sum_{i=1}^{l} z_{i} v_{i} \otimes v_{i}^{*}+\sum_{i>l} \boldsymbol{Q} v_{i} \otimes v_{i}^{*}\right]\right. \\
& {\left.\left[w_{0} \otimes w_{0}^{*}+\sum_{i=1}^{l} z_{i} w_{i} \otimes w_{i}^{*}+\sum_{i>l} \boldsymbol{\phi}_{2} w_{i} \otimes w_{i}^{*}\right]\right) . }
\end{aligned}
$$

Let $X_{0}^{\Delta}=p_{i}^{-1}\left(X_{0}^{i}\right)$ and define the action map

$$
\chi^{\Delta}: U^{-} \times U \times Z^{\Delta} \longrightarrow X^{\Delta} .
$$

Lemma 7.3. The morphism χ^{Δ} is an isomorphism onto X_{0}^{Δ}.
Proof. Consider the commutative diagram

It is clear that χ^{Δ} is injective because the composition $\chi^{i} \circ\left(\operatorname{Id} \times \operatorname{Id} \times p_{i}\right)$ is injective.
Let Y be the image of χ^{Δ}, and consider the composition

$$
\sigma=\chi^{\Delta} \circ\left(\operatorname{Id} \times \operatorname{Id} \times p_{i}\right)^{-1} \circ \chi^{i-1}: X_{0}^{i} \longrightarrow Y .
$$

The diagram is commutative, so

$$
p_{i} \circ \sigma=\operatorname{Id}_{X_{i}^{0}}
$$

and σ is a section of p_{i} on X_{0}^{i}. The composition $\sigma \circ p_{i}$ is defined only on X_{0}^{Δ}, because σ is defined on X_{0}^{i}. Because σ is a section, it follows that the restriction of

$$
\sigma \circ p_{i}: X_{0}^{\Delta} \longrightarrow X^{\Delta}
$$

to the image Y of χ^{Δ} is also the identity.
But X_{0}^{Δ} and Y are irreducible of the same dimension as X^{Δ}, so $X_{0}^{\Delta} \cap Y$ is a dense subset of X_{0}^{Δ}. Then the map $\sigma \circ p_{i}$ is the identity on a dense subset of X_{0}^{Δ}, so it is the identity on all of X_{0}^{Δ}.

This shows that p_{i} gives an isomorphism $X_{0}^{\Delta} \longrightarrow X_{0}^{i}$, so

$$
\chi^{\Delta}: U^{-} \times U \times Z^{\Delta} \longrightarrow X_{0}^{\Delta}
$$

is surjective.
Lemma 7.4. The restriction of p_{i} to the set

$$
U=\bigcup_{a \in G \times G} a X_{0}^{\Delta}
$$

is injective.
Proof. For any subset $I \subseteq\{1, \ldots, l\}$, let

$$
z_{I}^{\Delta}=\left(z_{I}^{1}, z_{I}^{2}\right) \in X^{1} \times X^{2}
$$

By Lemma 7.3, as in Section 5, X_{0}^{Δ} is $U^{-} T \times U$-stable and the $U^{-} T \times U$-orbits on X_{0}^{Δ} are exactly indexed by the basepoints z_{I}^{Δ}. It is enough to check the statement of the lemma on the intersections of $G \times G$-orbits with X_{0}^{Δ}.

Using the $G \times G$-equivariance of p_{i}, it is enough to suppose that

$$
p_{i}\left((g, h) z_{I}^{\Delta}\right)=p_{i}\left(z_{I}^{\Delta}\right)
$$

Then

$$
(g, h) z_{I}^{i}=z_{I}^{i},
$$

so that $(g, h) \in \operatorname{Stab}_{G \times G}\left(z_{I}^{i}\right)$. But

$$
\operatorname{Stab}_{G \times G}\left(z_{I}^{\Delta}\right)=\operatorname{Stab}_{G \times G}\left(z_{I}^{1}\right) \cap \operatorname{Stab}_{G \times G}\left(z_{I}^{2}\right)=\operatorname{Stab}_{G \times G}\left(z_{I}^{i}\right),
$$

so this means that $(g, h) \in \operatorname{Stab}_{G \times G}\left(z_{I}^{\Delta}\right)$ and $(g, h) z_{I}^{\Delta}=z_{I}^{\Delta}$.
Proof of Theorem 7.1. The projection p_{i} restricts to an isomorphism

$$
p_{i}: X_{0}^{\Delta} \xrightarrow{\sim} X_{0}^{i},
$$

and by $G \times G$-equivariance it gives a surjection

$$
p_{i}: U \longrightarrow \bigcup_{a \in G \times G} a X_{0}^{i}=X^{i}
$$

which is injective by Lemma 7.4. Because X^{i} is smooth, p_{i} is an isomorphism.
Then $U \subseteq X^{\Delta}$ is a projective subvariety of the same dimension as X^{Δ}, so they are equal. It follows that p_{i} is an isomorphism between X^{Δ} and X^{i}.

8. Compactifications in more general spaces

The results in this section are outlined in [EJ] Section 3.1. Any representation E of $\widetilde{G} \times \widetilde{G}$ induces an action

$$
G \times G \curvearrowright \mathbb{P}(E)
$$

A point $[x] \in \mathbb{P}(E)$ whose stabilizer is the diagonal subgroup

$$
G_{\Delta}=\{(g, g) \mid g \in G\}
$$

gives an embedding

$$
\begin{aligned}
\psi_{E}: G & \hookrightarrow \mathbb{P}(E) \\
g & \longmapsto(g, e) \cdot[x]
\end{aligned}
$$

and a compactification

$$
X(E,[x])=\overline{\psi_{E}(G)} \subset \mathbb{P}(E) .
$$

In the previous section we showed that if V and W are regular irreducible representations of \widetilde{G}, then

$$
X\left(\text { End } V,\left[\operatorname{Id}_{V}\right]\right) \cong X\left(\operatorname{End} W,\left[\operatorname{Id}_{W}\right]\right)
$$

Suppose now that V is an irreducible \widetilde{G}-representation of regular highest weight λ and that W^{1}, \ldots, W^{r} are irreducible \widetilde{G}-representations of highest weight μ^{1}, \ldots, μ^{r}. Write

$$
W=W^{1} \oplus \ldots \oplus W^{r}
$$

and let F be any \widetilde{G}-representation. As in the previous sections, write

$$
X=X\left(\operatorname{End} V,\left[\operatorname{Id}_{V}\right]\right)
$$

Theorem 8.1. Suppose that $\mu^{k} \leq \lambda$ for every $k=1, \ldots, r$. Then

$$
X\left(\text { End } V \oplus \text { End } W \oplus F,\left[\operatorname{Id}_{V} \oplus \operatorname{Id}_{W} \oplus 0\right]\right) \cong X
$$

Remark 8.2. The G-orbit

$$
G \cdot\left[\operatorname{Id}_{V} \oplus \operatorname{Id}_{W} \oplus 0\right]
$$

lies in the image of the closed embedding

$$
\mathbb{P}(\text { End } V \oplus \text { End } W) \longleftrightarrow \mathbb{P}(\text { End } V \oplus \text { End } W \oplus F)
$$

so there is an identification

$$
X\left(\text { End } V \oplus \operatorname{End} W \oplus F,\left[\operatorname{Id}_{V} \oplus \operatorname{Id}_{W} \oplus 0\right]\right)=X\left(\text { End } V \oplus \text { End } W,\left[\operatorname{Id}_{V} \oplus \operatorname{Id}_{W}\right]\right) .
$$

Denote by ψ the injection

$$
\begin{aligned}
\psi: G & \longrightarrow \mathbb{P}(\text { End } V \oplus \text { End } W) \\
g & \longmapsto g \cdot\left[\operatorname{Id}_{V} \oplus \operatorname{Id}_{W}\right]
\end{aligned}
$$

and by X^{\prime} the closure of its image inside $\mathbb{P}(\operatorname{End} V \oplus \operatorname{End} W)$. To prove the theorem it will be sufficient to show that

$$
X^{\prime} \cong X
$$

As before, let v_{0}, \ldots, v_{n} be a basis of T-weight vectors for V satisfying the conditions (3). Let w_{0}, \ldots, w_{m} be a basis of T-weight vectors for W such that w_{i} has weight μ_{i}. This gives a basis

$$
\left\{v_{i} \otimes v_{j}^{*}, w_{i} \otimes w_{j}^{*}\right\}
$$

for the space End $V \oplus$ End W. Let

$$
\mathbb{P}_{0}^{\prime}=\left\{\left[\sum a_{i j} v_{i} \otimes v j^{*}+\sum b_{i j} w_{i} \otimes w_{j}^{*}\right] \mid a_{00} \neq 0\right\},
$$

and let Z^{\prime} be the closure of the torus inside this affine space:

$$
Z^{\prime}=\overline{\psi(T)} \subset \mathbb{P}_{0}^{\prime}
$$

Proposition 8.3. There is an isomorphism $Z^{\prime} \cong \mathbb{C}^{l}$.
Proof. Let $t \in T$ and $\tilde{t} \in \widetilde{T}$ be some preimage of t in the simply-connected cover \widetilde{G}. Then

$$
\begin{aligned}
\psi(t) & =t\left[\sum v_{i} \otimes v_{i}^{*}+\sum w_{i} \otimes w_{i}^{*}\right] \\
& =\left[\sum \lambda_{i}(\tilde{t}) v_{i} \otimes v_{i}^{*}+\sum \mu_{i}(\tilde{t}) w_{i} \otimes w_{i}^{*}\right] \\
& =\left[v_{0} \otimes v_{0}^{*}+\sum_{i=1}^{l} \frac{1}{\alpha_{i}(t)} v_{i} \otimes v_{i}^{*}+\sum_{i>l} \frac{\lambda_{i}(\tilde{t})}{\lambda(\tilde{t})} v_{i} \otimes v_{i}^{*}+\sum \frac{\mu_{i}(\tilde{t})}{\lambda(\tilde{t})} w_{i} \otimes w_{i}^{*}\right]
\end{aligned}
$$

The coefficients

$$
\frac{\lambda_{i}(\tilde{t})}{\lambda(\tilde{t})} \text { and } \frac{\mu_{i}(\tilde{t})}{\lambda(\tilde{t})}
$$

are polynomial in the terms

$$
\frac{1}{\alpha_{1}(t)}, \ldots, \frac{1}{\alpha_{l}(t)}
$$

because each μ_{i} is less than some μ^{k} in the partial ordering of the weight lattice, and each $\mu^{k} \leq \lambda$ by the assumption of Theorem 8.1. We can define an isomorphism $\mathbb{C}^{l} \longrightarrow Z^{\prime}$ just as in the proof of Proposition 3.4.

$$
\left(z_{1}, \ldots, z_{l}\right) \longmapsto\left[v_{0} \otimes v_{0}^{*}+\sum_{i=1}^{l} z_{i} v_{i} \otimes v_{i}^{*}+\sum_{i>l} \boldsymbol{\operatorname { s }} v_{i} \otimes v_{i}^{*}+\sum \boldsymbol{\phi} w_{i} \otimes w_{i}^{*}\right],
$$

where $\boldsymbol{\sim}$ and $\boldsymbol{\wedge}$ are polynomials in z_{1}, \ldots, z_{l}.
Define

$$
\widetilde{\mathbb{P}}=\{[A \oplus B] \in \mathbb{P}(\text { End } V \oplus \text { End } W) \mid A \neq 0\}
$$

Then there is a natural projection

$$
\pi: \widetilde{\mathbb{P}} \longrightarrow \mathbb{P}(\text { End } V)
$$

and Proposition 8.3, together with Proposition 3.4, imply that the restriction

$$
\pi_{\mid Z^{\prime}}: Z^{\prime} \longrightarrow Z
$$

is an isomorphism.
Fix $I \subset\{1, \ldots, l\}$, and under the identification of Proposition 8.3 define

$$
z_{I}^{\prime}=\left(z_{1}, \ldots, z_{l}\right) \in Z^{\prime}, \quad z_{i}=\left\{\begin{array}{l}
1, \text { if } i \notin I \\
0, \text { if } i \in I
\end{array}\right.
$$

(Cf. the definitions at the start of Section 5) Then

$$
\pi\left(z_{I}^{\prime}\right)=z_{I}
$$

and each T-orbit on Z^{\prime} contains exactly one basepoint of the form z_{I}^{\prime}.
As in Section 6, let $\Delta_{I}=\left\{\alpha_{i} \mid i \notin I\right\}$ and let \mathfrak{l}_{I} be the corresponding Levi subalgebra of $\mathfrak{g}=$ Lie G. Define

$$
V_{I}=\mathcal{U}_{I} \cdot v_{0}
$$

to be the subspace of V generated by applying \mathfrak{l}_{I} to the highest weight vector v_{0}, and recall that the unipotent radical U_{I} of the corresponding positive parabolic acts on V_{I} trivially.

For each index k such that $\lambda-\mu^{k}$ is in the span of the simple roots Δ_{I}, let $w_{0}^{k}, \ldots, w_{n_{k}}^{k}$ be a basis of T-weight vectors for W^{k}, such that w_{i}^{k} has weight μ_{i}^{k} and which satisfies the conditions of (3). Define

$$
W_{I}^{k}=\mathcal{U 1}_{I} \cdot w_{0}^{k}
$$

to be the subspace of W^{k} generated by applying \mathfrak{l}_{I} to the highest weight vector w_{0}^{k}.
In Section 6, the set of indices

$$
J=\left\{j \in\{0, \ldots, n\} \mid \lambda-\lambda_{j}=\sum_{\alpha_{i} \in \Phi_{I}} n_{i} \alpha_{i}, n_{i} \in \mathbb{Z}_{\geq 0}\right\}
$$

indexed a basis of weight vectors $\left\{v_{j} \mid j \in J\right\}$ for V_{I}. Similarly, for each W^{k} as above, define

$$
J^{k}=\left\{j \in\{0, \ldots, n\} \mid \lambda-\mu_{j}^{k}=\sum_{\alpha_{i} \in \Phi_{I}} n_{i} \alpha_{i}, n_{i} \in \mathbb{Z}_{\geq 0}\right\}
$$

Because

$$
\lambda-\mu_{j}^{k}=\left(\lambda-\mu^{k}\right)+\left(\mu^{k}-\mu_{j}^{k}\right),
$$

and each term is a linear combinations of roots with non-negative coefficients, an index j is in J^{k} if and only if both $\lambda-\mu^{k}$ and $\mu^{k}-\mu_{j}^{k}$ are in the span of Δ_{I}. Then the set of weight vectors $\left\{w_{j}^{k} \mid j \in J^{k}\right\}$ is a basis for W_{I}^{k}, and it is guaranteed to be nonempty because $0 \in J^{k}$.

Lemma 8.4. Let $\mathrm{pr}_{W_{I}^{k}} \in \operatorname{End} W$ denote the projection onto W_{I}^{k}. Then

$$
z_{I}^{\prime}=\left[\operatorname{pr}_{V_{I}} \oplus\left(\sum \operatorname{pr}_{W_{I}^{k}}\right)\right],
$$

where the sum is taken over all k such that $\lambda-\mu^{k}$ is in the span of Δ_{I}.
Proof. From Proposition 8.3,

$$
z_{I}^{\prime}=\left[v_{0} \otimes v_{0}^{*}+\sum_{i=1}^{n} \delta_{i} v_{i} \otimes v_{i}^{*}+\sum_{k=1}^{r}\left(\sum_{i=0}^{n_{k}} \delta_{i}^{k} w_{i}^{k} \otimes w_{i}^{k *}\right)\right] .
$$

Here $\delta_{i}=1$ if $\lambda-\lambda_{i}$ is in the span of Δ_{I}, and 0 otherwise. Likewise, $\delta_{i}^{k}=1$ if $\lambda-\mu_{i}^{k}$ is in the span of Δ_{I}, and 0 otherwise.

It follows immediately that

$$
z_{I}^{\prime}=\left[v_{0} \otimes v_{0}^{*}+\sum_{j \in J} v_{i} \otimes v_{i}^{*}+\sum_{k}\left(\sum_{j \in J^{k}} w_{i}^{k} \otimes w_{i}^{k *}\right)\right]
$$

where the only indices k appearing in the second sum are those for which $\lambda-\mu^{k}$ is in the span of Δ_{I}.

Lemma 8.5. The points $z_{I}^{\prime} \in X^{\prime}$ and $z_{I} \in X$ have the same stabilizer in $G \times G$.

Proof. The inclusion

$$
\operatorname{Stab}_{G \times G}\left(z_{I}^{\prime}\right) \subseteq \operatorname{Stab}_{G \times G}\left(z_{I}\right) .
$$

is clear, since $z_{I}^{\prime} \in \mathbb{P}($ End $V \oplus$ End $W), z_{I} \in \mathbb{P}($ End $V)$, and the action of $G \times G$ is block-diagonal.
Conversely, recall from Proposition 6.3 that

$$
\operatorname{Stab}_{G \times G}\left(z_{I}\right)=\left\{(u x, v y) \in U_{I} L_{I} \times U_{I}^{-} L_{I} \mid x y^{-1} \in Z\left(L_{I}\right)\right\} .
$$

For any point (ux,vy),

$$
(u x, v y) \cdot\left[\operatorname{pr}_{V_{I}} \oplus\left(\sum \operatorname{pr}_{W_{I}^{k}}\right)\right]=\left[x \operatorname{pr}_{V_{I}} y^{-1} \oplus\left(\sum x \operatorname{pr}_{W_{I}^{k}} y^{-1}\right)\right]
$$

because $u \in U_{I}$ and $v \in U_{I}^{-}$both act trivially. (Cf. the proof of Proposition 6.3.)
Since V_{I} is an irreducible representation of L_{I}, the central element $x y^{-1}$ acts on it by the scalar

$$
\lambda\left(x y^{-1}\right) .
$$

Likewise, $x y^{-1}$ acts on each W_{I}^{k} by

$$
\mu^{k}\left(x y^{-1}\right) .
$$

Because $x y^{-1}$ is central in L_{I}, for any α_{i} in the set Δ_{I} of simple roots that generate \mathfrak{l}_{I},

$$
\alpha_{i}\left(x y^{-1}\right)=1
$$

But $\lambda-\mu^{k}$ is in the span of Δ_{I}, so it follows that

$$
\frac{\lambda\left(x y^{-1}\right)}{\mu^{k}\left(x y^{-1}\right)}=1
$$

Retracing our steps,

$$
\begin{aligned}
(u x, v y) \cdot\left[\operatorname{pr}_{V_{I}} \oplus\left(\sum \operatorname{pr}_{W_{I}^{k}}\right)\right] & =\left[x \operatorname{pr}_{V_{I}} y^{-1} \oplus\left(\sum x \operatorname{pr}_{W_{I}^{k}} y^{-1}\right)\right] \\
& =\left[\lambda\left(x y^{-1}\right) \operatorname{pr}_{V_{I}} \oplus\left(\sum \mu^{k}\left(x y^{-1}\right) \operatorname{pr}_{W_{I}^{k}}\right)\right] \\
& =\left[\operatorname{pr}_{V_{I}} \oplus\left(\sum \operatorname{pr}_{W_{I}^{k}}\right)\right]
\end{aligned}
$$

so ($u x, v y$) stabilizes z_{I}^{\prime}.
Consider the open subset $X_{0}^{\prime}=X^{\prime} \cap \mathbb{P}_{0}^{\prime}$ of X^{\prime}. It is $U^{-} T \times U$-stable, and we define the action map

$$
\chi^{\prime}: U^{-} \times U \times Z^{\prime} \longrightarrow X_{0}^{\prime}
$$

Proposition 8.6. The morphism χ^{\prime} is an isomorphism, and therefore $X_{0}^{\prime} \cong \mathbb{C}^{\operatorname{dim} G}$.
Proof. Applying the construction of Lemma 3.6, there is a $U^{-} \times U$-equivariant morphism β^{\prime} : $X_{0}^{\prime} \longrightarrow U^{-} \times U$ such that

$$
\beta^{\prime}\left(\chi^{\prime}\left(u, v, z^{\prime}\right)\right)=(u, v)
$$

Then by Lemma 3.7, there is an isomorphism

$$
X_{0}^{\prime} \cong U^{-} \times U \times \beta^{\prime-1}(e, e),
$$

and $Z^{\prime} \subseteq \beta^{\prime-1}(e, e)$.

But X_{0}^{\prime} is irreducible of dimension $n=\operatorname{dim} G$, so the fiber $\beta^{\prime-1}(e, e)$ is irreducible of dimension $\operatorname{dim} T$, and the inclusion $Z^{\prime} \subseteq \beta^{\prime-1}(e, e)$ is an equality.

Now define

$$
Y=\bigcup_{a \in G \times G} a X_{0}^{\prime}
$$

to be the union of all $G \times G$-translates of the open affine cell X_{0}^{\prime}. The open subvariety Y of X^{\prime} is contained in $\widetilde{\mathbb{P}}$.

Proposition 8.7. The restriction of

$$
\pi: \widetilde{\mathbb{P}} \longrightarrow \mathbb{P}(\text { End } V)
$$

to Y is injective.
Proof. It is sufficient to check that π is injective on $G \times G$-orbits. Every T-orbit on Z^{\prime} contains a basepoint of the form z_{I}^{\prime}. Then every $U^{-} T \times U$-orbit on X_{0}^{\prime} contains some point z_{I}^{\prime}, and therefore every $G \times G$-orbit on Y contains such a point.

Suppose without loss of generality that

$$
\pi\left(g z_{I}^{\prime} h^{-1}\right)=\pi\left(z_{I}^{\prime}\right)
$$

Because π is $G \times G$-equivariant,

$$
g z_{I} h^{-1}=z_{I},
$$

so $(g, h) \in \operatorname{Stab}_{G \times G}\left(z_{I}\right)$. By Lemma 8.5. this is the same as the stabilizer of z_{I}^{\prime}, so

$$
g z_{I}^{\prime} h^{-1}=z_{I}^{\prime} .
$$

Proof of Theorem 8.1. The restriction

$$
\pi_{\mid Z^{\prime}}: Z^{\prime} \longrightarrow Z
$$

is an isomorphism by Proposition 8.3. By Proposition 8.6 and 3.5 , it follows that

$$
\pi_{\mid X_{0}^{\prime}}: X_{0}^{\prime} \longrightarrow X_{0}
$$

is also an isomorphism. So the restriction

$$
\pi_{\mid Y}: Y \longrightarrow \bigcup_{a \in G \times G} a X_{0}=X
$$

is surjective, and by Proposition 8.7 it is also injective. Since the wonderful compactification X is smooth, $\pi_{\mid Y}$ is an isomorphism of algebraic varieties.

This means that $Y \subseteq X^{\prime}$ is a projective (and therefore complete, and therefore closed) algebraic subvariety of X^{\prime} of the same dimension, so they are equal. Then π gives an isomorphism

$$
X^{\prime} \cong X
$$

Remark 8.8. The compactification X^{\prime} is contained in the closed subvariety

$$
\mathbb{P}\left(\text { End } V \oplus\left(\oplus \text { End } W^{k}\right) \oplus F\right) \subset \mathbb{P}(\text { End } V \oplus \text { End } W \oplus F) .
$$

Therefore we could replace X^{\prime} in the discussion above by

$$
X\left(\text { End } V \oplus\left(\oplus \operatorname{End} W^{k}\right) \oplus F,\left[\operatorname{Id}_{V} \oplus\left(\sum c_{k} \mathrm{Id}_{W^{k}}\right) \oplus 0\right]\right)
$$

for some scalars $c_{k} \in \mathbb{C}$.

9. The Lie algebra realization of the compactification

This section outlines another realization of the wonderful compactification, using the results of Section 8, and following the construction in EJ] Section 3.2. Let n be the dimension of G, and consider the action of $G \times G$ on the Grassmannian

$$
\operatorname{Gr}(n, \mathfrak{g} \oplus \mathfrak{g}) .
$$

The stabilizer in $G \times G$ of the diagonal subalgebra

$$
\mathfrak{g}_{\Delta}=\{(x, x) \mid x \in \mathfrak{g}\} \subset \mathfrak{g} \oplus \mathfrak{g}
$$

is the diagonal subgroup

$$
G_{\Delta}=\{(g, g) \mid g \in G\} \subset G \times G .
$$

The orbit of this diagonal subalgebra in the Grassmannian is

$$
(G \times G) \cdot \mathfrak{g}_{\Delta} \cong(G \times G) / G_{\Delta} \cong G,
$$

and we consider its closure

$$
\bar{G}=\overline{(G \times G) \cdot \mathfrak{g}_{\Delta}} \subset \operatorname{Gr}(n, \mathfrak{g} \oplus \mathfrak{g}) .
$$

Theorem 9.1. The compactification \bar{G} is isomorphic to the wonderful compactification X.
Consider the Plücker embedding

$$
\operatorname{Gr}(n, \mathfrak{g} \oplus \mathfrak{g}) \longleftrightarrow \mathbb{P}\left(\wedge^{n}(\mathfrak{g} \oplus \mathfrak{g})\right),
$$

which takes a subspace spanned by a basis u_{1}, \ldots, u_{n} to the line $\left[u_{1} \wedge \ldots \wedge u_{n}\right]$. Let [\mathfrak{g}_{Δ}] be the image of \mathfrak{g}_{Δ}. Because this is a closed embedding,

$$
\bar{G}=\overline{(G \times G) \cdot \mathfrak{g}_{\Delta}} \cong \overline{(G \times G) \cdot\left[\mathfrak{g}_{\Delta}\right]} \subset \mathbb{P}\left(\wedge^{n}(\mathfrak{g} \oplus \mathfrak{g})\right) .
$$

For a nonzero vector $v_{\Delta} \in\left[\mathfrak{g}_{\Delta}\right]$, define the subspace

$$
E=\mathcal{U}(\mathfrak{g} \oplus \mathfrak{g}) \cdot v_{\Delta} \subset \wedge^{n}(\mathfrak{g} \oplus \mathfrak{g}) .
$$

It is clear that E does not depend on the choice of v_{Δ} inside $\left[\mathfrak{g}_{\Delta}\right]$, and the compactification \bar{G} is contained in the projectivization of E :

$$
\bar{G} \subset \mathbb{P}(E)
$$

We will show that E is of the form

$$
\text { End } V \oplus\left(\oplus \operatorname{End} W^{k}\right) \oplus F
$$

for some irreducible representation V of G of highest weight λ and some irreducible representations W^{k} of highest weights μ^{k} with $\mu^{k} \leq \lambda$ in the partial order on the weight lattice. We will show that under this identification

$$
\left[\mathfrak{g}_{\Delta}\right]=\left[\operatorname{Id}_{V} \oplus\left(\sum c_{k} \operatorname{Id}_{W^{k}}\right) \oplus 0\right],
$$

so that Theorem 9.1 will follow from Theorem 8.1 and Remark 8.8 ,
Let h_{1}, \ldots, h_{l} be a basis for the Cartan $\mathfrak{h}=$ Lie T, and for each $\alpha \in \Phi$ let $e_{\alpha} \in \mathfrak{g}$ be a root vector of weight α. There is a basis of $T \times T$-weight vectors for $\mathfrak{g} \oplus \mathfrak{g}$:

- $\left\{\left(h_{i}, \pm h_{i}\right) \mid i=1, \ldots, l\right\}$ of weight $(0,0)$,
- $\left\{\left(e_{\alpha}, 0\right) \mid \alpha \in \Phi\right\}$ of weight $(\alpha, 0)$,
- $\left\{\left(0, e_{\alpha}\right) \mid \alpha \in \Phi\right\}$ of weight $(0, \alpha)$.

This gives a basis of $T \times T$-weight vectors of $\wedge^{n}(\mathfrak{g} \oplus \mathfrak{g})$ indexed by triples (A, B, S), where

- $A, B \subset \Phi$ are such that $|A|+|B| \leq n$,
- $S \subset\left\{\left(h_{i}, \pm h_{i}\right) \mid i=1, \ldots, l\right\}$ is such that $|A|+|B|+|S|=n$.

The weight vector corresponding to such a triple is

$$
v_{A B S}=\left(\bigwedge_{\alpha \in A}\left(e_{\alpha}, 0\right)\right) \wedge\left(\bigwedge_{s \in S} s\right) \wedge\left(\bigwedge_{\beta \in B}\left(0, e_{\alpha}\right)\right)
$$

and it has weight

$$
\left(\sum_{\alpha \in A} \alpha, \sum_{\beta \in B} \beta\right)
$$

Remark 9.2. Let $B^{+} \subset G$ be a positive choice of Borel subgroup containing the maximal torus T, and let B^{-}be the opposite Borel. Denote by $\Phi^{+} \subset \Phi$ the positive roots. Then the $T \times T$-weight vector

$$
v_{0}=\left(\bigwedge_{\alpha \in \Phi^{+}}\left(e_{\alpha}, 0\right)\right) \wedge\left(\bigwedge_{i=1^{l}}\left(h_{i}, h_{i}\right)\right) \wedge\left(\bigwedge_{\beta \in-\Phi^{+}}\left(0, e_{\alpha}\right)\right),
$$

has weight $(\lambda,-\lambda)$, where

$$
\lambda=\sum_{\alpha \in \Phi^{+}} \alpha
$$

is the sum of the positive roots.
Any other $T \times T$-weight vector $v_{A B S}$ has weight $\left(\mu, \mu^{\prime}\right)$ with $\mu \leq \lambda$ and $\mu^{\prime} \geq-\lambda$, so v_{0} is a highest weight vector with respect to the Borel subgroup

$$
B \times B^{-} \subset G \times G
$$

Proposition 9.3. The vector v_{0} is in the subspace $E=\mathcal{U}(\mathfrak{g} \oplus \mathfrak{g}) \cdot v_{\Delta}$ of $\wedge^{n}(\mathfrak{g} \oplus \mathfrak{g})$.
Let $h \in \mathfrak{h}$ be a regular element such that

$$
\alpha_{i}(h)=1, \quad \forall i=1, \ldots, l .
$$

This element induces an injection

$$
\gamma: \mathbb{C}^{*} \hookrightarrow T
$$

such that Lie $\mathbb{C}^{*}=\mathbb{C} h$. The proof of Proposition 9.3 will follow from the following Lemma.

Lemma 9.4.

$$
\lim _{z \rightarrow \infty} \gamma(z) \cdot\left[\mathfrak{g}_{\Delta}\right]=\left[v_{0}\right] .
$$

Proof. First we decompose $\left[\mathfrak{g}_{\Delta}\right]$ into a projectivized sum of $T \times T$-weight vectors. Write

$$
\left[\mathfrak{g}_{\Delta}\right]=\left[\left(\bigwedge_{\delta \in \Phi}\left(e_{\delta}, e_{\delta}\right)\right) \wedge\left(\bigwedge_{i=1}^{l}\left(h_{i}, h_{i}\right)\right)\right] .
$$

Then

$$
\begin{equation*}
v_{\Delta}=\left(\bigwedge_{\delta \in \Phi}\left(\left(e_{\delta}, 0\right)+\left(0, e_{\delta}\right)\right)\right) \wedge\left(\bigwedge_{i=1}^{l}\left(h_{i}, h_{i}\right)\right)=\sum v_{A B S}, \tag{9.1}
\end{equation*}
$$

where the sum is taken over all triples (A, B, S) such that

- $A \subset \Phi$,
- $B=\Phi \backslash A$,
- $S=\left\{\left(h_{i}, h_{i}\right) \mid i=1, \ldots, l\right\}$.

For any $\alpha=\sum_{i=1}^{l} n_{i} \alpha_{i} \in \Phi$,

$$
\gamma(z) \cdot e_{\alpha}=z^{\alpha(h)} e_{\alpha}=z^{\operatorname{ht}(\alpha)} e_{\alpha},
$$

where $\operatorname{ht}(\alpha)=\sum_{i=1}^{l} n_{i}$ is the height of the root α. Then

$$
\begin{equation*}
\gamma(z) \cdot v_{A B S}=\left(\bigwedge_{\alpha \in A} z^{\mathrm{ht}(\alpha)}\left(e_{\alpha}, 0\right)\right) \wedge\left(\bigwedge_{s \in S} s\right) \wedge\left(\bigwedge_{\beta \in B}\left(0, e_{\alpha}\right)\right)=z^{n_{A}} v_{A B S} \tag{9.2}
\end{equation*}
$$

where

$$
n_{A}=\sum_{\alpha \in A} h t(\alpha)
$$

is the sum of the heights of the roots appearing in A.
Let

$$
n_{0}=\sum_{\alpha \in \Phi^{+}} \mathrm{ht}(\alpha) .
$$

Then

$$
\begin{array}{ll}
n_{0} \geq n_{A} & \text { for all } A \subset \Phi \\
n_{0}=n_{A} & \text { if and only if } A=\Phi^{+}
\end{array}
$$

We can now compute

$$
\begin{aligned}
\lim _{z \rightarrow \infty} \gamma(z)\left[\mathfrak{g}_{\Delta}\right] & =\lim _{z \rightarrow \infty}\left[\gamma(z) v_{\Delta}\right] \\
& =\lim _{z \rightarrow \infty}\left[\sum_{A \subset \Phi} z^{n_{A}} v_{A B S}\right] \\
& =\lim _{z \rightarrow \infty}\left[v_{0}+\sum_{A \subset \Phi} z^{n_{A}-n_{0}} v_{A B S}\right]=\left[v_{0}\right] .
\end{aligned}
$$

Proof of Proposition 9.3. The closed subvariety

$$
\mathbb{P}(E) \subset \mathbb{P}\left(\wedge^{n}(\mathfrak{g} \oplus \mathfrak{g})\right)
$$

is $T \times T$-stable and closed, so

$$
\overline{(T \times T)\left[\mathfrak{g}_{\Delta}\right]} \subset \mathbb{P}(E)
$$

It follows that $\left[v_{0}\right] \in \mathbb{P}(E)$, and $v_{0} \in E$.

Proof of Theorem 9.1. By Proposition 9.3 and Remark 9.2, $v_{0} \in E$ is a highest weight vector of weight $(\lambda,-\lambda)$, with $\lambda=\sum_{\alpha \in \Phi} \alpha$. Then

$$
\mathcal{U}(\mathfrak{g} \oplus \mathfrak{g}) \cdot v_{0} \cong V \otimes V^{*} \cong \text { End } V \subset E
$$

where V is the irreducible G-representation of regular highest weight λ.
Because G is semisimple, we can decmopose

$$
E=\text { End } V \oplus\left(\oplus \text { End } W^{k}\right) \oplus F,
$$

where the second summand consists of all irreducible representations of $G \times G$ of the form $W \otimes W^{*}$, and the third summand consists of all irreducible representations $G \times G$ of the form $U \otimes W^{*}$ with $U \not \approx W$.

Each representation End W^{k} has highest weight $\left(\mu^{k},-\mu^{k}\right)$, and from Remark 9.2 it follows that $\mu^{k} \leq \lambda$. It remains to show that

$$
\left[\mathfrak{g}_{\Delta}\right]=\left[\operatorname{Id}_{V} \oplus\left(\sum c_{k} \operatorname{Id}_{W^{k}}\right) \oplus 0\right] .
$$

This will follow from the next lemma.

Lemma 9.5. An irreducible representation of $G \times G$ has a G_{Δ}-stable one-dimensional subspace if and only if it is of the form End W for some irreducible representations W of G. In this case, the unique such space is $\mathbb{C I d}_{W}$.

Proof. Any irreducible representation of $G \times G$ is of the form

$$
U \otimes W^{*} \cong \operatorname{Hom}(W, U)
$$

for irreducible representations U and W of G.

There is a G_{Δ}-stable line in $U \otimes W^{*}$ if and only if there is a G-equivariant homomorphism in $\operatorname{Hom}(W, U)$. By Schur's lemma, such a homomorphism exists if and only if $U \cong W$, in which case it is unique up to scaling.

Because $\left[\mathfrak{g}_{\Delta}\right] \in \mathbb{P}(E)$ is G_{Δ}-fixed, the line

$$
\mathbb{C} v_{\Delta} \subset E=\text { End } V \oplus\left(\oplus \text { End } W^{k}\right) \oplus F
$$

is G_{Δ}-stable. Then, its projection onto each summand is G_{Δ}-stable.
Lemma 9.5 then implies that the projection of v_{Δ} onto End V is

$$
a_{0} \operatorname{Id}_{V}
$$

for some $a_{0} \in \mathbb{C}$, that its projection onto End W^{k} is

$$
a_{k} \operatorname{Id}_{W^{k}}
$$

for some $a_{k} \in \mathbb{C}$, and that its projection onto F is 0 because F has no one-dimensional G_{Δ}-stable subspaces.

So we have

$$
v_{\Delta}=c_{0} \mathrm{Id}_{V} \oplus\left(\sum c_{k} \mathrm{Id}_{W^{k}}\right) \oplus 0
$$

But recall from (9.1) that

$$
v_{\Delta}=v_{0}+\sum v_{A B S}
$$

as a sum of $T \times T$-weight vectors in $\wedge^{n}(\mathfrak{g} \oplus \mathfrak{g})$, so the projection of v_{Δ} onto End V is nonzero and so $c_{0} \neq 0$. It follows that

$$
\left[\mathfrak{g}_{\Delta}\right]=\left[\operatorname{Id}_{V} \oplus\left(\sum c_{k} \operatorname{Id}_{W^{k}}\right) \oplus 0\right] .
$$

Theorem 9.1 gives an isomorphism

$$
\varphi: X \xrightarrow{\sim} \bar{G} \subset \operatorname{Gr}(n, \mathfrak{g} \oplus \mathfrak{g})
$$

such that for any interior point $g \in G \subset X$ of the wonderful compactification,

$$
\begin{equation*}
\varphi(g)=(g, e) \cdot \mathfrak{g}_{\Delta} \tag{9.3}
\end{equation*}
$$

We will describe which n-dimensional subspaces of $\mathfrak{g} \oplus \mathfrak{g}$ appear in the boundary of \bar{G} in the Grassmannian. Because the map φ is $G \times G$-equivariant, it is enough to find the image

$$
\varphi\left(z_{I}\right) \in \operatorname{Gr}(n, \mathfrak{g} \oplus \mathfrak{g})
$$

of each $G \times G$-orbit basepoint z_{I}.
Recall the notation defined at the beginning of Section 6 .

Theorem 9.6. The image of the orbit basepoint z_{I} under the isomorphism φ is the n-dimensional space

$$
\varphi\left(z_{I}\right)=\left\{(u+x, v+x) \mid u \in \mathfrak{u}_{I}, v \in \mathfrak{u}_{I}^{-}, x \in \mathfrak{l}_{I}\right\}=\mathfrak{p}_{I} \times \times_{\mathfrak{l}_{I}} \mathfrak{p}_{I}^{-} .
$$

Remark 9.7. Suppose $I=\{1, \ldots, l\}$ and $z_{\{1, \ldots, l\}}$ is the basepoint of the unique closed $G \times G$-orbit of minimal dimension. Theorem 9.6 says that

$$
\varphi\left(z_{\{1, \ldots, l\}}\right)=\mathfrak{b} \times \times_{\mathfrak{h}} \mathfrak{b}^{-},
$$

and the image of this subspace under the Plücker embedding is exactly the point

$$
\left[v_{0}\right] \in \mathbb{P}\left(\wedge^{n}(\mathfrak{g} \oplus \mathfrak{g})\right)
$$

defined in Remark 9.2 ,
The proof is similar to the discussion in Lemma 9.4 .
Proof of Theorem 9.6. Let $h \in \mathfrak{h}$ be such that

$$
\alpha_{i}(h)= \begin{cases}0, & \alpha_{i} \in \Delta_{I} \\ 1, & \alpha_{i} \notin \Delta_{I}\end{cases}
$$

This produces a one-parameter subgroup

$$
\gamma: \mathbb{C}^{*} \longrightarrow T
$$

such that Lie $\gamma\left(\mathbb{C}^{*}\right)=\mathbb{C} h$. Then

$$
\alpha_{i}(\gamma(z))=z^{\alpha_{i}(h)}= \begin{cases}1, & \alpha_{i} \in \Delta_{I} \\ z, & \alpha_{i} \notin \Delta_{I} .\end{cases}
$$

The in $X \subset \mathbb{P}($ End $V)$, this one-parameter subgroup is

$$
\gamma(z)=\left[v_{0} \otimes v_{0}^{*}+\sum_{i=1}^{l} \frac{1}{\alpha_{i}(\gamma(z))} v_{i} \otimes v_{i}^{*}+\sum_{i>l} \boldsymbol{q}_{i} v_{i} \otimes v_{i}^{*}\right],
$$

(where $\boldsymbol{\&}$ is polynomial in the first l coefficients, cf. Proposition (3.4) and as z tends to infinity we obtain

$$
\lim _{z \rightarrow \infty} \gamma(z)=\left[v_{0} \otimes v_{0}^{*}+\sum_{\alpha_{i} \in \Delta_{I}} v_{i} \otimes v_{i}^{*}+\sum_{i>l} \boldsymbol{Q}_{i} v_{i} \otimes v_{i}^{*}\right]=z_{I} .
$$

So γ is a one-parameter subgroup that tends to the orbit basepoint z_{I} in the boundary of the wonderful compactification.

Then

$$
\varphi\left(z_{I}\right)=\lim _{z \rightarrow \infty} \varphi(\gamma(z))=\lim _{z \rightarrow \infty}(\gamma(z), e) \cdot \mathfrak{g}_{\Delta},
$$

as in 9.3). To compute $(\gamma(z), e) \cdot \mathfrak{g}_{\Delta}$ we work in the projective space $\mathbb{P}\left(\wedge^{n}(\mathfrak{g} \oplus \mathfrak{g})\right)$ under the Plücker embedding.

Recall that

$$
\left[\mathfrak{g}_{\Delta}\right]=\left[\sum v_{A B S}\right],
$$

where as in (9.1) the sum is taken over all triples (A, B, S) such that

- $A \subset \Phi$,
- $B=\Phi \backslash A$,
- $S=\left\{\left(h_{i}, h_{i}\right) \mid i=1, \ldots, l\right\}$.

For any root $\alpha \in \Phi$, write

$$
\alpha=\sum_{\alpha_{i} \in \Delta_{I}} n_{i} \alpha_{i}+\sum_{\alpha_{j} \notin \Delta_{I}} n_{j} \alpha_{j}
$$

and define

$$
\mathrm{ht}_{I}(\alpha)=\sum_{\alpha_{j} \notin \Delta_{I}} n_{j} .
$$

Then

$$
\gamma(z) \cdot e_{\alpha}=z^{\alpha(h)} e_{\alpha}=z^{\operatorname{ht}_{I}(\alpha)} e_{\alpha} .
$$

Applying the one-parameter subgroup γ to $T \times T$-weight vectors in $\wedge^{n}(\mathfrak{g} \oplus \mathfrak{g})$,

$$
\gamma(z) \cdot v_{A B S}=z^{m_{A}} v_{A B S},
$$

where

$$
m_{A}=\sum_{\alpha \in A} \mathrm{ht}_{I}(\alpha) .
$$

(Cf. the computation in 9.2).)
Let

$$
m_{0}=\sum_{\alpha \in \Phi^{+}} \mathrm{ht}_{I}(\alpha) .
$$

Then

$$
\begin{array}{ll}
m_{0} \geq m_{A} & \text { for all } A \subset \Phi, \\
m_{0}=m_{A} & \text { if and only if } \Phi^{+} \backslash \Phi_{I} \subseteq A \subseteq \Phi^{+} \cup \Phi_{I},
\end{array}
$$

-that is, $m_{0}=m_{A}$ if and only if A differs from Φ^{+}by roots in Φ_{I}, which do not contribute to the $\operatorname{sum} m_{A}$.

Then we can compute

$$
\begin{aligned}
\lim _{z \rightarrow \infty} \gamma(z)\left[\mathfrak{g}_{\Delta}\right] & =\lim _{z \rightarrow \infty}\left[\gamma(z) \cdot \sum v_{A B S}\right] \\
& =\lim _{z \rightarrow \infty}\left[v_{0}+\sum z^{m_{A}-m_{0}} v_{A B S}\right]=\left[\sum v_{A^{\prime} B^{\prime} S}\right]
\end{aligned}
$$

where the last sum is taken over triples $\left(A^{\prime}, B^{\prime}, S\right)$ such that

- $\Phi^{+} \backslash \Phi_{I} \subseteq A \subseteq \Phi^{+} \cup \Phi_{I}$
- $B=\Phi \backslash A$
- $S=\left\{\left(h_{i}, h_{i}\right) \mid i=1, \ldots, l\right\}$.

This sum can be written

$$
\begin{equation*}
\left[\sum_{\left(A^{\prime}, B^{\prime}, S\right)}\left(\bigwedge_{\alpha \in A^{\prime}}\left(e_{\alpha}, 0\right)\right) \wedge\left(\bigwedge_{i=1}^{l}\left(h_{i}, h_{i}\right)\right) \wedge\left(\bigwedge_{\beta \in B^{\prime}}\left(0, e_{\beta}\right)\right)\right] \tag{9.4}
\end{equation*}
$$

and we notice that every root vector e_{δ} with $\delta \in \Phi_{I}$ appears as both $\left(e_{\delta}, 0\right)$ and as $\left(0, e_{\delta}\right)$ in this sum. Then we can rewrite (9.4) as

$$
\left(\bigwedge_{\alpha \in \Phi^{+} \backslash \Phi_{I}}\left(e_{\alpha}, 0\right)\right) \wedge\left(\bigwedge_{\delta \in \Phi_{I}}\left(e_{\delta}, e_{\delta}\right)\right) \wedge\left(\bigwedge_{i=1}^{l}\left(h_{i}, h_{i}\right)\right) \wedge\left(\bigwedge_{\beta \in-\Phi^{+} \backslash \Phi_{I}}\left(0, e_{\beta}\right)\right)
$$

The vectors in the first wedge give a basis for

$$
\mathfrak{u}_{I} \oplus 0 \subset \mathfrak{g} \oplus \mathfrak{g}
$$

the vectors in the last wedge give a basis for

$$
0 \oplus \mathfrak{u}_{I}^{-} \subset \mathfrak{g} \oplus \mathfrak{g},
$$

and the diagonal vectors in the two middle wedges give a basis for the diagonal subspace

$$
\mathfrak{l}_{I \Delta}=\left\{(x, x) \mid x \in \mathfrak{l}_{I}\right\} \subset \mathfrak{g} \oplus \mathfrak{g}
$$

It follows that

$$
\varphi\left(z_{I}\right)=\lim _{z \rightarrow \infty} \gamma(z)\left[\mathfrak{g}_{\Delta}\right]=\left[\mathfrak{p}_{I} \times{ }_{\mathfrak{l}_{I}} \mathfrak{p}_{I}^{-}\right] .
$$

10. Log-homogeneous varieties

In this section we introduce some general notions about log-homogeneous varieties, following the exposition in Sections 1.1 and 2.1 of the lecture notes [Bri1]. For now, let G be a connected complex algebraic group with Lie algebra \mathfrak{g}, and let X be a smooth connected G-variety. Denote by

$$
\mathcal{T}_{X}=\operatorname{Der}\left(\mathcal{O}_{X}\right)
$$

the tangent sheaf of X, whose sections are derivations of the ring of regular functions \mathcal{O}_{X}. This is the locally-free sheaf associated to the tangent bundle $T X$ of X.

The action of G on the variety X gives a map

$$
\begin{aligned}
\mathrm{op}_{X}: \mathfrak{g} & \longrightarrow \Gamma(X, T X) \\
\xi & \longmapsto v_{\xi},
\end{aligned}
$$

where v_{ξ} is the vector field induced by the differential of the G-action:

$$
v_{\xi}(x)=\left.\frac{d}{d t}\right|_{t=0}(\exp (-t \xi) x)
$$

(The negative sign is necessary to make op_{X} a homomorphism of Lie algebras.) There is a corresponding morphism of sheaves

$$
\underline{\mathrm{op}}_{X}: \mathcal{O}_{X} \otimes \mathfrak{g} \longrightarrow \mathcal{T}_{X}
$$

Definition 10.1. The variety X is homogeneous if the action of G on X is transitive.
Proposition 10.2. The variety X is homogeneous if and only if the morphism $\underline{\mathrm{op}}_{X}$ is surjective.

Proof. Choose a basepoint $x \in X$. If X is homogeneous, the action map

$$
\begin{aligned}
\varphi_{x}: G & \longrightarrow X \\
g & \longmapsto g \cdot x
\end{aligned}
$$

is surjective, and so is its differential

$$
d \varphi_{x}: \mathfrak{g} \longrightarrow T_{x} X
$$

But

$$
d \varphi_{x}=\underline{\mathrm{op}}_{X, x},
$$

so it follows that $\underline{\mathrm{op}}_{X}$ is also surjective.
Conversely, suppose that $\underline{\mathrm{op}}_{X}$ is surjective, so that the induced map on stalks $d \varphi_{x}$ is surjective at every x. Then φ_{x} is a submersion, and its image $G \cdot x$ is open in X. Since X is connected and $x \in X$ was chosen arbitrarily, it follows that X is homogeneous.

Definition 10.3. An effective reduced divisor $D \subset X$ has normal crossings if at each $x \in X$ there exist local coordinates x_{1}, \ldots, x_{n} such that

$$
D=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{1} \cdot \ldots \cdot x_{k}=0\right\} .
$$

That is, in the completed local ring

$$
\hat{\mathcal{O}}_{X, x}=\mathbb{C}\left[\left[x_{1}, \ldots, x_{n}\right]\right]
$$

the ideal of D is generated by $x_{1} \cdot \ldots \cdot x_{k}$.
Definition 10.4. Suppose that $D \subset X$ is a normal crossing divisor. The logarithmic tangent sheaf is the subsheaf

$$
\mathcal{T}_{X}(-\log D) \subset \mathcal{T}_{X}
$$

whose sections are the derivations of \mathcal{O}_{X} that preserve the ideal sheaf of D. In other words, these sections are vector fields on X that are tangent to the divisor D, called logarithmic vector fields.

Example 10.5. Let $X=\mathbb{C}^{n}$ and let

$$
D=\left\{x_{1} \cdot \ldots \cdot x_{k}=0\right\}
$$

be the union of the first k coordinate hyperplanes. At the origin, the logarithmic tangent sheaf is generated by

$$
x_{1} \partial_{1}, \ldots, x_{k} \partial_{k}, \partial_{k+1}, \ldots, \partial_{n}
$$

Remark 10.6. (1) Because D is a normal crossing divisor, the logarithmic tangent sheaf is locally-free of rank $\operatorname{dim} X$, and the associated vector bundle is the logarithmic tangent bundle

$$
T X(-\log D) .
$$

It is not a subbundle of the tangent bundle - on the contrary, the two bundles have the same rank.
(2) The restriction of $\mathcal{T}_{X}(-\log D)$ to the open piece $X^{\circ}=X \backslash D$ is the usual tangent sheaf $\mathcal{T}_{X^{\circ}}$.
(3) The dual of $\mathcal{T}_{X}(-\log D)$ is the sheaf $\Omega_{X}^{1}(\log D)$ of logarithmic 1-forms with poles along D. (A logarithmic form is an algebraic form with simple poles whose differential also has simple poles.) In Example 10.5, this sheaf is locally generated by

$$
\frac{\mathrm{d} x_{1}}{x_{1}}, \ldots, \frac{\mathrm{~d} x_{k}}{x_{k}}, \mathrm{~d} x_{k+1}, \ldots, \mathrm{~d} x_{n} .
$$

Its associated bundle is the logarithmic cotangent bundle

$$
T^{*} X(-\log D)
$$

Now let G act on X and let $D \subset X$ be a G-stable normal crossing divisor. Then the differential of the action map induces the morphism of Lie algebras

$$
\mathrm{op}_{X, D}: \mathfrak{g} \longrightarrow \Gamma(X, T X(-\log D))
$$

and the associated morphism of sheaves

$$
\underline{\mathrm{op}}_{X, D}: \mathcal{O}_{X} \otimes \mathfrak{g} \longrightarrow \mathcal{T}_{X}(-\log D) .
$$

Definition 10.7. The pair (X, D) is log-homogeneous if the morphism $\underline{\mathrm{op}}_{X, D}$ is surjective.
Example 10.8. (1) Suppose that $X=\mathbb{C}^{n}$ is affine space, $D=\left\{x_{1} \cdot \ldots \cdot x_{n}=0\right.$ is the union of the coordinate hyperplanes, and $G=\left(\mathbb{C}^{*}\right)^{n}$ acts on X by coordinate-wise multiplication. Then (X, D) is log-homogeneous.
(2) Suppose that X is a smooth projective toric variety for a torus $G=T$, so that T sits inside X as an open T-orbit. The boundary $D=X \backslash T$ is a normal crossing divisor, and X can be covered by open T-stable affine spaces \mathbb{C}^{n} on which T acts by coordinate multiplication. It follows that (X, D) is log-homogeneous. (See [Ful].)

Remark 10.9. Suppose that (X, D) is log-homogeneous. Then the restriction

$$
\underline{\mathrm{op}}_{X, D \mid X^{\circ}}=\underline{\mathrm{op}}_{X^{\circ}}: \mathcal{O}_{X \mid X^{\circ}} \otimes \mathfrak{g} \longrightarrow \mathcal{T}_{X}(-\log D)_{\mid X^{\circ}}=\mathcal{T}_{X^{\circ}}
$$

is surjective, so X° is a homogeneous space.
Construct a stratification of the divisor D as follows: let

$$
X_{1}=D, X_{2}=\operatorname{Sing}(D), \ldots, X_{m}=\operatorname{Sing}\left(X_{m-1}\right), \ldots,
$$

and let the strata be the connected components of $X_{m} \backslash X_{m+1}$. They are smooth, locally-closed, and G-stable because G is connected.

Fix a stratum S and a point $x \in S$, and let x_{1}, \ldots, x_{n} be coordinates at x such that the divisor D is given by

$$
D=\left\{x_{1} \cdot \ldots \cdot x_{k}=0\right\} .
$$

Then $X_{m} \backslash X_{m+1}$ is the locus where exactly m coordinates are zero, and

$$
S=\left\{x_{1}=\ldots=x_{k}=0\right\}
$$

has codimension k. The stratum S is the intersection of the stratum closures

$$
\bar{S}_{i}=\left\{x_{j}=0 \mid j \leq k, j \neq i\right\}
$$

The normal space of S in X at x

$$
N_{S / X, x}=T_{x} X / T_{x} S
$$

decomposes as a sum of lines

$$
\begin{equation*}
N_{S / X, x}=L_{1} \oplus \ldots \oplus L_{k} \tag{10.1}
\end{equation*}
$$

where each L_{i} is the normal space to S in \bar{S}_{i} at x.
The stabilizer $\operatorname{Stab}_{G}(x)=G^{x}$ of x in G acts on all these spaces, and its identity component preserves each line L_{i}. The action map

$$
\rho_{x}:\left(G^{x}\right)^{\circ} \longrightarrow\left(\mathbb{C}^{*}\right)^{k}
$$

has differential

$$
d \rho_{x}: \mathfrak{g}^{x} \longrightarrow \mathbb{C}^{k}
$$

The following gives a criterion for log-homogeneity. (See Bri1], Proposition 2.1.2.)

Proposition 10.10. The following are equivalent:
(1) The pair (X, D) is log-homogeneous.
(2) Each stratum S is a single G-orbit and the differential $d \rho_{x}$ is surjective at every $x \in S$.

If these conditions hold, there is a short exact sequence of Lie algebras

$$
0 \longrightarrow \operatorname{ker}\left(d \rho_{x}\right) \longrightarrow \mathfrak{g} \xrightarrow{o p_{X, D}} T_{x} X(-\log D) \longrightarrow 0 .
$$

Proof. Because $\mathcal{T}_{X}(-\log D)$ preserves the ideal sheaf of S, there is a morphism of sheaves

$$
\mathcal{T}_{X}(-\log D)_{\mid S} \longrightarrow \mathcal{T}_{S}
$$

that descends to a linear map on fibers

$$
p_{x}: T_{x} X(-\log D) \longrightarrow T_{x} S
$$

In coordinates x_{1}, \ldots, x_{n} at x, p_{x} is the projection

$$
\left\{x_{1} \partial_{1}, \ldots, x_{k} \partial_{k}, \partial_{k+1}, \ldots, \partial_{n}\right\} \longrightarrow\left\{\partial_{k+1}, \ldots, \partial_{n}\right\}
$$

Since

$$
p_{x} \circ \mathrm{op}_{X, D}=\mathrm{op}_{S}: \mathfrak{g} \longrightarrow T_{x} S
$$

the composition $p_{x} \circ \mathrm{op}_{X, D}$ factors through the injection

$$
\iota_{x}: \mathfrak{g} / \mathfrak{g}^{x} \longrightarrow T_{x} S
$$

We obtain a commutative diagram in which the rows are short exact sequences:

Because ι_{x} is injective, it follows by the Snake Lemma that (1) op ${ }_{X, D}$ is surjective if and only if (2) both $d \rho_{x}$ and ι_{x} are surjective. The latter is equivalent to the condition that S is a single G-orbit.

Moreover, we have

$$
\operatorname{ker}\left(d \rho_{x}\right)=\operatorname{ker}\left(\mathrm{op}_{X, D}\right)
$$

If $\mathrm{op}_{X, D}$ is surjective, this gives the short exact sequence

$$
0 \longrightarrow \operatorname{ker}\left(d \rho_{x}\right) \longrightarrow \mathfrak{g} \xrightarrow{\mathrm{op}_{X, D}} T_{x} X(-\log D) \longrightarrow 0
$$

11. The logarithmic cotangent bundle of \bar{G}

Now let G be a semisimple connected algebraic group with trivial center, and let X once again be the wonderful compactification of G. Write $D \subset X$ for the boundary divisor, which is a normal crossing divisor by Theorem 5.3 .

Proposition 11.1. The pair (X, D) is log-homogeneous.
Proof. The stratification of the divisor D given above is exactly the stratification of the boundary of X into $G \times G$-orbits from Section 5. It is enough to check the criterion in Proposition 10.10 at the orbits basepoints $z_{I}, I \subset\{1, \ldots, l\}$.

Recall from Theorem 4.4 that X is covered by $G \times G$-translates of the big cell

$$
X_{0} \cong U^{-} \times U \times Z
$$

where $U-$ and U are the unipotent radicals of a fixed pair of opposite Borels, and Z is the closure of the resulting maximal torus in X_{0}, isomorphic to \mathbb{C}^{l} by Proposition 3.4. Moreover, each orbit basepoint z_{I} is contained in Z.

Keeping the notation of Section 5, assume without loss of generality that

$$
I=\{1, \ldots, k\}
$$

Then the basepoints z_{I} is of the form

$$
z_{I}=(0, \ldots, 0,1, \ldots, 1)
$$

and we have the following tangent spaces:

$$
\begin{aligned}
& T_{z_{I}} X=T_{z_{I}} X_{0} \cong \mathfrak{u}^{-} \oplus \mathfrak{u} \oplus \mathbb{C}^{l} \\
& T_{z_{I}}(G \times G) z_{I} \cong \mathfrak{u}^{-} \times \mathfrak{u} \times \mathbb{C}^{l-k}
\end{aligned}
$$

By Proposition 3.4, the torus T acts on $Z \cong \mathbb{C}^{l}$ on the left via

$$
\left(-\alpha_{1}, \ldots,-\alpha_{l}\right)
$$

and so it acts on the normal space

$$
T_{z_{I}} X_{0} / T_{z_{I}}(G \times G) z_{I} \cong \mathbb{C}^{k}
$$

by $\left(-\alpha_{1}, \ldots,-\alpha_{k}\right)$.
Recall from Proposition 6.3 that the stabilizer of z_{I} in $G \times G$ is

$$
\operatorname{Stab}_{G \times G}\left(z_{I}\right)=\left\{(u x, v y) \in U_{I} L_{I} \times U_{I}^{-} L_{I} \mid x y^{-1} \in Z\left(L_{I}\right)\right\} .
$$

It acts on the normal space by fixing each line in the decomposition 10.1), and it acts on the line L_{i} by the central character $-\alpha_{i}$. It follows that the map

$$
\begin{aligned}
d \rho_{z_{I}}: \operatorname{Lie}\left(\operatorname{Stab}_{G \times G}\left(z_{I}\right)\right) & \longrightarrow \mathbb{C}^{k} \\
(u+x, v+y) & \longmapsto\left(\alpha_{1}(y-x), \ldots, \alpha_{k}(y-x)\right)
\end{aligned}
$$

is surjective, and so it follows by Proposition 10.10 the wonderful compactification X is loghomogeneous.

Corollary 11.2. The isotropy Lie algebra of the orbit basepoint z_{I} is

$$
\operatorname{ker}\left(d \rho_{z_{I}}\right)=\mathfrak{p}_{I} \times_{\mathfrak{I}_{I}} \mathfrak{p}_{I}^{-}
$$

Now consider the vector bundle R_{X} on X, with fiber at $x \in X$ given by

$$
R_{X, x}=\operatorname{ker}\left(d \rho_{z_{I}}\right)
$$

It is called the bundle of isotropy subalgebras. By Proposition 9.6, this vector bundle is isomorphic to the restriction to X of the tautological bundle on the Grassmannian

$$
\operatorname{Gr}(n, \mathfrak{g} \times \mathfrak{g}) .
$$

Moreover, by Proposition 10.10, there is a short exact sequence of vector bundles on X :

$$
\begin{equation*}
0 \longrightarrow R_{X} \longrightarrow X \times \mathfrak{g} \times \mathfrak{g} \longrightarrow T X(-\log D) \longrightarrow 0 \tag{11.1}
\end{equation*}
$$

Proposition 11.3. There is an isomorphism of vector bundles on X between the bundle of isotropy subalgebras and the logarithmic cotangent bundle of X :

$$
R_{X} \cong T^{*} X(-\log D)
$$

Proof. (See Bri2], Example 2.5.) Let β be a nondegenerate G-invariant symmetric bilinear form on \mathfrak{g}. The form $(\beta,-\beta)$ is a nondegenerate G-invariant symmetric bilinear form on $\mathfrak{g} \times \mathfrak{g}$, and the fiber

$$
R_{X, e}=\mathfrak{g}_{\Delta}
$$

is Lagrangian.
Then R_{X} is a Lagrangian subbundle of $X \times \mathfrak{g} \times \mathfrak{g}$, and from the short exact sequence (11.1) we get an isomorphism

$$
R_{X} \cong R_{X}^{\perp} \cong\left(X \times \mathfrak{g} \times \mathfrak{g} / R_{X}\right)^{*} \cong T^{*} X(-\log D)
$$

12. Cohomology of the wonderful compactification

We compute the cohomology of X by decomposing it into a union of affine cells using the Bialynicki-Birula decomposition (see Part 1 of these notes, Theorem 2.2). This section follows [EJ], Sections 4.1 and 4.2. See also [DS].

As before, let T be a maximal torus of G and let W be the associated Weyl group. For every element $w \in W$, choose a coset representative $\dot{w} \in N_{G}(T)$. Let

$$
z_{0}=z_{\{1, \ldots, l\}} \in X
$$

be the basepoint of the unique closed $G \times G$-orbit in X.
Proposition 12.1. The $T \times T$-fixed points in X are exactly the points

$$
\left\{z_{y, w}=(\dot{y}, \dot{w}) \cdot z_{0} \mid y, w \in W\right\} .
$$

Proof. Decompose

$$
X=\coprod_{I \subseteq\{1, \ldots, l\}}(G \times G) \cdot z_{I}
$$

and suppose

$$
x \in(G \times G) \cdot z_{I}
$$

is fixed by $T \times T$. Then the stabilizer of x in $G \times G$ contains a torus of dimension $2 l$, and so does the stabilizer of z_{I}. But the maximal torus of

$$
\operatorname{Stab}_{G \times G}\left(z_{I}\right)=\left\{(u x, v y) \in U_{I} L_{I} \times U_{I}^{-} L_{I} \mid x y^{-1} \in Z\left(L_{I}\right)\right\}
$$

is the subgroup

$$
\left\{(x, y) \in T \times T \mid x y^{-1} \in Z\left(L_{I}\right)\right\}
$$

which has dimension $l+|I|$. It follows that $|I|=l$ and that

$$
I=\{1, \ldots, l\}
$$

so x is contained in the $G \times G$-orbit of minimal dimension.
By Remark 6.4, this orbit if $G \times G$-isomorphic to the product of two copies of the flag variety. By Theorem 2.1 in Part 1, the $T \times T$-fixed points in

$$
G / B \times G / B^{-}
$$

are exactly the point $\left(\dot{y} B, \dot{w} B^{-}\right)$. The Proposition follows.
Proposition 12.2. The $T \times T$-weights on $T_{z_{0}} X$ are
(1) $(-\alpha, 0), \quad \alpha \in \Phi^{+}$.
(2) $(0, \alpha), \quad \alpha \in \Phi^{+}$.
(3) $\left(-\alpha_{i}, \alpha_{i}\right), \quad \alpha_{i} \in \Delta$.

Proof. Recall once again that the point z_{0} is contained in the big cell $X_{0} \cong U^{-} \times U \times Z$, and that this isomorphism is $U^{-} T \times U$-equivariant. Then

$$
T_{z_{0}} X_{0} \cong \mathfrak{u}^{-} \oplus \mathfrak{u} \oplus \mathbb{C}^{l}
$$

and $T \times T$ acts on the first summand by the weights $\left\{(-\alpha, 0) \mid \alpha \in \Phi^{+}\right\}$and on the second summand by the weights $\left\{(0, \alpha) \mid \alpha \in \Phi^{+}\right\}$.

To see how $T \times T$ acts on the tangent space of Z, recall that

$$
X \subseteq \mathbb{P}(\text { End } V)
$$

and choose as in Section 3 a basis v_{0}, \ldots, v_{n} for V such that v_{i} has weight λ_{i} with

$$
\begin{aligned}
& \lambda_{0}=\lambda \\
& \lambda_{i}=\lambda-\alpha_{i} \quad \text { for } i=1, \ldots, l .
\end{aligned}
$$

Then the isomorphism $Z \cong \mathbb{C}^{l}$ is given by

$$
\left(z_{1}, \ldots, z_{l}\right) \longmapsto\left[v_{0} \otimes v_{0}^{*}+\sum_{i=1}^{l} z_{i} v_{i} \otimes v_{i}^{*}+\sum_{i>l} \boldsymbol{q}_{1} v_{i} \otimes v_{i}^{*}\right]
$$

and the action of $\left(t_{1}, t_{2}\right) \in T \times T$ at the identity element in $\mathbb{P}($ End $V)$ is given by

$$
\begin{aligned}
\left(t_{1}, t_{2}\right) \cdot\left[\sum v_{i} \otimes v_{i}^{*}\right] & =\left[\lambda_{i}\left(t_{1}\right) v_{i} \otimes \lambda_{i}\left(t_{2}^{-1}\right) v_{i}^{*}\right] \\
& =\left[v_{0} \otimes v_{0}^{*}+\sum_{i=1}^{l} \frac{\alpha_{i}\left(t_{2}\right)}{\alpha_{i}\left(t_{1}\right)} v_{i} \otimes v_{i}^{*}+\sum_{i>l} \boldsymbol{\&} v_{i} \otimes v_{i}^{*}\right] .
\end{aligned}
$$

So the weights of $T \times T$ on the tangent space of Z are

$$
\left\{\left(-\alpha_{i}, \alpha_{i}\right) \mid \alpha_{i} \in \Delta\right\} .
$$

Corollary 12.3. The $T \times T$-weights on $T_{z_{y w}} X$ are
(1) $(-y \alpha, 0), \quad \alpha \in \Phi^{+}$.
(2) $(0, w \alpha), \quad \alpha \in \Phi^{+}$.
(3) $\left(-y \alpha_{i}, w \alpha_{i}\right), \quad \alpha_{i} \in \Delta$.

Remark 12.4. Recall that if Y is a toric variety for a torus S, it is associated to a union of cones

$$
\operatorname{Fan}(Y)=\left\{C_{y} \subset X_{*}(S) \otimes_{\mathbb{Z}} \mathbb{R} \mid y \in Y^{S}\right\}
$$

indexed by S-fixed points in the following way: Let $y \in Y$ be fixed by S, and let μ_{1}, \ldots, μ_{l} be the weights of S on the tangent space $T_{y} Y$. Then the cone C_{y} is defined by

$$
C_{y}=\left\{x \in X_{*}(S) \otimes_{\mathbb{Z}} \mathbb{R} \mid \mu_{i}(x) \geq 0 \forall i=1, \ldots, l\right\} .
$$

Moreover, the toric variety Y is complete if and only if its fan covers the entire cocharacter space - in other words, if and only if

$$
\bigcup_{y \in Y^{S}} C_{y}=X_{*}(S) \otimes_{\mathbb{Z}} \mathbb{R}
$$

For details on toric varieties, see Ful].
Let $\bar{T} \subset X$ be the closure of the maximal torus T inside the wonderful compactification.

Proposition 12.5. The fan of \bar{T} is the fan of Weyl chambers.
Proof. Define the intermediate variety

$$
\widetilde{Z}=\bigcup_{w \in W} \dot{w} Z \dot{w}^{-1} \subseteq \bar{T}
$$

This is a smooth toric variety for the torus $e \times T$ and its T-fixed points are

$$
\widetilde{Z}^{T}=\left\{z_{w w} \mid w \in W\right\} .
$$

By Corollary 12.3, the weights of T on the tangent space $T_{z_{w w}} \widetilde{Z}$ are

$$
w \alpha_{1}, \ldots, w \alpha_{l}
$$

and the corresponding cone is

$$
C_{w}=\left\{x \in X_{*}(T) \otimes_{\mathbb{Z}} \mathbb{R} \mid w \alpha_{i}(x) \geq 0\right\}=w \cdot C_{0}
$$

where C_{0} is the dominant Weyl chamber.
It follows that the fan of \widetilde{Z} is the fan of Weyl chambers. But this fan covers the entire cocharacter space, so \widetilde{Z} is complete. Since it is also dense in \bar{T}, equality must hold:

$$
\widetilde{Z}=\bar{T} .
$$

Now fix an element $h \in \mathfrak{h}$ such that $\alpha_{i}(h)=1$ for all $i=1, \ldots, l$, and let $n \in \mathbb{Z}$ be an integer such that

$$
n>\beta(h) \text { for all } \beta \in \Phi^{+} .
$$

Define a one-parameter subgroup

$$
\gamma: \mathbb{C}^{*} \longrightarrow T \times T
$$

such that

$$
\text { Lie } \gamma\left(\mathbb{C}^{*}\right)=\mathbb{C}(n h,-h) .
$$

Proposition 12.6.

$$
X^{T \times T}=X^{\mathbb{C}^{*}}
$$

Proof. Let X^{\prime} be a connected component of the fixed point set $X^{\mathbb{C}^{*}}$. Because the action of $T \times T$ commutes with the \mathbb{C}^{*}-action, X^{\prime} is $T \times T$-stable. But then $T \times T$ is a solvable group acting on the projective variety X^{\prime}, and this action must have a fixed point.

Suppose $z_{y w} \in X^{\prime}$ is a $T \times T$-fixed point. By Corollary 12.3, the eigenvalues of $(n h,-h)$ on the tangent space $T_{z_{y w}} X^{\prime}$ are
(1) $-n(y \alpha(h)), \quad \alpha \in \Phi^{+}$.
(2) $-w \alpha(h), \quad \alpha \in \Phi^{+}$.
(3) $-n\left(y \alpha_{i}(h)\right)-w \alpha_{i}(h), \quad \alpha_{i} \in \Delta$.

The first two are non-zero by the choice of h, and the third is nonzero by the choice of n. It follows that $z_{y w}$ is an isolated fixed point of the \mathbb{C}^{*}-action, so

$$
X^{\prime}=\left\{z_{y w}\right\} \subseteq X^{T \times T}
$$

Recall that for any $y \in W$, the length of y is

$$
l(y)=\#\left\{\alpha \in \Phi^{+} \mid y \alpha \in-\Phi^{+}\right\} .
$$

Define the simple length of y to be

$$
m(y)=\#\left\{\alpha_{i} \in \Delta \mid y \alpha \in-\Phi^{+}\right\}
$$

Theorem 12.7. Let

$$
X_{y w}=\left\{x \in X \mid \lim _{t \rightarrow 0} \gamma(t) \cdot x=z_{y w}\right\} .
$$

Then the set

$$
\left\{\left[X_{y w}\right] \mid y, w \in W\right\}
$$

forms an additive basis for $H_{*}(X)$, and the degree of the basis element $\left[X_{y w}\right]$ is

$$
2(l(y)+l(w)+m(y))
$$

Proof. The first part of the theorem follows from the Bialynicki-Birula decomposition, which also states that there is a \mathbb{C}^{*}-equivariant isomorphism

$$
X_{y w} \cong T_{z_{y w}}^{+} X
$$

where $T_{z_{y w}}^{+} X$ is the subspace of the tangent space $T_{z_{y w}} X$ on which \mathbb{C}^{*} acts with positive weights. It follows that

$$
\operatorname{deg}\left[X_{y w}\right]=2 \operatorname{dim} X_{y w}=\operatorname{dim} T_{z_{y w}}^{+} X
$$

From the proof of Proposition 12.6 ,
(1) $-n(y \alpha(h))>0$ if and only if $y \alpha \in-\Phi^{+}$.
(2) $-w \alpha(h)>0$ if and only if $w \alpha \in-\Phi^{+}$.
(3) $-n\left(y \alpha_{i}(h)\right)-w \alpha_{i}(h)$ if and only if $n\left(y \alpha_{i}(h)\right)<-w \alpha_{i}(h)$, which is if and only if $y \alpha_{i} \in-\Phi^{+}$. It follows that \mathbb{C}^{*} has

$$
l(y)+l(w)+m(y)
$$

positive eigenvalues on $T_{z y w} X$.

13. The Picard group

This section follows the exposition in [BK], where the structure of the wonderful compactification is developed more generally over fields of arbitrary characteristic.

Because the wonderful compactification X is smooth, the Picard group parametrizes both equivalence classes of divisors on X and isomorphism classes of invertible sheaves on X. As before, write W for the Weyl group and $X_{0} \subset X$ for the big cell of the wonderful compactification. Let $s_{1}, \ldots, s_{l} \in W$ be the simple reflections, and for any element $w \in W$ let $\dot{w} \in N_{G}(T)$ be a preimage,

Lemma 13.1. The boundary $X \backslash X_{0}$ is the union of the divisors

$$
\overline{B \dot{s}_{i} B^{-}}
$$

and these freely generate the Picard group $\operatorname{Pic}(X)$.
Proof. Since X_{0} is an affine open subset of X, the complement $X \backslash X_{0}$ is of pure codimension 1 by Lemma 5.1. Moreover, X_{0} intersects every $G \times G$-orbit, so $X \backslash X_{0}$ contains no $G \times G$-orbits and therefore $G \backslash X_{0}$ is dense in $X \backslash X_{0}$.

But $G \cap X_{0}=B B^{-}$by Proposition 3.2, so by the Bruhat decomposition the complement is

$$
G \backslash X_{0}=\coprod_{1 \neq w \in W} B \dot{w} B^{-} .
$$

It follows that

$$
X \backslash X_{0}=\bigcup_{s_{i} \in W} \overline{B \dot{s}_{i} B^{-}}
$$

Now suppose $D \subset X$ is a divisor. Because X_{0} is an affine space, the intersection $D \cap X_{0}$ is principal, so D is equivalent in $\operatorname{Pic}(X)$ to a linear combination

$$
\sum_{i=1}^{l} a_{i} \overline{B \dot{s i}_{i} B^{-}}
$$

These coefficients are unique - if

$$
D \sim \sum_{i=1}^{l} b_{i} \overline{B \dot{s}_{i} B^{-}},
$$

then

$$
\sum_{i=1}^{l}\left(a_{i}-b_{i}\right) \overline{B \dot{s_{i} B^{-}}} \sim 0
$$

is principal, so it is cut out by a regular function on X that is nonvanishing on X_{0}. But X_{0} is an affine space, so any such function is constant.

Definition 13.2. Let $w_{0} \in W$ be the longest word of the Weyl group. The divisors

$$
D_{i}=\overline{B \dot{s}_{i} \dot{w}_{0} B^{-}}=\overline{B \dot{s}_{i} B^{-}} \dot{w}_{0}
$$

are called the Schubert divisors of X.

Remark 13.3. Because $\operatorname{Pic}(X)$ is discrete, the action of G on $\operatorname{Pic}(X)$ is trivial, and the divisor D_{i} is equivalent to $\overline{B \dot{s_{i}} B^{-}}$. The Schubert divisors D_{1}, \ldots, D_{l} form a basis for the Picard group $\operatorname{Pic}(X)$.

Consider the unique closed $G \times G$-orbit of minimal dimension in $Y \subset X$. By Remark 6.4,

$$
Y \cong G / B \times G / B
$$

is isomorphic to a product of two copies of the flag variety.
We will classify the invertible sheaves on X by restricting them to Y and using the Borel-Weil theorem. Let Λ be the weight lattice of the maximal torus \widetilde{T}, and let Λ^{+}be the cone of dominant weights.

Theorem 13.4 (Borel-Weil). There is an isomorphism of abelian groups

$$
\operatorname{Pic}(G / B) \cong \Lambda .
$$

The weight $\lambda \in \Lambda$ corresponds to a line bundle

$$
G \times_{B} \mathbb{C}_{\lambda}
$$

with sheaf of sections $\mathcal{L}(\lambda)$, and the global sections of this sheaf are

$$
\Gamma(G / B, \mathcal{L}(\lambda))= \begin{cases}V_{\lambda}^{*}, & \lambda \in \Lambda^{+} \\ 0, & \text { else }\end{cases}
$$

Moreover, $\mathcal{L}(\lambda)$ is ample if and only if λ is regular dominant.
Let

$$
\mathcal{L}_{Y}(\lambda)=\mathcal{L}\left(-w_{0} \lambda\right) \boxtimes \mathcal{L}(\lambda) .
$$

be the invertible sheaf on Y corresponding to the weights $\left(-w_{0} \lambda, \lambda\right)$.
Proposition 13.5. The restriction

$$
\operatorname{Pic}(X) \longrightarrow \operatorname{Pic}(Y)
$$

is injective with image

$$
\left\{\left[\mathcal{L}_{Y}(\lambda)\right] \mid \lambda \in \Lambda\right\} .
$$

Proof. Recall that by the Peter-Weyl theorem, the regular functions on \widetilde{G} are given by

$$
\mathbb{C}[\widetilde{G}]=\bigoplus_{\mu \in \Lambda^{+}} V_{\mu} \otimes V_{\mu}^{*}
$$

where V_{μ} is the irreducible \widetilde{G}-representation of highest weight μ, V_{μ}^{*} is its dual of highest weight $-w_{0} \mu$, and the functions are

$$
v \otimes w^{*}(g)=w^{*}(g \cdot v) .
$$

Let $\chi_{1}, \ldots, \chi_{l}$ be the fundamental weights, and let $v_{i} \in V_{\chi_{i}}$ and $w_{i} \in V_{\chi_{i}}^{*}$ be highest weight vectors. In the simply connected cover \widetilde{G} of G, the intersection

$$
\widetilde{D}_{i} \cap \widetilde{G}=\widetilde{B} s_{i} w_{0} \widetilde{B}
$$

is a principal divisor, cut out by the function $v_{i} \otimes w_{i}$. This function is a $\widetilde{B} \times \widetilde{B}$-weight vector with weight

$$
\left(\chi_{i},-w_{0} \chi_{i}\right)
$$

so the canonical section τ_{i} of the invertible sheaf $\mathcal{O}_{X}\left(D_{i}\right)$ is a $\widetilde{B} \times \widetilde{B}$-weight vector of the same weight.

It follows that

$$
\mathcal{O}_{X}\left(D_{i}\right)_{\mid Y}=\mathcal{L}_{Y}\left(\chi_{i}\right) .
$$

Since the isomorphism classes $\left[\mathcal{O}_{X}\left(D_{i}\right)\right]$ generate $\operatorname{Pic}(X)$, and since the invertible sheaves $\mathcal{L}_{Y}\left(\chi_{i}\right)$ form a linearly independent set in the Picard group $\operatorname{Pic}(Y)$, the proposition is proved.

Denote by $\mathcal{L}_{X}(\lambda)$ the unique invertible sheaf on X that restricts to $\mathcal{L}_{Y}(\lambda)$ along Y. As in Section 5. let

$$
S_{1}, \ldots, S_{l}
$$

be the irreducible components of the boundary divisor $X \backslash G$, and write σ_{i} for the canonical section of the invertible sheaf $\mathcal{O}_{X}\left(S_{i}\right)$. Because S_{i} is $G \times G$-stable, the section σ_{i} is $\widetilde{G} \times \widetilde{G}$-invariant.

Lemma 13.6. (1) $\mathcal{O}_{X}\left(D_{i}\right)=\mathcal{L}_{X}\left(\chi_{i}\right)$
(2) $\mathcal{O}_{X}\left(S_{i}\right)=\mathcal{L}_{X}\left(\alpha_{i}\right)$

Proof. Part (1) is already contained in the proof of Proposition 13.5 .
The intersection $S_{i} \cap X_{0}$ is a principal divisor, cut out by a nonzero regular function on X_{0} as follows: recall from Theorem 3.5 the $U^{-} T \times U$-equivariant isomorphism

$$
X_{0} \cong U^{-} \times U \times \mathbb{C}^{l}
$$

The intersection

$$
S_{i} \cap X_{0}=U^{-} \times U \times\left\{\left(z_{1}, \ldots, z_{l}\right) \mid z_{i}=0\right\}
$$

is cut out by the regular function $z_{i}=0$, so the canonical section of the invertible sheaf $\mathcal{O}_{X}\left(S_{i}\right)$ has $T \times T$-weight $\left(\alpha_{i},-w_{0} \alpha_{i}\right)$. (Cf. Proposition 12.2. In this section we are working with the Borel $B \times B$ instead of $B \times B^{-}$, so the second factor is always twisted by the longest element w_{0} of W.) Part (2) follows.

Proposition 13.7. The invertible sheaf $\mathcal{L}_{X}(\lambda)$ is generated by global sections if and only if the weight λ is dominant, and it is ample if and only if λ is regular dominant.

Proof. If $\mathcal{L}_{X}(\lambda)$ is globally generated (respectively ample), then its restriction $\mathcal{L}_{Y}(\lambda)$ is globally generated (resp. ample), so by Borel-Weil the weight λ is dominant (resp. regular dominant.)

For the converse, because the divisor D_{i} contains no $G \times G$-orbits, the $G \times G$-translates of the canonical section τ_{i} have no common zeros. It follows that the invertible sheaf $\mathcal{L}_{X}\left(\chi_{i}\right)$ is globally generated.

If λ is a dominant weight, then

$$
\lambda=\sum_{i=1}^{l}\left\langle\lambda, \check{\alpha}_{i}\right\rangle \chi_{i}
$$

with non-negative coefficients $\left\langle\lambda, \check{\alpha}_{i}\right\rangle$. It follows that

$$
\mathcal{L}_{X}(\lambda)=\bigotimes_{i=1}^{l} \mathcal{L}_{X}\left(\chi_{i}\right)^{\otimes\left\langle\lambda, \tilde{\alpha}_{i}\right\rangle}
$$

is also generated by global sections.
If λ is regular and dominant, fix a very ample invertible sheaf $\mathcal{L}=\mathcal{L}_{X}(\mu)$. For a sufficiently large $N \in \mathbb{Z}$, the weight

$$
N \lambda-\mu
$$

is dominant, so the invertible sheaf

$$
\mathcal{L}_{X}(\lambda)^{\otimes N} \otimes \mathcal{L}^{-1}
$$

is generated by global sections. But then by tensoring with \mathcal{L},

$$
\mathcal{L}_{X}(\lambda)^{\otimes N}
$$

is very ample.

14. The total coordinate ring

Consider the sheaf of \mathcal{O}_{X}-modules

$$
\bigoplus_{\lambda \in \Lambda} \mathcal{L}_{X}(\lambda) .
$$

Taking its relative spec gives a scheme \hat{X} with a morphism

$$
\hat{X} \xrightarrow{\pi} X .
$$

The scheme \hat{X} has a $\widetilde{G} \times \widetilde{G}$-action that is inherited from the action on X and a commuting \widetilde{T}-action along the fibers of π, which make the morphism π a $\widetilde{G} \times \widetilde{G}$-equivariant principal \widetilde{T}-bundle.

In particular, because the wonderful compactification X is spherical for the action of the Borel subgroup

$$
\widetilde{B} \times \widetilde{B} \subset \widetilde{G} \times \widetilde{G}
$$

the scheme \hat{X} is spherical for the action of the Borel subgroup

$$
\widetilde{B} \times \widetilde{B} \times \widetilde{T} \subset \widetilde{G} \times \widetilde{G} \times \widetilde{T}
$$

Proposition 14.1. The scheme \hat{X} is a quasi-affine variety.
Proof. Fix a very ample invertible sheaf \mathcal{L} on X. Then the invertible sheaves

$$
\mathcal{L} \otimes \mathcal{L}_{X}\left(\chi_{i}\right)
$$

are very ample and their classes form a basis of the $\operatorname{Picard} \operatorname{group} \operatorname{Pic}(X)$. Each one gives a projective embedding

$$
X \hookrightarrow \mathbb{P}_{i} .
$$

Let $\hat{\mathbb{P}}_{i}$ be the tautological bundle over \mathbb{P}_{i}. The commutative diagram

is actually a pullback square. Since each $\hat{\mathbb{P}}_{i}$ is quasi-affine, being the complement of a point in an affine space, so is the pullback \hat{X}.

Definition 14.2. The total coordinate ring of X is

$$
R[X]=\bigoplus_{\lambda \in \Lambda} \Gamma\left(X, \mathcal{L}_{X}(\lambda)\right)
$$

For a detailed introduction to total coordinate rings, see ADHL. In the case of wonderful varieties, they are discussed more generally in Bri1, whose exposition we follow here in the special case of the wonderful compactification of G.

Remark 14.3. The ring $R[X]$ is the ring of regular functions on the spherical quasi-affine variety \hat{X}. By Section 30.5 in Tim, it follows that $R[X]$ is finitely-generated and normal.

By the previous remark, we can define the normal affine variety

$$
\widetilde{X}=\operatorname{Spec} R[X]
$$

It is the affine closure of \hat{X}, so it is equipped with an open embedding

$$
\iota: \hat{X} \longleftrightarrow \widetilde{X}
$$

Proposition 14.4. The group $\widetilde{G} \times \widetilde{G} \times \widetilde{T}$ acts on \widetilde{X} with open orbit

$$
\widetilde{X}_{0} \cong \widetilde{G} \times_{\widetilde{Z}} \widetilde{T}
$$

where \widetilde{Z} is the center of \widetilde{G}.

Proof. The open $\widetilde{G} \times \widetilde{G} \times \widetilde{T}$-orbit on \widetilde{X} is exactly the preimage under π of the open $\widetilde{G} \times \widetilde{G}$-orbit on the wonderful compactification X.

This open orbit is a homogeneous $\widetilde{G} \times \widetilde{G}$-space isomorphic to the group G, and from diagram (14.1) its preimage is

$$
\widetilde{X}_{0}=\pi^{-1}(G) \cong(\widetilde{G} \times \widetilde{G}) \times_{\operatorname{Stab}_{\widetilde{G} \times \widetilde{G}}(e)} \widetilde{T}
$$

where the torus \widetilde{T} is recovered as the torus corresponding to the character group generated by $\chi_{1}, \ldots, \chi_{l}$. The stabilizer of the identity $e \in G$ is

$$
\operatorname{Stab}_{\widetilde{G} \times \widetilde{G}}(e)=\widetilde{G}_{\Delta} \times \widetilde{Z}_{1}
$$

where \widetilde{G}_{Δ} is the diagonal embedding of \widetilde{G} into $\widetilde{G} \times \widetilde{G}$, and \widetilde{Z}_{1} is the embedding of \widetilde{Z} into the first coordinate of $\widetilde{Z} \times \widetilde{Z}$.

The factor \widetilde{G}_{Δ} acts on \widetilde{T} trivially, and the factor \widetilde{Z}_{1} acts on \widetilde{T} by the fundamental weights $\chi_{1}, \ldots, \chi_{l}$. It follows that

$$
\widetilde{X}_{0} \cong(\widetilde{G} \times \widetilde{G}) \times_{\operatorname{Stab}_{\widetilde{G} \times \widetilde{G}}(e)} \widetilde{T} \cong \widetilde{G} \times_{\widetilde{Z}} \widetilde{T}
$$

Let $R \subset \Lambda$ be the root lattice of G, and for every weight λ denote by

$$
\begin{aligned}
t^{\lambda}: \widetilde{T} & \longrightarrow \mathbb{C} \\
z & \longmapsto \lambda(z)
\end{aligned}
$$

the corresponding character.

Proposition 14.5. There is an isomorphism of $\widetilde{G} \times \widetilde{G} \times \widetilde{T}$-algebras

$$
\mathbb{C}\left[\widetilde{X}_{0}\right] \cong \bigoplus_{\lambda \in \Lambda}\left(\bigoplus_{\substack{\mu \in \Lambda^{+} \\ \lambda-\mu \in R}} V_{\mu} \otimes V_{\mu}^{*}\right) t^{\lambda}
$$

where the right-hand side is viewed as a subalgebra of $\mathbb{C}[\widetilde{G} \times \widetilde{T}]$.
Proof. By Proposition 14.4 , there is an isomorphism of $\widetilde{G} \times \widetilde{G} \times \widetilde{T}$-algebras

$$
\mathbb{C}\left[\widetilde{X}_{0}\right] \cong \mathbb{C}\left[\widetilde{G} \times_{\widetilde{Z}} \widetilde{T}\right] \cong(\mathbb{C}[\widetilde{G}] \otimes \mathbb{C}[\widetilde{T}])^{\widetilde{Z}}
$$

By the Peter-Weyl theorem, the first factor is

$$
\mathbb{C}[\widetilde{G}] \cong \bigoplus_{\mu \in \Lambda^{+}} V_{\mu} \otimes V_{\mu}^{*}
$$

The second factor is

$$
\mathbb{C}[\widetilde{T}] \cong \bigoplus_{\lambda \in \Lambda} \mathbb{C} t^{\lambda}
$$

Invariance under \widetilde{Z} means exactly that

$$
\mu_{\mid \tilde{Z}}=\lambda_{\mid \tilde{Z}}
$$

which is to say that $\lambda-\mu \in R$.
Theorem 14.6. There is an isomorphism of $\widetilde{G} \times \widetilde{G} \times \widetilde{T}$-algebras

$$
\mathbb{C}[\widetilde{X}] \cong \bigoplus_{\lambda \in \Lambda}\left(\bigoplus_{\substack{\mu \in \Lambda^{+} \\ \mu \leq \lambda}} V_{\mu} \otimes V_{\mu}^{*}\right) t^{\lambda}
$$

where the right-hand side is viewed as a subalgebra of $\mathbb{C}[\widetilde{G} \times \widetilde{T}]$, and the ordering $\mu \leq \lambda$ is the usual ordering on the weight lattice.

Proof. The regular functions on \widetilde{X} form a subalgebra of the regular functions on \widetilde{X}_{0}, and in view of Proposition 14.5 this gives an embedding

$$
R[X]=\mathbb{C}[\widetilde{X}] \stackrel{\iota}{\longleftrightarrow} \bigoplus_{\lambda \in \Lambda}\left(\bigoplus_{\substack{\mu \in \Lambda^{+} \\ \lambda-\mu \in R}} V_{\mu} \otimes V_{\mu}^{*}\right) t^{\lambda}
$$

The canonical section

$$
\sigma_{i} \in \Gamma\left(X, \mathcal{L}_{X}\left(\alpha_{i}\right)\right)
$$

is $\widetilde{G} \times \widetilde{G}$-invariant and a \widetilde{T}-eigenfunction with weight α_{i}. In the target there is a unique \widetilde{T}-eigenspace of weight α_{i}, so up to scalars

$$
\iota\left(\sigma_{i}\right)=t^{\alpha_{i}} .
$$

The canonical section

$$
\tau_{i} \in \Gamma\left(X, \mathcal{L}_{X}\left(\alpha_{i}\right)\right)
$$

is a $\widetilde{B} \times \widetilde{B}$-eigenfunction with weight $\left(\chi_{i},-w_{0} \chi_{i}\right)$, and a \widetilde{T}-eigenfunction of weight χ_{i}. It follows that

$$
\iota\left(\tau_{i}\right)=\left(v_{i} \otimes w_{i}\right) t^{\chi_{i}}
$$

where v_{i} is a highest weight vector of the fundamental representation $V_{\chi_{i}}$, and w_{i} is a highest weight vector of its dual.

Because of this, the only degrees (μ, λ) that appear in the image of ι are those for which

$$
\mu \leq \lambda,
$$

and the theorem is proved.
Corollary 14.7. There is an isomorphism of $\widetilde{G} \times \widetilde{G}$-modules

$$
\Gamma\left(X, \mathcal{L}_{X}(\lambda)\right) \cong \bigoplus_{\substack{\mu \in \Lambda^{+} \\ \mu \leq \lambda}} V_{\mu} \otimes V_{\mu}^{*}
$$

Remark 14.8. In particular, and unlike for the flag variety G / B, some line bundles on the wonderful compactification that correspond to non-dominant weights have global sections. For instance, any simple root α_{i} is greater than the 0 -weight, and so

$$
\Gamma\left(X, \mathcal{L}_{X}\left(\alpha_{i}\right)\right) \cong V_{0} \otimes V_{0}^{*} \cong \mathbb{C} .
$$

Remark 14.9. The affine variety \widetilde{X} has the structure of a monoid. Let V_{1}, \ldots, V_{l} be the fundamental representations of \widetilde{G}, let $V_{1}^{*}, \ldots, V_{l}^{*}$ be their duals, and for each $i=1, \ldots, l$ let

$$
\rho_{i}: \widetilde{G} \longrightarrow V_{i}^{*} \otimes V_{i}
$$

be the representation map.
The ring of regular functions

$$
\mathbb{C}\left[\widetilde{X}_{0}\right] \cong \bigoplus_{\lambda \in \Lambda}\left(\bigoplus_{\substack{\mu \in \Lambda^{+} \\ \lambda-\mu \in R}} V_{\mu} \otimes V_{\mu}^{*}\right) t^{\lambda},
$$

from Proposition 14.5 gives an embedding

$$
\begin{aligned}
\psi: \widetilde{G} \times_{\widetilde{Z}} \widetilde{T} & \hookrightarrow \mathbb{C}^{l} \times \prod_{i=1}^{l}\left(V_{i}^{*} \otimes V_{i}\right) \\
(g, t) & \longmapsto\left(\alpha_{1}(t), \ldots, \alpha_{l}(t), \chi_{1}(t) \rho_{1}(g), \ldots, \chi_{l}(t) \rho_{l}(g)\right) .
\end{aligned}
$$

The variety \widetilde{X} is nothing but the closure of the image of ψ, and in view of the proof of Proposition 14.1 the quasi-affine variety \hat{X} is the closure of the image of ψ in

$$
\mathbb{C}^{l} \times \prod_{i=1}^{l}\left(\left(V_{i}^{*} \otimes V_{i}\right) \backslash\{0\}\right)
$$

In fact, the variety \widetilde{X} is the enveloping monoid studied by Vinberg in Vin. It sits above the wonderful compactification X as a multi-cone, and taking the quotient of the semistable locus \hat{X}
by the action of \widetilde{T} gives an isomorphism

$$
X \cong \hat{X} / \widetilde{T}
$$

Remark 14.10. The Vinberg monoid is universal in the following sense. Suppose that S is a monoid whose group of units $G(S)$ is a reductive algebraic group-such monoids are called reductive. Let

$$
G_{S}=[G(S), G(S)]
$$

be the derived subgroup of the groups of units of S, and let

$$
A(S)=\operatorname{Spec} \mathbb{C}[S]^{G_{S} \times G_{S}}
$$

be the invariant-theoretic quotient of S by the two-sided action of G_{S}.
The variety $A(S)$ is called the abelianization of S, it is normal if S is normal, and there is a canonical surjective morphism

$$
\alpha: S \longrightarrow A(S)
$$

(See [PV].) The monoid S is called flat if α is flat. Moreover, any homomorphism

$$
\varphi: S^{\prime} \longrightarrow S
$$

of reductive monoids descends to a homomorphism of their abelianizations:

Now fix a connected semisimple algebraic group G_{0}, and consider the category $\mathcal{C}\left(G_{0}\right)$ of flat reductive monoids S which are normal, contain a zero, and such that

$$
G_{S} \cong G_{0}
$$

There is a distinguished monoid $S \in \mathcal{C}\left(G_{0}\right)$-the enveloping monoid of G_{0}-with the property that for any $S^{\prime} \in \mathcal{C}\left(G_{0}\right)$ and any isomorphism

$$
\varphi_{0}: G_{S^{\prime}} \longrightarrow G_{S}
$$

there is a unique homomorphism

$$
\varphi: S^{\prime} \longrightarrow S
$$

extending φ_{0} and such that the diagram (14.2) is a pullback square - that is,

$$
S^{\prime} \cong A\left(S^{\prime}\right) \times_{A(S)} S
$$

The Vinberg monoid \widetilde{X} from above is the enveloping monoid of \widetilde{G}.

References

[ADHL] I. Arzhantsev, U. Derenthal, J. Hausen, and A. Laface. Cox Rings. Cambridge University Press. 2015.
[BK] M. Brion and S. Kumar. Frobenius Splitting Methods in Geometry and Representation Theory. Birkhäuser Basel. 2005.
[BP] M. Brion and F. Pauer. Valuation des espaces homogènes sphériques. Comment. Math. Helv., 62. 1987.
[Bri1] M. Brion. Log-homogeneous varieties. ArXiv e-prints. math/0609669v2.
[Bri2] M. Brion. Vanishing theorems for Dolbeault cohomology of log homogeneous varieties. Tohoku Math. J., 61. 2009.
[DP] C. DeConcini and C. Procesi. Complete symmetric varieties. Invariant theory (Montecatini, 1982), 996 of Lecture Notes in Math. 1983.
[DS] C. DeConcini and T. Springer. Betti numbers of complete symmetric varieties. Prog. Math., 60. 1985.
[EJ] S. Evens and B. F. Jones. On the wonderful compactification. ArXiv e-prints. math/0801.0456v1.
[Ful] W. Fulton. Introduction to Toric Varieties. Princeton University Press. 1993.
[LV] D. Luna and T. Vust. Plongements d'espaces homogènes. Comment. Math. Helv., 58. 1983.
[PV] V. L. Popov and E. B. Vinberg. Invariant Theory. Springer-Verlag. 1994.
[Tim] D.A. Timashev. Homogeneous Spaces and Equivariant Embeddings. Springer-Verlag Berlin Heidelberg. 2008.
[Vin] E. B. Vinberg. On reductive algebraic semigroups. Amer. Math. Soc. Transl. Ser. 2, 169. 1995.

