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1. Introduction

Let K be any algebraic group, let

τ : K −→ K

be an involution of K, and let H = Kτ be its fixed point set. The homogeneous space

K/H

is called a symmetric space.

Any algebraic group G is naturally a symmetric space under the action of K = G × G by left-

and right-multiplication, by the involution

τ : G×G −→ G×G

(g, h) 7−→ (h−1, g−1).

The fixed point set is

H = G∆ = {(g, g−1) ∈ G×G}

and there is an isomorphism

G ∼= (G×G)/G∆.
1
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In the 1980s, DeConcini and Procesi [DP] showed that any semisimple symmetric space X̊ has

a wonderful compactification X—a variety satisfying the following properties:

(1) X is smooth and complete

(2) X̊ ⊂ X is an open dense subset, and the boundary

X\X̊ = X1 ∪ . . . ∪Xl

is a union of smooth prime divisors with normal crossings.

(3) The closures of the G-orbits on X are the partial intersections⋂
i∈I

Xi, for I ⊂ {1, . . . , l}.

In a more general framework, studying equivariant compactifications of homogeneous spaces,

Luna and Vust [LV] showed that any homogeneous space X̊ that has a wonderful compactification

is necessarily spherical—a Borel subgroup acts on X̊ with an open dense orbit. For example, any

reductive algebraic group G is a spherical homogeneous space under the two-sided action of G×G,

and the open orbit of the Borel subgroup B ×B ⊂ G×G is the open dense Bruhat cell.

There are two distinguished classes of equivariant compactifications of spherical homogeneous

spaces. The first is the class of toroidal compactifications—these are generalizations of toric vari-

eties, and their boundary structure is described combinatorially by fans. Every compactification X

of X̊ is dominated by a toroidal compactification X ′, in the sense that there is a proper birational

G-equivariant morphism

X ′ −→ X

that restricts to the identity along the open locus X̊.

The second class is the class of simple compactifications, which are compactifications on which G

acts with a unique closed orbit. Brion and Pauer gave in [BP] a necessary and sufficient criterion for

a spherical variety X̊ to have simple compactifications. When such compactifications exist, there is

a unique one that is also toroidal. This compactification X has the universal property that for any

toroidal compactification X ′, and any simple compactification X ′′, there are unique morphisms

X ′ −→ X −→ X ′′

that restrict to the identity along X̊. If X is smooth, it is the wonderful compactification of X̊ and

it has the properties described by DeConcini and Procesi.

We will construct the wonderful compactification of a semisimple algebraic group of adjoint type

G, following mostly the well-known survey of Evens and Jones [EJ]. Then we will describe two

other realizations of the wonderful compactification, one as a variety of Lagrangian subalgebras of

g× g, and one as a GIT quotient of the Vinberg monoid.
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2. Construction of the compactification

From now on, let G be a semisimple connected complex algebraic group of adjoint type—that is,

with trivial center. Let G̃ be its simply-connected cover, and choose a maximal torus and a Borel

subgroup

T̃ ⊂ B̃ ⊂ G̃

corresponding to

T ⊂ B ⊂ G.

Let U ⊂ B̃ be the unipotent radical. Because the morphism G̃ −→ G is a central quotient, it is

an isomorphism on unipotent subgroups, and we can identify U with its image in B.

Let X ∗(T̃ ) be the character lattice of the torus T̃ , Φ the set of nonzero roots, Φ+ the set of

positive roots relative to B̃, and

∆ = {α1, . . . , αl}

the set of simple roots, where l = dim T̃ is the rank of G. Let W = N
G̃

(T̃ )/T̃ be the corresponding

Weyl group.

There is a standard ordering on X ∗(T̃ ) given by

λ ≥ µ ⇔ λ− µ =
l∑

i=1

niαi, ni ∈ Z≥0.

Definition 2.1. A weight λ ∈ X ∗(T̃ ) is dominant if 〈λ, α̌〉 ≥ 0 for every positive coroot α̌ ∈ Φ̌+.

It is regular if 〈λ, α̌〉 > 0 for every positive coroot α̌ ∈ Φ̌+.

The dominant weights form a cone—the dominant Weyl chamber—and the regular dominant

weights are exactly the ones that fall in the interior of this cone. This is dual to the notion of a

regular semisimple element in the Lie algebra of G. The following lemma, whose proof is left as an

exercise, will be useful.

Lemma 2.2. Let λ be a dominant weight and let V an irreducible representation of G̃ of highest

weight λ. Let vλ be a highest weight vector of V . Then the following are equivalent:

(1) λ is regular.

(2) The stabilizer of the highest weight space Cvλ in G̃ is B̃.

(3) The stabilizer of λ in the Weyl group W is trivial.

From now on let V be an irreducible G̃-representation of regular highest weight λ. In the diagram

(2.1)

G̃ End V \{0}

G P(End V ),
ψ

the top arrow is the representation map, the left arrow is a quotient by the center, and the right

arrow is a quotient by scalars. All these maps are G̃× G̃-equivariant, and the representation map
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descends to the G×G-equivariant morphism

ψ : G −→ P(End V ).

The map ψ is an injection—this is guaranteed by adjointness if G is simple, and also by the

regularity of λ if it is not.

Definition 2.3. The wonderful compactification of G is X = ψ(G) ⊂ P(End V ).

Example 2.4. Let G = PGL2 with G̃ = SL2. Then all nonzero weights are regular, and we can

take V = C2 to be the standard representation. In this case

ψ : G ↪−→ P(M2×2)

is the embedding with image

ψ(G) =

{[
a b

c d

]
| ad− bc 6= 0

}
,

and the closure of this image is

X = P(M2×2) ∼= P3.

The boundary of X is

∂X =

{[
a b

c d

]
| ad− bc = 0

}
∼= P1 × P1,

and it is a single smooth prime divisor.

Remark 2.5. Example 2.4 does not generalize. For n ≥ 3, the standard representation of SLn

is not regular, because it is a fundamental representation and it generates one of the edges of the

dominant Weyl chamber. In general, the wonderful compactification of PGLn is not simply the

projective space Pn2−1.

3. The big cell

Choose a basis of weight vectors of descending weight v0, . . . , vn for V , such that vi is in the

weight space Vλi of weight λi, and with the properties

• v0 ∈ Vλ
• i = 1, . . . , l ⇒ vi ∈ Vλ−αi

• λi > λj ⇒ i < j

Let B̃− be the opposite Borel to B̃, let B− be its image in G, and let U− be their common

unipotent radical. Then

U− · vi ⊂ vi +
∑
j>i

Vλj ,

and so U− stabilizes the affine space

P0(V ) =
{[∑

aivi

]
| a0 6= 0

}
∼= Cl.
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Let v∗0, . . . , v
∗
n be a dual basis for the dual space V ∗, so that each v∗i has weight −λi. Then U

stabilizes the affine space

P0(V ∗) =
{[∑

aiv
∗
i

]
| a0 6= 0

}
∼= Cl.

The following lemma is clear from Lemma 2.2, and from the fact that the unipotent groups U and

U− act on the affine spaces P0(V ∗) and P0(V ) with closed orbits.

Lemma 3.1. The action maps

U −→ U · [v∗0] ⊂ P0(V ∗)

and

U− −→ U− · [v0] ⊂ P0(V )

are isomorphisms, and their images are closed.

We use the usual G×G-equivariant identification

V ⊗ V ∗ −→ End V

(v ⊗ f) 7−→ (w 7→ f(w)v).

Then the set {vi ⊗ v∗j } is a basis for End V . The affine space

P0 =
{[∑

aijvi ⊗ v∗j
]
| a00 6= 0

}
⊂ P(End V )

is U−T × U -stable, by the observations before Lemma 3.1. Define

X0 = X ∩ P0.

This intersection is called the big cell of the wonderful compactification.

Proposition 3.2. The intersection of the big cell with the open dense locus ψ(G) is the image of

the open Bruhat cell of G:

X0 ∩ ψ(G) = ψ(U−TU).

Proof. One containment is clear: ψ(e) ∈ X0, X0 is U−T × U -stable, and ψ is G × G-equivariant,

so it follows that

ψ(U−TU) ⊆ X0.

For the other, choose a representative ẇ ∈ N
G̃

(T̃ ) for each w ∈ W . Then by the Bruhat

decomposition,

G =
∐
w∈W

U−TẇU.

If w 6= 1, then ẇv0 is a weight vector of weight wλ, and wλ 6= λ by Lemma 2.2. It follows that

ψ(ẇ) = ẇψ(e)

= ẇ
[∑

vi ⊗ v∗i
]

=
[∑

(ẇvi)⊗ v∗i
]
/∈ P0,
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and therefore

ψ(U−TẇU) ∩X0 = ∅.

So the only Bruhat cell whose image intersects X0 is the open cell U−TU . �

Remark 3.3. Since U−TU is dense in G, its image ψ(U−TU) is dense in X0, and

X0 = ψ(U−TU) ⊂ P0.

Proposition 3.4. Let Z be the closure of ψ(T ) in P0. Then

Z ∼= Cl.

Proof. Let t ∈ T and choose a preimage t̃ ∈ T̃ . Then

ψ(t) = t
[∑

vi ⊗ v∗i
]

=
[∑

(t̃vi)⊗ v∗i
]

=
[∑

λi(t̃)vi ⊗ v∗i
]

=

[
v0 ⊗ v∗0 +

∑ λi(t̃)

λ(t̃)
vi ⊗ v∗i

]
.

Since λi ≤ λ,

λ− λi =
∑

nijαj , nij ∈ Z≥0.

Then the image of t becomes

ψ(t) =

[
v0 ⊗ v∗0 +

∑ 1∏
αj(t)nij

vi ⊗ v∗i
]

=

[
v0 ⊗ v∗0 +

l∑
i=1

1

αi(t)
vi ⊗ v∗i +

∑
i>l

1∏
αj(t)nij

vi ⊗ v∗i

]
Define a map

F : Cl −→ ψ(T )

(z1, . . . , zl) 7−→

[
v0 ⊗ v∗0 +

l∑
i=1

zivi ⊗ v∗i +
∑
i>l

(
Πz

nij

j

)
vi ⊗ v∗i

]
It is clear that F is an isomorphism. �

Consider the action map

χ : U− × U × Z −→ X0

(u, v, z) 7−→ uzv−1.

Theorem 3.5. The morphism χ is an isomorphism, and therefore X0
∼= CdimG is smooth.

Lemma 3.6. There is a U− × U -equivariant morphism β : X0 −→ U− × U such that

β(χ(u, v, z)) = (u, v).
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Proof. The morphism

β1 : P0 −→ P0(V )

[A] 7−→ [Avo]

is well-defined. Moreover, for any (u, v, t) ∈ U− × U × T ,

β1(ψ(u, v, t)) = utv[v0] = u[v0],

so the image β1(ψ(U−TU)) is the closed set U−[v0] ∼= U− by Lemma 3.1. Extending to the closure

X0, β1 gives a surjection

β1 : X0 −→ U−.

Dually, define

β2 : P0 −→ P0(V ∗)

[A] 7−→ [v∗0 ◦A−1]

Once again this induces

β2 : X0 −→ U.

Define

β : X0 −→ U− × U

x 7−→ (β1(x), β2(x)). �

Lemma 3.7. Let A be an algebraic group acting on a variety Y . Suppose that there is an A-

equivariant morphism

β : Y −→ A,

where A is viewed as a left A-module. Then Y ∼= A× f−1(e).

Proof. Consider the maps

f : A× β−1(e) −→ Y

(a, y) 7−→ a · y

and

g : Y −→ A× β−1(e)

y 7−→ (β(y), β(y)−1y).

They are inverses of one another. �

Proof of Theorem 3.5. In view of the morphism β from Lemma 3.6, Lemma 3.7 implies that

X0
∼= U− × U × β−1(e, e).

It is clear from the construction of β that ψ(T ) ⊆ β−1(e, e), and since the fiber β−1(e, e) is closed,

Z ⊆ β−1(e, e).
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But X0 is irreducible of dimension dimG, so the fiber β−1(e, e) is irreducible of dimension dimT ,

and the inclusion Z ⊆ β−1(e, e) is actually an equality. �

4. Smoothness of the compactification

We will show that X is smooth by showing that it is a union of copies of the big cell X0. To this

end, we will need the following lemmas.

Lemma 4.1. Let A be a semisimple group acting on an irreducible representation V with highest

weight vector v0. Then A · [v0] is the unique closed orbit of the action of A on P(V ).

Proof. An orbit A · [v] is closed if and only if it is projective, which is the case if and only if

the stabilizer of [v] is parabolic. Up to conjugation we may assume this parabolic is a standard

parabolic, and then [v] is stabilized by the Borel consisting of the positive roots, so it is a highest

weight vector. Since V is irreducible it has a unique highest weight space, so [v] = [v0]. �

Lemma 4.2. Suppose A is an algebraic group acting on an irreducible variety Y with a unique

closed orbit Z. If U ⊂ Y is an open subset that intersects Z, then

Y =
⋃
a∈A

aU.

Proof. The set

AU =
⋃
a∈A

aU

is open, so its complement

W = Y \AU

is closed and A-stable. Then W contains a closed A-orbit, which by uniqueness must be the closed

orbit Z. But then Z ⊂W , so Z ∩ U = ∅—a contradiction. �

Proposition 4.3. Suppose that W ⊂ X is a closed G×G-stable subvariety. Then

W =
⋃

a∈G×G
a(W ∩X0).

Proof. The tensor product V ⊗ V ∗ is an irreducible representation of G×G, so by Lemma 4.1 the

action of G×G on P(V ⊗ V ∗) has the unique closed orbit

(G×G)[v0 ⊗ v∗0].

If W is closed and G×G-stable, it contains a closed orbit, so by uniqueness

(G×G)[v0 ⊗ v∗0] ⊂W.

But since W ∩X0 is open in W , and since [v0 ⊗ v∗0] ∈ X0, it follows by Lemma 4.2 that

W =
⋃

a∈G×G
a(W ∩X0). �

The following theorem is immediate:



PART II: THE WONDERFUL COMPACTIFICATION 9

Theorem 4.4. For any G×G-orbit O, the closure O has the property

O =
⋃

a∈G×G
a(O ∩X0).

In particular, X =
⋃
a∈G×G aX0, and so X is smooth.

5. The G×G-orbits on the compactification

First we describe the T -orbits on the closure Z ∼= Cl of the torus T from Proposition 3.4. For

each I ⊂ {1, . . . , l}, define

ZI = {(z1, . . . , zl) | zi = 0 if i ∈ I} ∼= Cl−|I|

and

Z◦I = {(z1, . . . , zl) ∈ ZI | zi 6= 0 if i 6∈ I}.

Then it is clear that the Z◦I are exactly the T -orbits on Z, and each such orbit has a distinguished

basepoint

zI = (z1, . . . , zl), zi = 1 if i 6∈ I.

Each ZI is the closure of Z◦I in Z, and the boundary

Z\ψ(T ) =
l⋃

i=1

Zi

is the union of the coordinate hyperplanes in Cl—in particular, it is a divisor with normal crossings.

Now we describe the U−T × U -orbits on X0. Using the isomorphism

χ : U− × U × Z −→ X0

of Theorem 3.5, define

ΣI = χ(U− × U × ZI) ∼= CdimG−|I|

and

Σ◦I = χ(U− × U × Z◦I ).

Then each Σ◦I is a U−T × U -orbit on X0, ΣI is its closure, and the boundary

X0\ψ(U−TU) =

l⋃
i=1

Σi

is a divisor with normal crossings.

The closure of every G×G-orbit on X is a union of translations of its intersection with X0—so,

there are at most 2l such orbit closures.

Lemma 5.1. Suppose that W is a projective variety and U ⊂ W is an open affine subset. Then

the boundary W\U is a union of irreducible components of codimension 1.
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Proposition 5.2. Let Si be the closure of Σi in X. Then

X\ψ(G) =
l⋃

i=1

Si.

Proof. Since X is projective and ψ(G) is an affine open subset,

X\ψ(G) =
⋃
Sα

is a union of irreducible components of codimension 1 by Lemma 5.1.

This union is G×G-stable, and because G×G is connected every component Sα is G×G-stable.

By Proposition 4.3,

Sα =
⋃

a∈G×G
a(Sα ∩X0).

Then the intersection

Sα ∩X0

is a U−T × U -stable irreducible hypersurface in X0, so it is equal to Σi for some i. It follows that

Sα = Σi = Si. �

Define the intersection

SI =
⋂
i∈I

Si.

Then SJ ⊆ SI if and only if J ⊇ I, and SI ∩X0 = ΣI , so by Proposition 4.3

SI =
⋃

a∈G×G
aΣI .

In particular, SI is smooth.

Define

S◦I = SI\
⋃
I(J

SJ .

Then

S◦I =
⋃

a∈G×G
aΣ◦I = (G×G)Σ◦I = (G×G)(U−T × U)zI = (G×G)zI ,

and S◦I is a single G×G-orbit. We collect all these results into a single theorem:

Theorem 5.3. There are exactly 2l G×G-orbits in X, given by

S◦I = (G×G)zI , I ⊆ {1, . . . , l}.

Their closures SI are smooth, and the boundary

X\ψ(G)

of X is a divisor with normal crossings.
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6. The structure of the orbits and their closures

Let g = Lie G, and consider the root space decomposition

g = h +
∑
α∈Φ

gα.

Fix a subset I ⊆ {1, . . . , l}. Let

∆I = {αi | i 6∈ I},

and let ΦI be the set of roots spanned by ∆I . This produces the standard Levi subalgebra

lI = h +
∑
α∈ΦI

gα,

and the parabolic subalgebras p±I = lI + b± with nilpotent radicals u±I . Denote the corresponding

subgroups of G by LI , P
±
I , U±I .

Let VI be the irreducible representation of LI generated by applying LI to the highest weight

vector v0—that is,

VI = U lI · v0

where U lI is the universal enveloping algebra of lI . For any x ∈ uI , x ·v0 = 0. Because uI is normal

in pI , it follows that VI is pI -stable.

Lemma 6.1. The stabilizer of VI in G is exactly the parabolic subgroup PI .

Proof. Let Q be the stabilizer of VI in G. It is already clear that PI ⊂ Q, so Q is a standard

parabolic subgroup and in particular it is connected. It is enough to show that

pI = Lie Q.

Let t ∈ T be such that αi(t) = 1 whenever αi ∈ ∆I , and αi(t) 6= 1 otherwise. Then t ∈ Z(LI),

and we pick a preimage t̃ ∈ T̃ . Since VI is an irreducible representation of LI , t̃ acts on it by the

scalar λ(t̃).

Let αi 6∈ ∆I be a root whose corresponding root space is not contained in pI , and let x ∈ g−αi

be nonzero. Then t̃ acts on xVI by
λ(t̃)

αi(t̃)
,

and this scalar is distinct from λ(t) because αi(t) 6= 1. It follows that

VI ∩ xVI = 0.

Because λ is regular, xVI 6= 0, so x 6∈ Lie Q. So the only root spaces contained in Lie Q are the

ones also contained in pI . �

Now let

J =

j ∈ {0, . . . , n} | λ− λj =
∑
αi∈ΦI

niαi, ni ∈ Z≥0

 .

The set {vj | j ∈ J}, which consists of weight vectors whose weights can be obtained from λ by

subtracting the simple roots in ∆I , is a basis for VI .
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Proposition 6.2. Let prVI ∈ End V denote the projection onto VI . Then

zI = [prVI ].

Proof. Recall that zI = (z1, . . . , zl) ∈ Cl is the point whose coordinates are

zi =

0, i ∈ I

1, i 6∈ I

From the isomorphism of Proposition 3.4, it is identified with the following point in X0:

zI =

v0 ⊗ v∗0 +
∑
i 6∈I

zivi ⊗ v∗i +
∑
i>l

(∏
z
nij

j

)
vi ⊗ v∗i

 =

∑
j∈J

vj ⊗ v∗j

 . �

Proposition 6.3. The stabilizer of zI in G×G is{
(ux, vy) ∈ UILI × U−I LI | xy

−1 ∈ Z(LI)
}
.

Proof. Suppose (r, s) ∈ G×G stabilizes zI = [prVI ]. Then

[rprVIs
−1] = [prVI ],

so in particular r stabilizes the image VI of prVI . By Lemma 6.1, this means r ∈ PI . Moreover, if

r = ux ∈ UILI , then

[rprVI ] = [xprVI ]

since the action of UI on VI is trivial.

Dually, s ∈ P−I , by applying the preceding discussion to V ∗I under the isomorphism

End V ∼= V ⊗ V ∗ ∼−−→ V ∗ ⊗ V ∼= End V ∗.

Moreover, if s = vy ∈ U−I LI , then

[prVIs
−1] = [prVIy

−1].

Then

[prVI ] = [rprVIs
−1] = [xprVIy

−1],

so xy−1 acts trivially on P(VI), and so acts by a scalar on the irreducible representation VI of LI .

It follows that

xy−1 ∈ Z(LI). �

Remark 6.4. Because the stabilizer of zI is contained in PI × P−I , there is a surjection

S◦I = (G×G)/StabG×G(zI) −→ G/PI ×G/P−I .

The fiber of this surjection is

PI × P−I /StabG×G(zI) ∼= LI × LI/{(x, y) | xy−1 ∈ Z(LI)} ∼= LI/Z(LI),

which is a semisimple group of adjoint type and smaller rank than G.
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In particular, this gives an isomorphism

S{1,...,l} ∼= G/B ×G/B−

between the unique closed G×G-orbit on X and the product of two copies of the flag variety of G.

The natural embedding

End VI ↪−→ End V

induces a closed embedding of projective varieties

P(End VI) ↪−→ P(End V ),

and zK ∈ P(End VI) if and only if I ⊆ K.

Define the map

LI −→ P(End VI) ⊂ P(End V )

g 7−→

g∑
j∈J

vj ⊗ v∗j

 = [gzI ].

This descends to an injection

GI = LI/Z(LI)
ψI−−→ P(End VI).

Since VI is a regular representation of LI , it is a regular representation of the simply-connected

cover of the semisimple adjoint group GI , and we can apply the entire previous discussion to the

compactification

XI = ψI(GI)

—the wonderful compactification of GI .

The quotient

PI × P−I −→ PI/UIZ(LI)× P−I /U
−
I Z(LI) ∼= GI ×GI

induces an action of PI × P−I on XI .

Theorem 6.5. The map

ϕ : G×G×PI×P−I
XI −→ SI

is an isomorphism of G×G-varieties. In particular, SI fibers over the partial flag variety G/PI ×
G/P−I with fiber XI .

Proof. It is enough to show that ϕ is bijective, because the target SI is smooth.

Recall that

SI =
⋃
I⊆K

S◦K

and I ⊆ K if and only if zK ∈ XI . In this case

ϕ(G×G× {zK}) = S◦K .

So every G×G-orbit is contained in the image of ϕ, and ϕ is surjective.
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Similarly, it is enough to show that ϕ is injective on orbits. Suppose that

ϕ(g, h, zK) = ϕ(e, e, zK).

Then (g, h) ∈ StabG×G(zK) ⊆ PK × P−K ⊆ PI × P
−
I . It follows that

(g, h, zK) ∼ (e, e, zK)

in the fiber product G×G×PI×P−I
XI . �

7. Independence of regular dominant weight

Suppose that λ and µ are two regular dominant weights of G̃, with corresponding irreducible

representations V and W . They produce two compactifications:

X1 ⊂ P(End V ) and X2 ⊂ P(End W ).

Let v0, . . . vn be the usual basis of V chosen in (3), and let w0, . . . wn be the analogous basis of W .

Choose identity basepoints

x1 =
[∑

vi ⊗ v∗i
]
∈ X1 and x2 =

[∑
wi ⊗ w∗i

]
∈ X2

and define

X∆ = (G×G)(x1, x2) ∈ X1 ×X2.

There are natural projections

X∆

X1 X2.

p2p1

Theorem 7.1. The projections p1 and p2 are both isomorphisms, and they induce an isomorphism

p2 ◦ p−1
1 : X1 ∼−−→ X2.

We will apply superscripts to the notation of the previous sections, so that Xi
0 will be the big

cell of Xi, Xi the closure of the torus in the big cell, etc. Define

Z∆ = T (x1, x2) ⊂ X1
0 ×X2

0 .

Lemma 7.2. There is an isomorphism Z∆ ∼= Cl and the projections pi : Z∆ −→ Zi are isomor-

phisms.

Proof. The proof is exactly as in Proposition 3.4:

t(x1, x2) =

([
v0 ⊗ v∗0 +

l∑
i=1

1

αi(t)
vi ⊗ v∗i +

∑
i>l

♣vi ⊗ v∗i

]
,

[
w0 ⊗ w∗0 +

l∑
i=1

1

αi(t)
wi ⊗ w∗i +

∑
i>l

♠wi ⊗ w∗i

])
,
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where ♣ and ♠ are polynomials in
1

α1(t)
, . . . ,

1

αl(t)
.

As before, there is an isomorphism Cl −→ Z∆ given by

(z1, . . . , zl) 7−→

([
v0 ⊗ v∗0 +

l∑
i=1

zivi ⊗ v∗i +
∑
i>l

♣vi ⊗ v∗i

]
,

[
w0 ⊗ w∗0 +

l∑
i=1

ziwi ⊗ w∗i +
∑
i>l

♠wi ⊗ w∗i

])
. �

Let X∆
0 = p−1

i (Xi
0) and define the action map

χ∆ : U− × U × Z∆ −→ X∆.

Lemma 7.3. The morphism χ∆ is an isomorphism onto X∆
0 .

Proof. Consider the commutative diagram

U− × U × Z∆ X∆

U− × U × Zi Xi.

χ∆

Id×Id×pi pi

χi

It is clear that χ∆ is injective because the composition χi ◦ (Id× Id× pi) is injective.

Let Y be the image of χ∆, and consider the composition

σ = χ∆ ◦ (Id× Id× pi)−1 ◦ χi−1 : Xi
0 −→ Y.

The diagram is commutative, so

pi ◦ σ = IdX0
i

and σ is a section of pi on Xi
0. The composition σ ◦ pi is defined only on X∆

0 , because σ is defined

on Xi
0. Because σ is a section, it follows that the restriction of

σ ◦ pi : X∆
0 −→ X∆

to the image Y of χ∆ is also the identity.

But X∆
0 and Y are irreducible of the same dimension as X∆, so X∆

0 ∩ Y is a dense subset of

X∆
0 . Then the map σ ◦pi is the identity on a dense subset of X∆

0 , so it is the identity on all of X∆
0 .

This shows that pi gives an isomorphism X∆
0 −→ Xi

0, so

χ∆ : U− × U × Z∆ −→ X∆
0

is surjective. �

Lemma 7.4. The restriction of pi to the set

U =
⋃

a∈G×G
aX∆

0
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is injective.

Proof. For any subset I ⊆ {1, . . . , l}, let

z∆
I = (z1

I , z
2
I ) ∈ X1 ×X2.

By Lemma 7.3, as in Section 5, X∆
0 is U−T ×U -stable and the U−T ×U -orbits on X∆

0 are exactly

indexed by the basepoints z∆
I . It is enough to check the statement of the lemma on the intersections

of G×G-orbits with X∆
0 .

Using the G×G-equivariance of pi, it is enough to suppose that

pi((g, h)z∆
I ) = pi(z

∆
I ).

Then

(g, h)ziI = ziI ,

so that (g, h) ∈ StabG×G(ziI). But

StabG×G(z∆
I ) = StabG×G(z1

I ) ∩ StabG×G(z2
I ) = StabG×G(ziI),

so this means that (g, h) ∈ StabG×G(z∆
I ) and (g, h)z∆

I = z∆
I . �

Proof of Theorem 7.1. The projection pi restricts to an isomorphism

pi : X∆
0

∼−−→ Xi
0,

and by G×G-equivariance it gives a surjection

pi : U −→
⋃

a∈G×G
aXi

0 = Xi

which is injective by Lemma 7.4. Because Xi is smooth, pi is an isomorphism.

Then U ⊆ X∆ is a projective subvariety of the same dimension as X∆, so they are equal. It

follows that pi is an isomorphism between X∆ and Xi. �

8. Compactifications in more general spaces

The results in this section are outlined in [EJ] Section 3.1. Any representation E of G̃ × G̃

induces an action

G×Gy P(E).

A point [x] ∈ P(E) whose stabilizer is the diagonal subgroup

G∆ = {(g, g) | g ∈ G},

gives an embedding

ψE : G ↪−→ P(E)

g 7−→ (g, e) · [x]
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and a compactification

X(E, [x]) = ψE(G) ⊂ P(E).

In the previous section we showed that if V and W are regular irreducible representations of G̃,

then

X(End V, [IdV ]) ∼= X(End W, [IdW ]).

Suppose now that V is an irreducible G̃-representation of regular highest weight λ and that

W 1, . . . ,W r are irreducible G̃-representations of highest weight µ1, . . . , µr. Write

W = W 1 ⊕ . . .⊕W r

and let F be any G̃-representation. As in the previous sections, write

X = X(End V, [IdV ]).

Theorem 8.1. Suppose that µk ≤ λ for every k = 1, . . . , r. Then

X(End V ⊕ End W ⊕ F, [IdV ⊕ IdW ⊕ 0]) ∼= X.

Remark 8.2. The G-orbit

G · [IdV ⊕ IdW ⊕ 0]

lies in the image of the closed embedding

P(End V ⊕ End W ) ↪−→ P(End V ⊕ End W ⊕ F ),

so there is an identification

X(End V ⊕ End W ⊕ F, [IdV ⊕ IdW ⊕ 0]) = X(End V ⊕ End W, [IdV ⊕ IdW ]).

Denote by ψ the injection

ψ : G −→ P(End V ⊕ End W )

g 7−→ g · [IdV ⊕ IdW ]

and by X ′ the closure of its image inside P(End V ⊕ End W ). To prove the theorem it will be

sufficient to show that

X ′ ∼= X.

As before, let v0, . . . , vn be a basis of T -weight vectors for V satisfying the conditions (3). Let

w0, . . . , wm be a basis of T -weight vectors for W such that wi has weight µi. This gives a basis

{vi ⊗ v∗j , wi ⊗ w∗j}

for the space End V ⊕ End W . Let

P′0 =
{[∑

aijvi ⊗ vj∗ +
∑

bijwi ⊗ w∗j
]
| a00 6= 0

}
,

and let Z ′ be the closure of the torus inside this affine space:

Z ′ = ψ(T ) ⊂ P′0.
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Proposition 8.3. There is an isomorphism Z ′ ∼= Cl.

Proof. Let t ∈ T and t̃ ∈ T̃ be some preimage of t in the simply-connected cover G̃. Then

ψ(t) = t
[∑

vi ⊗ v∗i +
∑

wi ⊗ w∗i
]

=
[∑

λi(t̃)vi ⊗ v∗i +
∑

µi(t̃)wi ⊗ w∗i
]

=

[
v0 ⊗ v∗0 +

l∑
i=1

1

αi(t)
vi ⊗ v∗i +

∑
i>l

λi(t̃)

λ(t̃)
vi ⊗ v∗i +

∑ µi(t̃)

λ(t̃)
wi ⊗ w∗i

]
The coefficients

λi(t̃)

λ(t̃)
and

µi(t̃)

λ(t̃)

are polynomial in the terms
1

α1(t)
, . . . ,

1

αl(t)

because each µi is less than some µk in the partial ordering of the weight lattice, and each µk ≤ λ
by the assumption of Theorem 8.1. We can define an isomorphism Cl −→ Z ′ just as in the proof

of Proposition 3.4:

(z1, . . . , zl) 7−→

[
v0 ⊗ v∗0 +

l∑
i=1

zivi ⊗ v∗i +
∑
i>l

♣vi ⊗ v∗i +
∑
♠wi ⊗ w∗i

]
,

where ♣ and ♠ are polynomials in z1, . . . , zl. �

Define

P̃ = {[A⊕B] ∈ P(End V ⊕ End W ) | A 6= 0} .

Then there is a natural projection

π : P̃ −→ P(End V ),

and Proposition 8.3, together with Proposition 3.4, imply that the restriction

π|Z′ : Z ′ −→ Z

is an isomorphism.

Fix I ⊂ {1, . . . , l}, and under the identification of Proposition 8.3 define

z′I = (z1, . . . , zl) ∈ Z ′, zi =

1, if i 6∈ I

0, if i ∈ I.

(Cf. the definitions at the start of Section 5.) Then

π(z′I) = zI ,

and each T -orbit on Z ′ contains exactly one basepoint of the form z′I .

As in Section 6, let ∆I = {αi | i 6∈ I} and let lI be the corresponding Levi subalgebra of

g = Lie G. Define

VI = U lI · v0
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to be the subspace of V generated by applying lI to the highest weight vector v0, and recall that

the unipotent radical UI of the corresponding positive parabolic acts on VI trivially.

For each index k such that λ − µk is in the span of the simple roots ∆I , let wk0 , . . . , w
k
nk

be a

basis of T -weight vectors for W k, such that wki has weight µki and which satisfies the conditions of

(3). Define

W k
I = U lI · wk0

to be the subspace of W k generated by applying lI to the highest weight vector wk0 .

In Section 6, the set of indices

J =

j ∈ {0, . . . , n} | λ− λj =
∑
αi∈ΦI

niαi, ni ∈ Z≥0


indexed a basis of weight vectors {vj | j ∈ J} for VI . Similarly, for each W k as above, define

Jk =

j ∈ {0, . . . , n} | λ− µkj =
∑
αi∈ΦI

niαi, ni ∈ Z≥0

 .

Because

λ− µkj = (λ− µk) + (µk − µkj ),

and each term is a linear combinations of roots with non-negative coefficients, an index j is in Jk

if and only if both λ − µk and µk − µkj are in the span of ∆I . Then the set of weight vectors

{wkj | j ∈ Jk} is a basis for W k
I , and it is guaranteed to be nonempty because 0 ∈ Jk.

Lemma 8.4. Let prWk
I
∈ End W denote the projection onto W k

I . Then

z′I =
[
prVI ⊕

(∑
prWk

I

)]
,

where the sum is taken over all k such that λ− µk is in the span of ∆I .

Proof. From Proposition 8.3,

z′I =

[
v0 ⊗ v∗0 +

n∑
i=1

δivi ⊗ v∗i +

r∑
k=1

(
nk∑
i=0

δki w
k
i ⊗ wk∗i

)]
.

Here δi = 1 if λ−λi is in the span of ∆I , and 0 otherwise. Likewise, δki = 1 if λ−µki is in the span

of ∆I , and 0 otherwise.

It follows immediately that

z′I =

v0 ⊗ v∗0 +
∑
j∈J

vi ⊗ v∗i +
∑
k

∑
j∈Jk

wki ⊗ wk∗i

 ,
where the only indices k appearing in the second sum are those for which λ− µk is in the span of

∆I . �

Lemma 8.5. The points z′I ∈ X ′ and zI ∈ X have the same stabilizer in G×G.
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Proof. The inclusion

StabG×G(z′I) ⊆ StabG×G(zI).

is clear, since z′I ∈ P(End V ⊕End W ), zI ∈ P(End V ), and the action of G×G is block-diagonal.

Conversely, recall from Proposition 6.3 that

StabG×G(zI) = {(ux, vy) ∈ UILI × U−I LI | xy
−1 ∈ Z(LI)}.

For any point (ux, vy),

(ux, vy) ·
[
prVI ⊕

(∑
prWk

I

)]
=
[
xprVIy

−1 ⊕
(∑

xprWk
I
y−1
)]
,

because u ∈ UI and v ∈ U−I both act trivially. (Cf. the proof of Proposition 6.3.)

Since VI is an irreducible representation of LI , the central element xy−1 acts on it by the scalar

λ(xy−1).

Likewise, xy−1 acts on each W k
I by

µk(xy−1).

Because xy−1 is central in LI , for any αi in the set ∆I of simple roots that generate lI ,

αi(xy
−1) = 1.

But λ− µk is in the span of ∆I , so it follows that

λ(xy−1)

µk(xy−1)
= 1.

Retracing our steps,

(ux, vy) ·
[
prVI ⊕

(∑
prWk

I

)]
=
[
xprVIy

−1 ⊕
(∑

xprWk
I
y−1
)]

=
[
λ(xy−1)prVI ⊕

(∑
µk(xy−1)prWk

I

)]
=
[
prVI ⊕

(∑
prWk

I

)]
,

so (ux, vy) stabilizes z′I . �

Consider the open subset X ′0 = X ′ ∩ P′0 of X ′. It is U−T × U -stable, and we define the action

map

χ′ : U− × U × Z ′ −→ X ′0.

Proposition 8.6. The morphism χ′ is an isomorphism, and therefore X ′0
∼= CdimG.

Proof. Applying the construction of Lemma 3.6, there is a U− × U -equivariant morphism β′ :

X ′0 −→ U− × U such that

β′(χ′(u, v, z′)) = (u, v).

Then by Lemma 3.7, there is an isomorphism

X ′0
∼= U− × U × β′−1(e, e),

and Z ′ ⊆ β′−1(e, e).
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But X ′0 is irreducible of dimension n = dimG, so the fiber β′−1(e, e) is irreducible of dimension

dimT , and the inclusion Z ′ ⊆ β′−1(e, e) is an equality. �

Now define

Y =
⋃

a∈G×G
aX ′0

to be the union of all G×G-translates of the open affine cell X ′0. The open subvariety Y of X ′ is

contained in P̃.

Proposition 8.7. The restriction of

π : P̃ −→ P(End V )

to Y is injective.

Proof. It is sufficient to check that π is injective on G×G-orbits. Every T -orbit on Z ′ contains a

basepoint of the form z′I . Then every U−T × U -orbit on X ′0 contains some point z′I , and therefore

every G×G-orbit on Y contains such a point.

Suppose without loss of generality that

π(gz′Ih
−1) = π(z′I).

Because π is G×G-equivariant,

gzIh
−1 = zI ,

so (g, h) ∈ StabG×G(zI). By Lemma 8.5, this is the same as the stabilizer of z′I , so

gz′Ih
−1 = z′I . �

Proof of Theorem 8.1. The restriction

π|Z′ : Z ′ −→ Z

is an isomorphism by Proposition 8.3. By Proposition 8.6 and 3.5, it follows that

π|X′0 : X ′0 −→ X0

is also an isomorphism. So the restriction

π|Y : Y −→
⋃

a∈G×G
aX0 = X

is surjective, and by Proposition 8.7 it is also injective. Since the wonderful compactification X is

smooth, π|Y is an isomorphism of algebraic varieties.

This means that Y ⊆ X ′ is a projective (and therefore complete, and therefore closed) algebraic

subvariety of X ′ of the same dimension, so they are equal. Then π gives an isomorphism

X ′ ∼= X. �

Remark 8.8. The compactification X ′ is contained in the closed subvariety

P
(

End V ⊕
(
⊕ End W k

)
⊕ F

)
⊂ P (End V ⊕ End W ⊕ F ) .
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Therefore we could replace X ′ in the discussion above by

X
(

End V ⊕
(
⊕ End W k

)
⊕ F,

[
IdV ⊕

(∑
ckIdWk

)
⊕ 0
])
,

for some scalars ck ∈ C.

9. The Lie algebra realization of the compactification

This section outlines another realization of the wonderful compactification, using the results of

Section 8, and following the construction in [EJ] Section 3.2. Let n be the dimension of G, and

consider the action of G×G on the Grassmannian

Gr(n, g⊕ g).

The stabilizer in G×G of the diagonal subalgebra

g∆ = {(x, x) | x ∈ g} ⊂ g⊕ g

is the diagonal subgroup

G∆ = {(g, g) | g ∈ G} ⊂ G×G.

The orbit of this diagonal subalgebra in the Grassmannian is

(G×G) · g∆
∼= (G×G)/G∆

∼= G,

and we consider its closure

G = (G×G) · g∆ ⊂ Gr(n, g⊕ g).

Theorem 9.1. The compactification G is isomorphic to the wonderful compactification X.

Consider the Plücker embedding

Gr(n, g⊕ g) ↪−→ P (∧n(g⊕ g)) ,

which takes a subspace spanned by a basis u1, . . . , un to the line [u1 ∧ . . . ∧ un]. Let [g∆] be the

image of g∆. Because this is a closed embedding,

G = (G×G) · g∆
∼= (G×G) · [g∆] ⊂ P (∧n(g⊕ g)) .

For a nonzero vector v∆ ∈ [g∆], define the subspace

E = U(g⊕ g) · v∆ ⊂ ∧n(g⊕ g).

It is clear that E does not depend on the choice of v∆ inside [g∆], and the compactification G is

contained in the projectivization of E:

G ⊂ P(E).

We will show that E is of the form

End V ⊕
(
⊕ End W k

)
⊕ F
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for some irreducible representation V of G of highest weight λ and some irreducible representations

W k of highest weights µk with µk ≤ λ in the partial order on the weight lattice. We will show that

under this identification

[g∆] =
[
IdV ⊕

(∑
ckIdWk

)
⊕ 0
]
,

so that Theorem 9.1 will follow from Theorem 8.1 and Remark 8.8.

Let h1, . . . , hl be a basis for the Cartan h = Lie T , and for each α ∈ Φ let eα ∈ g be a root vector

of weight α. There is a basis of T × T -weight vectors for g⊕ g:

• {(hi,±hi) | i = 1, . . . , l} of weight (0, 0),

• {(eα, 0) | α ∈ Φ} of weight (α, 0),

• {(0, eα) | α ∈ Φ} of weight (0, α).

This gives a basis of T × T -weight vectors of ∧n(g⊕ g) indexed by triples (A,B, S), where

• A,B ⊂ Φ are such that |A|+ |B| ≤ n,

• S ⊂ {(hi,±hi) | i = 1, . . . , l} is such that |A|+ |B|+ |S| = n.

The weight vector corresponding to such a triple is

vABS =

(∧
α∈A

(eα, 0)

)
∧

(∧
s∈S

s

)
∧

∧
β∈B

(0, eα)

 ,

and it has weight ∑
α∈A

α,
∑
β∈B

β

 .

Remark 9.2. Let B+ ⊂ G be a positive choice of Borel subgroup containing the maximal torus T ,

and let B− be the opposite Borel. Denote by Φ+ ⊂ Φ the positive roots. Then the T × T -weight

vector

v0 =

 ∧
α∈Φ+

(eα, 0)

 ∧(∧
i=1l

(hi, hi)

)
∧

 ∧
β∈−Φ+

(0, eα)

 ,

has weight (λ,−λ), where

λ =
∑
α∈Φ+

α

is the sum of the positive roots.

Any other T × T -weight vector vABS has weight (µ, µ′) with µ ≤ λ and µ′ ≥ −λ, so v0 is a

highest weight vector with respect to the Borel subgroup

B ×B− ⊂ G×G.

Proposition 9.3. The vector v0 is in the subspace E = U(g⊕ g) · v∆ of ∧n(g⊕ g).

Let h ∈ h be a regular element such that

αi(h) = 1, ∀i = 1, . . . , l.

This element induces an injection

γ : C∗ ↪−→ T
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such that Lie C∗ = Ch. The proof of Proposition 9.3 will follow from the following Lemma.

Lemma 9.4.

lim
z→∞

γ(z) · [g∆] = [v0].

Proof. First we decompose [g∆] into a projectivized sum of T × T -weight vectors. Write

[g∆] =

[(∧
δ∈Φ

(eδ, eδ)

)
∧

(
l∧

i=1

(hi, hi)

)]
.

Then

v∆ =

(∧
δ∈Φ

((eδ, 0) + (0, eδ))

)
∧

(
l∧

i=1

(hi, hi)

)
=
∑

vABS ,(9.1)

where the sum is taken over all triples (A,B, S) such that

• A ⊂ Φ,

• B = Φ\A,

• S = {(hi, hi) | i = 1, . . . , l}.

For any α =
∑l

i=1 niαi ∈ Φ,

γ(z) · eα = zα(h)eα = zht(α)eα,

where ht(α) =
∑l

i=1 ni is the height of the root α. Then

γ(z) · vABS =

(∧
α∈A

zht(α)(eα, 0)

)
∧

(∧
s∈S

s

)
∧

∧
β∈B

(0, eα)

 = znAvABS ,(9.2)

where

nA =
∑
α∈A

ht(α)

is the sum of the heights of the roots appearing in A.

Let

n0 =
∑
α∈Φ+

ht(α).

Then

n0 ≥ nA for all A ⊂ Φ,

n0 = nA if and only if A = Φ+.
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We can now compute

lim
z→∞

γ(z)[g∆] = lim
z→∞

[γ(z)v∆]

= lim
z→∞

[∑
A⊂Φ

znAvABS

]

= lim
z→∞

[
v0 +

∑
A⊂Φ

znA−n0vABS

]
= [v0]. �

Proof of Proposition 9.3. The closed subvariety

P(E) ⊂ P(∧n(g⊕ g))

is T × T -stable and closed, so

(T × T )[g∆] ⊂ P(E).

It follows that [v0] ∈ P(E), and v0 ∈ E. �

Proof of Theorem 9.1. By Proposition 9.3 and Remark 9.2, v0 ∈ E is a highest weight vector of

weight (λ,−λ), with λ =
∑

α∈Φ α. Then

U(g⊕ g) · v0
∼= V ⊗ V ∗ ∼= End V ⊂ E,

where V is the irreducible G-representation of regular highest weight λ.

Because G is semisimple, we can decmopose

E = End V ⊕ (⊕ End W k)⊕ F,

where the second summand consists of all irreducible representations of G×G of the form W ⊗W ∗,
and the third summand consists of all irreducible representations G×G of the form U ⊗W ∗ with

U 6∼= W .

Each representation End W k has highest weight (µk,−µk), and from Remark 9.2 it follows that

µk ≤ λ. It remains to show that

[g∆] =
[
IdV ⊕

(∑
ckIdWk

)
⊕ 0
]
.

This will follow from the next lemma.

Lemma 9.5. An irreducible representation of G×G has a G∆-stable one-dimensional subspace if

and only if it is of the form End W for some irreducible representations W of G. In this case, the

unique such space is

CIdW .

Proof. Any irreducible representation of G×G is of the form

U ⊗W ∗ ∼= Hom(W,U)

for irreducible representations U and W of G.
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There is a G∆-stable line in U ⊗W ∗ if and only if there is a G-equivariant homomorphism in

Hom(W,U). By Schur’s lemma, such a homomorphism exists if and only if U ∼= W , in which case

it is unique up to scaling. �

Because [g∆] ∈ P(E) is G∆-fixed, the line

Cv∆ ⊂ E = End V ⊕ (⊕ End W k)⊕ F

is G∆-stable. Then, its projection onto each summand is G∆-stable.

Lemma 9.5 then implies that the projection of v∆ onto End V is

a0IdV

for some a0 ∈ C, that its projection onto End W k is

akIdWk

for some ak ∈ C, and that its projection onto F is 0 because F has no one-dimensional G∆-stable

subspaces.

So we have

v∆ = c0IdV ⊕
(∑

ckIdWk

)
⊕ 0.

But recall from (9.1) that

v∆ = v0 +
∑

vABS

as a sum of T × T -weight vectors in ∧n(g⊕ g), so the projection of v∆ onto End V is nonzero and

so c0 6= 0. It follows that

[g∆] =
[
IdV ⊕

(∑
ckIdWk

)
⊕ 0
]
. �

Theorem 9.1 gives an isomorphism

ϕ : X
∼−−→ G ⊂ Gr(n, g⊕ g)

such that for any interior point g ∈ G ⊂ X of the wonderful compactification,

ϕ(g) = (g, e) · g∆.(9.3)

We will describe which n-dimensional subspaces of g ⊕ g appear in the boundary of G in the

Grassmannian. Because the map ϕ is G×G-equivariant, it is enough to find the image

ϕ(zI) ∈ Gr(n, g⊕ g)

of each G×G-orbit basepoint zI .

Recall the notation defined at the beginning of Section 6.

Theorem 9.6. The image of the orbit basepoint zI under the isomorphism ϕ is the n-dimensional

space

ϕ(zI) = {(u+ x, v + x) | u ∈ uI , v ∈ u−I , x ∈ lI} = pI ×lI p
−
I .
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Remark 9.7. Suppose I = {1, . . . , l} and z{1,...,l} is the basepoint of the unique closed G×G-orbit

of minimal dimension. Theorem 9.6 says that

ϕ(z{1,...,l}) = b×h b
−,

and the image of this subspace under the Plücker embedding is exactly the point

[v0] ∈ P (∧n(g⊕ g))

defined in Remark 9.2.

The proof is similar to the discussion in Lemma 9.4.

Proof of Theorem 9.6. Let h ∈ h be such that

αi(h) =

0, αi ∈ ∆I

1, αi 6∈ ∆I

This produces a one-parameter subgroup

γ : C∗ −→ T

such that Lie γ(C∗) = Ch. Then

αi(γ(z)) = zαi(h) =

1, αi ∈ ∆I

z, αi 6∈ ∆I .

The in X ⊂ P(End V ), this one-parameter subgroup is

γ(z) =

[
v0 ⊗ v∗0 +

l∑
i=1

1

αi(γ(z))
vi ⊗ v∗i +

∑
i>l

♣vi ⊗ v∗i

]
,

(where ♣ is polynomial in the first l coefficients, cf. Proposition 3.4) and as z tends to infinity we

obtain

lim
z→∞

γ(z) =

v0 ⊗ v∗0 +
∑
αi∈∆I

vi ⊗ v∗i +
∑
i>l

♣vi ⊗ v∗i

 = zI .

So γ is a one-parameter subgroup that tends to the orbit basepoint zI in the boundary of the

wonderful compactification.

Then

ϕ(zI) = lim
z→∞

ϕ(γ(z)) = lim
z→∞

(γ(z), e) · g∆,

as in (9.3). To compute (γ(z), e) ·g∆ we work in the projective space P(∧n(g⊕g)) under the Plücker

embedding.

Recall that

[g∆] =
[∑

vABS

]
,

where as in (9.1) the sum is taken over all triples (A,B, S) such that

• A ⊂ Φ,

• B = Φ\A,
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• S = {(hi, hi) | i = 1, . . . , l}.

For any root α ∈ Φ, write

α =
∑
αi∈∆I

niαi +
∑
αj 6∈∆I

njαj

and define

htI(α) =
∑
αj 6∈∆I

nj .

Then

γ(z) · eα = zα(h)eα = zhtI(α)eα.

Applying the one-parameter subgroup γ to T × T -weight vectors in ∧n(g⊕ g),

γ(z) · vABS = zmAvABS ,

where

mA =
∑
α∈A

htI(α).

(Cf. the computation in (9.2).)

Let

m0 =
∑
α∈Φ+

htI(α).

Then

m0 ≥ mA for all A ⊂ Φ,

m0 = mA if and only if Φ+\ΦI ⊆ A ⊆ Φ+ ∪ ΦI ,

—that is, m0 = mA if and only if A differs from Φ+ by roots in ΦI , which do not contribute to the

sum mA.

Then we can compute

lim
z→∞

γ(z)[g∆] = lim
z→∞

[
γ(z) ·

∑
vABS

]
= lim

z→∞

[
v0 +

∑
zmA−m0vABS

]
=
[∑

vA′B′S

]
,

where the last sum is taken over triples (A′, B′, S) such that

• Φ+\ΦI ⊆ A ⊆ Φ+ ∪ ΦI

• B = Φ\A
• S = {(hi, hi) | i = 1, . . . , l}.

This sum can be written ∑
(A′,B′,S)

( ∧
α∈A′

(eα, 0)

)
∧

(
l∧

i=1

(hi, hi)

)
∧

 ∧
β∈B′

(0, eβ)

 ,(9.4)
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and we notice that every root vector eδ with δ ∈ ΦI appears as both (eδ, 0) and as (0, eδ) in this

sum. Then we can rewrite (9.4) as ∧
α∈Φ+\ΦI

(eα, 0)

 ∧
 ∧
δ∈ΦI

(eδ, eδ)

 ∧( l∧
i=1

(hi, hi)

)
∧

 ∧
β∈−Φ+\ΦI

(0, eβ)


The vectors in the first wedge give a basis for

uI ⊕ 0 ⊂ g⊕ g,

the vectors in the last wedge give a basis for

0⊕ u−I ⊂ g⊕ g,

and the diagonal vectors in the two middle wedges give a basis for the diagonal subspace

lI∆ = {(x, x) | x ∈ lI} ⊂ g⊕ g.

It follows that

ϕ(zI) = lim
z→∞

γ(z)[g∆] = [pI ×lI p
−
I ]. �

10. Log-homogeneous varieties

In this section we introduce some general notions about log-homogeneous varieties, following the

exposition in Sections 1.1 and 2.1 of the lecture notes [Bri1]. For now, let G be a connected complex

algebraic group with Lie algebra g, and let X be a smooth connected G-variety. Denote by

TX = Der(OX)

the tangent sheaf of X, whose sections are derivations of the ring of regular functions OX . This is

the locally-free sheaf associated to the tangent bundle TX of X.

The action of G on the variety X gives a map

opX : g −→ Γ(X,TX)

ξ 7−→ vξ,

where vξ is the vector field induced by the differential of the G-action:

vξ(x) =
d

dt |t=0
(exp(−tξ)x) .

(The negative sign is necessary to make opX a homomorphism of Lie algebras.) There is a corre-

sponding morphism of sheaves

op
X

: OX ⊗ g −→ TX .

Definition 10.1. The variety X is homogeneous if the action of G on X is transitive.

Proposition 10.2. The variety X is homogeneous if and only if the morphism op
X

is surjective.
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Proof. Choose a basepoint x ∈ X. If X is homogeneous, the action map

ϕx : G −→ X

g 7−→ g · x

is surjective, and so is its differential

dϕx : g −→ TxX.

But

dϕx = op
X,x

,

so it follows that op
X

is also surjective.

Conversely, suppose that op
X

is surjective, so that the induced map on stalks dϕx is surjective

at every x. Then ϕx is a submersion, and its image G · x is open in X. Since X is connected and

x ∈ X was chosen arbitrarily, it follows that X is homogeneous. �

Definition 10.3. An effective reduced divisor D ⊂ X has normal crossings if at each x ∈ X there

exist local coordinates x1, . . . , xn such that

D = {(x1, . . . , xn) | x1 · . . . · xk = 0}.

That is, in the completed local ring

ÔX,x = C[[x1, . . . , xn]]

the ideal of D is generated by x1 · . . . · xk.

Definition 10.4. Suppose that D ⊂ X is a normal crossing divisor. The logarithmic tangent sheaf

is the subsheaf

TX(− logD) ⊂ TX
whose sections are the derivations of OX that preserve the ideal sheaf of D. In other words, these

sections are vector fields on X that are tangent to the divisor D, called logarithmic vector fields.

Example 10.5. Let X = Cn and let

D = {x1 · . . . · xk = 0}

be the union of the first k coordinate hyperplanes. At the origin, the logarithmic tangent sheaf is

generated by

x1∂1, . . . , xk∂k, ∂k+1, . . . , ∂n.

Remark 10.6. (1) Because D is a normal crossing divisor, the logarithmic tangent sheaf is

locally-free of rank dimX, and the associated vector bundle is the logarithmic tangent

bundle

TX(− logD).

It is not a subbundle of the tangent bundle – on the contrary, the two bundles have the

same rank.
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(2) The restriction of TX(− logD) to the open piece X◦ = X\D is the usual tangent sheaf TX◦ .
(3) The dual of TX(− logD) is the sheaf Ω1

X(logD) of logarithmic 1-forms with poles along

D. (A logarithmic form is an algebraic form with simple poles whose differential also has

simple poles.) In Example 10.5, this sheaf is locally generated by

dx1

x1
, . . . ,

dxk
xk

, dxk+1, . . . ,dxn.

Its associated bundle is the logarithmic cotangent bundle

T ∗X(− logD).

Now let G act on X and let D ⊂ X be a G-stable normal crossing divisor. Then the differential

of the action map induces the morphism of Lie algebras

opX,D : g −→ Γ(X,TX(− logD))

and the associated morphism of sheaves

op
X,D

: OX ⊗ g −→ TX(− logD).

Definition 10.7. The pair (X,D) is log-homogeneous if the morphism op
X,D

is surjective.

Example 10.8. (1) Suppose that X = Cn is affine space, D = {x1 · . . . · xn = 0 is the union of

the coordinate hyperplanes, and G = (C∗)n acts on X by coordinate-wise multiplication.

Then (X,D) is log-homogeneous.

(2) Suppose that X is a smooth projective toric variety for a torus G = T , so that T sits inside

X as an open T -orbit. The boundary D = X\T is a normal crossing divisor, and X can be

covered by open T -stable affine spaces Cn on which T acts by coordinate multiplication. It

follows that (X,D) is log-homogeneous. (See [Ful].)

Remark 10.9. Suppose that (X,D) is log-homogeneous. Then the restriction

op
X,D|X◦ = op

X◦
: OX|X◦ ⊗ g −→ TX(− logD)|X◦ = TX◦

is surjective, so X◦ is a homogeneous space.

Construct a stratification of the divisor D as follows: let

X1 = D,X2 = Sing(D), . . . , Xm = Sing(Xm−1), . . . ,

and let the strata be the connected components of Xm\Xm+1. They are smooth, locally-closed,

and G-stable because G is connected.

Fix a stratum S and a point x ∈ S, and let x1, . . . , xn be coordinates at x such that the divisor

D is given by

D = {x1 · . . . · xk = 0}.

Then Xm\Xm+1 is the locus where exactly m coordinates are zero, and

S = {x1 = . . . = xk = 0}
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has codimension k. The stratum S is the intersection of the stratum closures

S̄i = {xj = 0 | j ≤ k, j 6= i}.

The normal space of S in X at x

NS/X,x = TxX/TxS

decomposes as a sum of lines

(10.1) NS/X,x = L1 ⊕ . . .⊕ Lk,

where each Li is the normal space to S in S̄i at x.

The stabilizer StabG(x) = Gx of x in G acts on all these spaces, and its identity component

preserves each line Li. The action map

ρx : (Gx)◦ −→ (C∗)k

has differential

dρx : gx −→ Ck.

The following gives a criterion for log-homogeneity. (See [Bri1], Proposition 2.1.2.)

Proposition 10.10. The following are equivalent:

(1) The pair (X,D) is log-homogeneous.

(2) Each stratum S is a single G-orbit and the differential dρx is surjective at every x ∈ S.

If these conditions hold, there is a short exact sequence of Lie algebras

0 −→ ker(dρx) −→ g
opX,D−−−−→ TxX(− logD) −→ 0.

Proof. Because TX(− logD) preserves the ideal sheaf of S, there is a morphism of sheaves

TX(− logD)|S −→ TS

that descends to a linear map on fibers

px : TxX(− logD) −→ TxS.

In coordinates x1, . . . , xn at x, px is the projection

{x1∂1, . . . , xk∂k, ∂k+1, . . . , ∂n} −→ {∂k+1, . . . , ∂n}.

Since

px ◦ opX,D = opS : g −→ TxS,

the composition px ◦ opX,D factors through the injection

ιx : g/gx −→ TxS.
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We obtain a commutative diagram in which the rows are short exact sequences:

0 gx g g/gx 0

0 〈xi∂i〉 TxX(− logD) TxS 0.

dρx opX,D ιx

px

Because ιx is injective, it follows by the Snake Lemma that (1) opX,D is surjective if and only if (2)

both dρx and ιx are surjective. The latter is equivalent to the condition that S is a single G-orbit.

Moreover, we have

ker(dρx) = ker(opX,D).

If opX,D is surjective, this gives the short exact sequence

0 −→ ker(dρx) −→ g
opX,D−−−−→ TxX(− logD) −→ 0. �

11. The logarithmic cotangent bundle of G

Now let G be a semisimple connected algebraic group with trivial center, and let X once again

be the wonderful compactification of G. Write D ⊂ X for the boundary divisor, which is a normal

crossing divisor by Theorem 5.3.

Proposition 11.1. The pair (X,D) is log-homogeneous.

Proof. The stratification of the divisor D given above is exactly the stratification of the boundary

of X into G×G-orbits from Section 5. It is enough to check the criterion in Proposition 10.10 at

the orbits basepoints zI , I ⊂ {1, . . . , l}.
Recall from Theorem 4.4 that X is covered by G×G-translates of the big cell

X0
∼= U− × U × Z,

where U− and U are the unipotent radicals of a fixed pair of opposite Borels, and Z is the closure

of the resulting maximal torus in X0, isomorphic to Cl by Proposition 3.4. Moreover, each orbit

basepoint zI is contained in Z.

Keeping the notation of Section 5, assume without loss of generality that

I = {1, . . . , k}.

Then the basepoints zI is of the form

zI = (0, . . . , 0, 1, . . . , 1)

and we have the following tangent spaces:

TzIX = TzIX0
∼= u− ⊕ u⊕ Cl

TzI (G×G)zI ∼= u− × u× Cl−k.

By Proposition 3.4, the torus T acts on Z ∼= Cl on the left via

(−α1, . . . ,−αl),
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and so it acts on the normal space

TzIX0/TzI (G×G)zI ∼= Ck

by (−α1, . . . ,−αk).
Recall from Proposition 6.3 that the stabilizer of zI in G×G is

StabG×G(zI) = {(ux, vy) ∈ UILI × U−I LI | xy
−1 ∈ Z(LI)}.

It acts on the normal space by fixing each line in the decomposition (10.1), and it acts on the line

Li by the central character −αi. It follows that the map

dρzI : Lie(StabG×G(zI)) −→ Ck

(u+ x, v + y) 7−→ (α1(y − x), . . . , αk(y − x))

is surjective, and so it follows by Proposition 10.10 the wonderful compactification X is log-

homogeneous. �

Corollary 11.2. The isotropy Lie algebra of the orbit basepoint zI is

ker(dρzI ) = pI ×lI p
−
I .

Now consider the vector bundle RX on X, with fiber at x ∈ X given by

RX,x = ker(dρzI ).

It is called the bundle of isotropy subalgebras. By Proposition 9.6, this vector bundle is isomorphic

to the restriction to X of the tautological bundle on the Grassmannian

Gr(n, g× g).

Moreover, by Proposition 10.10, there is a short exact sequence of vector bundles on X:

(11.1) 0 −→ RX −→ X × g× g −→ TX(− logD) −→ 0.

Proposition 11.3. There is an isomorphism of vector bundles on X between the bundle of isotropy

subalgebras and the logarithmic cotangent bundle of X:

RX ∼= T ∗X(− logD).

Proof. (See [Bri2], Example 2.5.) Let β be a nondegenerate G-invariant symmetric bilinear form

on g. The form (β,−β) is a nondegenerate G-invariant symmetric bilinear form on g× g, and the

fiber

RX,e = g∆

is Lagrangian.

Then RX is a Lagrangian subbundle of X × g× g, and from the short exact sequence (11.1) we

get an isomorphism

RX ∼= R⊥X
∼= (X × g× g/RX)∗ ∼= T ∗X(− logD). �
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12. Cohomology of the wonderful compactification

We compute the cohomology of X by decomposing it into a union of affine cells using the

Bialynicki-Birula decomposition (see Part 1 of these notes, Theorem 2.2). This section follows [EJ],

Sections 4.1 and 4.2. See also [DS].

As before, let T be a maximal torus of G and let W be the associated Weyl group. For every

element w ∈W , choose a coset representative ẇ ∈ NG(T ). Let

z0 = z{1,...,l} ∈ X

be the basepoint of the unique closed G×G-orbit in X.

Proposition 12.1. The T × T -fixed points in X are exactly the points

{zy,w = (ẏ, ẇ) · z0 | y, w ∈W}.

Proof. Decompose

X =
∐

I⊆{1,...,l}

(G×G) · zI

and suppose

x ∈ (G×G) · zI
is fixed by T × T . Then the stabilizer of x in G×G contains a torus of dimension 2l, and so does

the stabilizer of zI . But the maximal torus of

StabG×G(zI) = {(ux, vy) ∈ UILI × U−I LI | xy
−1 ∈ Z(LI)}

is the subgroup

{(x, y) ∈ T × T | xy−1 ∈ Z(LI)},

which has dimension l + |I|. It follows that |I| = l and that

I = {1, . . . , l},

so x is contained in the G×G-orbit of minimal dimension.

By Remark 6.4, this orbit if G × G-isomorphic to the product of two copies of the flag variety.

By Theorem 2.1 in Part 1, the T × T -fixed points in

G/B ×G/B−

are exactly the point (ẏB, ẇB−). The Proposition follows. �

Proposition 12.2. The T × T -weights on Tz0X are

(1) (−α, 0), α ∈ Φ+.

(2) (0, α), α ∈ Φ+.

(3) (−αi, αi), αi ∈ ∆.

Proof. Recall once again that the point z0 is contained in the big cell X0
∼= U− × U × Z, and that

this isomorphism is U−T × U -equivariant. Then

Tz0X0
∼= u− ⊕ u⊕ Cl
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and T×T acts on the first summand by the weights {(−α, 0) | α ∈ Φ+} and on the second summand

by the weights {(0, α) | α ∈ Φ+}.
To see how T × T acts on the tangent space of Z, recall that

X ⊆ P(End V )

and choose as in Section 3 a basis v0, . . . , vn for V such that vi has weight λi with

λ0 = λ

λi = λ− αi for i = 1, . . . , l.

Then the isomorphism Z ∼= Cl is given by

(z1, . . . , zl) 7−→

[
v0 ⊗ v∗0 +

l∑
i=1

zivi ⊗ v∗i +
∑
i>l

♣vi ⊗ v∗i

]
and the action of (t1, t2) ∈ T × T at the identity element in P(End V ) is given by

(t1, t2) · [
∑

vi ⊗ v∗i ] =
[
λi(t1)vi ⊗ λi(t−1

2 )v∗i
]

=

[
v0 ⊗ v∗0 +

l∑
i=1

αi(t2)

αi(t1)
vi ⊗ v∗i +

∑
i>l

♣vi ⊗ v∗i

]
.

So the weights of T × T on the tangent space of Z are

{(−αi, αi) | αi ∈ ∆}. �

Corollary 12.3. The T × T -weights on TzywX are

(1) (−yα, 0), α ∈ Φ+.

(2) (0, wα), α ∈ Φ+.

(3) (−yαi, wαi), αi ∈ ∆.

Remark 12.4. Recall that if Y is a toric variety for a torus S, it is associated to a union of cones

Fan(Y ) =
{
Cy ⊂ X∗(S)⊗Z R | y ∈ Y S

}
indexed by S-fixed points in the following way: Let y ∈ Y be fixed by S, and let µ1, . . . , µl be the

weights of S on the tangent space TyY . Then the cone Cy is defined by

Cy = {x ∈ X∗(S)⊗Z R | µi(x) ≥ 0 ∀i = 1, . . . , l}.

Moreover, the toric variety Y is complete if and only if its fan covers the entire cocharacter space—in

other words, if and only if ⋃
y∈Y S

Cy = X∗(S)⊗Z R.

For details on toric varieties, see [Ful].

Let T ⊂ X be the closure of the maximal torus T inside the wonderful compactification.
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Proposition 12.5. The fan of T is the fan of Weyl chambers.

Proof. Define the intermediate variety

Z̃ =
⋃
w∈W

ẇZẇ−1 ⊆ T .

This is a smooth toric variety for the torus e× T and its T -fixed points are

Z̃T = {zww | w ∈W}.

By Corollary 12.3, the weights of T on the tangent space Tzww Z̃ are

wα1, . . . , wαl,

and the corresponding cone is

Cw = {x ∈ X∗(T )⊗Z R | wαi(x) ≥ 0} = w · C0,

where C0 is the dominant Weyl chamber.

It follows that the fan of Z̃ is the fan of Weyl chambers. But this fan covers the entire cocharacter

space, so Z̃ is complete. Since it is also dense in T , equality must hold:

Z̃ = T . �

Now fix an element h ∈ h such that αi(h) = 1 for all i = 1, . . . , l, and let n ∈ Z be an integer

such that

n > β(h) for all β ∈ Φ+.

Define a one-parameter subgroup

γ : C∗ −→ T × T

such that

Lie γ(C∗) = C(nh,−h).

Proposition 12.6.

XT×T = XC∗ .

Proof. Let X ′ be a connected component of the fixed point set XC∗ . Because the action of T × T
commutes with the C∗-action, X ′ is T × T -stable. But then T × T is a solvable group acting on

the projective variety X ′, and this action must have a fixed point.

Suppose zyw ∈ X ′ is a T × T -fixed point. By Corollary 12.3, the eigenvalues of (nh,−h) on the

tangent space TzywX
′ are

(1) −n(yα(h)), α ∈ Φ+.

(2) −wα(h), α ∈ Φ+.

(3) −n(yαi(h))− wαi(h), αi ∈ ∆.

The first two are non-zero by the choice of h, and the third is nonzero by the choice of n. It follows

that zyw is an isolated fixed point of the C∗-action, so

X ′ = {zyw} ⊆ XT×T . �
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Recall that for any y ∈W , the length of y is

l(y) = #{α ∈ Φ+ | yα ∈ −Φ+}.

Define the simple length of y to be

m(y) = #{αi ∈ ∆ | yα ∈ −Φ+}.

Theorem 12.7. Let

Xyw = {x ∈ X | lim
t→0

γ(t) · x = zyw}.

Then the set

{[Xyw] | y, w ∈W}

forms an additive basis for H∗(X), and the degree of the basis element [Xyw] is

2(l(y) + l(w) +m(y)).

Proof. The first part of the theorem follows from the Bialynicki-Birula decomposition, which also

states that there is a C∗-equivariant isomorphism

Xyw
∼= T+

zywX,

where T+
zywX is the subspace of the tangent space TzywX on which C∗ acts with positive weights.

It follows that

deg[Xyw] = 2 dimXyw = dimT+
zywX.

From the proof of Proposition 12.6,

(1) −n(yα(h)) > 0 if and only if yα ∈ −Φ+.

(2) −wα(h) > 0 if and only if wα ∈ −Φ+.

(3) −n(yαi(h))−wαi(h) if and only if n(yαi(h)) < −wαi(h), which is if and only if yαi ∈ −Φ+.

It follows that C∗ has

l(y) + l(w) +m(y)

positive eigenvalues on TzywX. �

13. The Picard group

This section follows the exposition in [BK], where the structure of the wonderful compactification

is developed more generally over fields of arbitrary characteristic.

Because the wonderful compactification X is smooth, the Picard group parametrizes both equiv-

alence classes of divisors on X and isomorphism classes of invertible sheaves on X. As before,

write W for the Weyl group and X0 ⊂ X for the big cell of the wonderful compactification. Let

s1, . . . , sl ∈W be the simple reflections, and for any element w ∈W let ẇ ∈ NG(T ) be a preimage,

Lemma 13.1. The boundary X\X0 is the union of the divisors

BṡiB−,
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and these freely generate the Picard group Pic(X).

Proof. Since X0 is an affine open subset of X, the complement X\X0 is of pure codimension 1 by

Lemma 5.1. Moreover, X0 intersects every G × G-orbit, so X\X0 contains no G × G-orbits and

therefore G\X0 is dense in X\X0.

But G ∩X0 = BB− by Proposition 3.2, so by the Bruhat decomposition the complement is

G\X0 =
∐

16=w∈W
BẇB−.

It follows that

X\X0 =
⋃
si∈W

BṡiB−.

Now suppose D ⊂ X is a divisor. Because X0 is an affine space, the intersection D ∩ X0 is

principal, so D is equivalent in Pic(X) to a linear combination

l∑
i=1

aiBṡiB−.

These coefficients are unique—if

D ∼
l∑

i=1

biBṡiB−,

then
l∑

i=1

(ai − bi)BṡiB− ∼ 0

is principal, so it is cut out by a regular function on X that is nonvanishing on X0. But X0 is an

affine space, so any such function is constant. �

Definition 13.2. Let w0 ∈W be the longest word of the Weyl group. The divisors

Di = Bṡiẇ0B− = BṡiB−ẇ0

are called the Schubert divisors of X.

Remark 13.3. Because Pic(X) is discrete, the action of G on Pic(X) is trivial, and the divisor

Di is equivalent to BṡiB−. The Schubert divisors D1, . . . , Dl form a basis for the Picard group

Pic(X).

Consider the unique closed G×G-orbit of minimal dimension in Y ⊂ X. By Remark 6.4,

Y ∼= G/B ×G/B

is isomorphic to a product of two copies of the flag variety.

We will classify the invertible sheaves on X by restricting them to Y and using the Borel-Weil

theorem. Let Λ be the weight lattice of the maximal torus T̃ , and let Λ+ be the cone of dominant

weights.
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Theorem 13.4 (Borel-Weil). There is an isomorphism of abelian groups

Pic(G/B) ∼= Λ.

The weight λ ∈ Λ corresponds to a line bundle

G×B Cλ

with sheaf of sections L(λ), and the global sections of this sheaf are

Γ(G/B,L(λ)) =

V ∗λ , λ ∈ Λ+

0, else.

Moreover, L(λ) is ample if and only if λ is regular dominant.

Let

LY (λ) = L(−w0λ) � L(λ).

be the invertible sheaf on Y corresponding to the weights (−w0λ, λ).

Proposition 13.5. The restriction

Pic(X) −→ Pic(Y )

is injective with image

{[LY (λ)] | λ ∈ Λ} .

Proof. Recall that by the Peter-Weyl theorem, the regular functions on G̃ are given by

C[G̃] =
⊕
µ∈Λ+

Vµ ⊗ V ∗µ ,

where Vµ is the irreducible G̃-representation of highest weight µ, V ∗µ is its dual of highest weight

−w0µ, and the functions are

v ⊗ w∗(g) = w∗(g · v).

Let χ1, . . . , χl be the fundamental weights, and let vi ∈ Vχi and wi ∈ V ∗χi
be highest weight

vectors. In the simply connected cover G̃ of G, the intersection

D̃i ∩ G̃ = B̃siw0B̃

is a principal divisor, cut out by the function vi ⊗wi. This function is a B̃ × B̃-weight vector with

weight

(χi,−w0χi),

so the canonical section τi of the invertible sheaf OX(Di) is a B̃ × B̃-weight vector of the same

weight.

It follows that

OX(Di)|Y = LY (χi).

Since the isomorphism classes [OX(Di)] generate Pic(X), and since the invertible sheaves LY (χi)

form a linearly independent set in the Picard group Pic(Y ), the proposition is proved. �
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Denote by LX(λ) the unique invertible sheaf on X that restricts to LY (λ) along Y . As in Section

5, let

S1, . . . , Sl

be the irreducible components of the boundary divisor X\G, and write σi for the canonical section

of the invertible sheaf OX(Si). Because Si is G×G-stable, the section σi is G̃× G̃-invariant.

Lemma 13.6. (1) OX(Di) = LX(χi)

(2) OX(Si) = LX(αi)

Proof. Part (1) is already contained in the proof of Proposition 13.5.

The intersection Si ∩X0 is a principal divisor, cut out by a nonzero regular function on X0 as

follows: recall from Theorem 3.5 the U−T × U -equivariant isomorphism

X0
∼= U− × U × Cl.

The intersection

Si ∩X0 = U− × U × {(z1, . . . , zl) | zi = 0}

is cut out by the regular function zi = 0, so the canonical section of the invertible sheaf OX(Si)

has T ×T -weight (αi,−w0αi). (Cf. Proposition 12.2. In this section we are working with the Borel

B ×B instead of B ×B−, so the second factor is always twisted by the longest element w0 of W .)

Part (2) follows. �

Proposition 13.7. The invertible sheaf LX(λ) is generated by global sections if and only if the

weight λ is dominant, and it is ample if and only if λ is regular dominant.

Proof. If LX(λ) is globally generated (respectively ample), then its restriction LY (λ) is globally

generated (resp. ample), so by Borel-Weil the weight λ is dominant (resp. regular dominant.)

For the converse, because the divisor Di contains no G × G-orbits, the G × G-translates of the

canonical section τi have no common zeros. It follows that the invertible sheaf LX(χi) is globally

generated.

If λ is a dominant weight, then

λ =
l∑

i=1

〈λ, α̌i〉χi

with non-negative coefficients 〈λ, α̌i〉. It follows that

LX(λ) =
l⊗

i=1

LX(χi)
⊗〈λ,α̌i〉

is also generated by global sections.

If λ is regular and dominant, fix a very ample invertible sheaf L = LX(µ). For a sufficiently

large N ∈ Z, the weight

Nλ− µ

is dominant, so the invertible sheaf

LX(λ)⊗N ⊗ L−1
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is generated by global sections. But then by tensoring with L,

LX(λ)⊗N

is very ample. �

14. The total coordinate ring

Consider the sheaf of OX -modules ⊕
λ∈Λ

LX(λ).

Taking its relative spec gives a scheme X̂ with a morphism

X̂
π−−→ X.

The scheme X̂ has a G̃×G̃-action that is inherited from the action on X and a commuting T̃ -action

along the fibers of π, which make the morphism π a G̃× G̃-equivariant principal T̃ -bundle.

In particular, because the wonderful compactification X is spherical for the action of the Borel

subgroup

B̃ × B̃ ⊂ G̃× G̃,

the scheme X̂ is spherical for the action of the Borel subgroup

B̃ × B̃ × T̃ ⊂ G̃× G̃× T̃ .

Proposition 14.1. The scheme X̂ is a quasi-affine variety.

Proof. Fix a very ample invertible sheaf L on X. Then the invertible sheaves

L ⊗ LX(χi)

are very ample and their classes form a basis of the Picard group Pic(X). Each one gives a projective

embedding

X ↪−→ Pi.

Let P̂i be the tautological bundle over Pi. The commutative diagram

(14.1)

X̂
∏l
i=1 P̂i

X
∏l
i=1 Pi,

π

is actually a pullback square. Since each P̂i is quasi-affine, being the complement of a point in an

affine space, so is the pullback X̂. �

Definition 14.2. The total coordinate ring of X is

R[X] =
⊕
λ∈Λ

Γ(X,LX(λ)).
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For a detailed introduction to total coordinate rings, see [ADHL]. In the case of wonderful

varieties, they are discussed more generally in [Bri1], whose exposition we follow here in the special

case of the wonderful compactification of G.

Remark 14.3. The ring R[X] is the ring of regular functions on the spherical quasi-affine variety

X̂. By Section 30.5 in [Tim], it follows that R[X] is finitely-generated and normal.

By the previous remark, we can define the normal affine variety

X̃ = Spec R[X].

It is the affine closure of X̂, so it is equipped with an open embedding

ι : X̂ ↪−→ X̃.

Proposition 14.4. The group G̃× G̃× T̃ acts on X̃ with open orbit

X̃0
∼= G̃×

Z̃
T̃ ,

where Z̃ is the center of G̃.

Proof. The open G̃ × G̃ × T̃ -orbit on X̃ is exactly the preimage under π of the open G̃ × G̃-orbit

on the wonderful compactification X.

This open orbit is a homogeneous G̃ × G̃-space isomorphic to the group G, and from diagram

(14.1) its preimage is

X̃0 = π−1(G) ∼= (G̃× G̃)×Stab
G̃×G̃

(e) T̃ ,

where the torus T̃ is recovered as the torus corresponding to the character group generated by

χ1, . . . , χl. The stabilizer of the identity e ∈ G is

Stab
G̃×G̃(e) = G̃∆ × Z̃1,

where G̃∆ is the diagonal embedding of G̃ into G̃× G̃, and Z̃1 is the embedding of Z̃ into the first

coordinate of Z̃ × Z̃.

The factor G̃∆ acts on T̃ trivially, and the factor Z̃1 acts on T̃ by the fundamental weights

χ1, . . . , χl. It follows that

X̃0
∼= (G̃× G̃)×Stab

G̃×G̃
(e) T̃ ∼= G̃×

Z̃
T̃ . �

Let R ⊂ Λ be the root lattice of G, and for every weight λ denote by

tλ : T̃ −→ C

z 7−→ λ(z)

the corresponding character.
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Proposition 14.5. There is an isomorphism of G̃× G̃× T̃ -algebras

C[X̃0] ∼=
⊕
λ∈Λ

 ⊕
µ∈Λ+

λ−µ∈R

Vµ ⊗ V ∗µ

 tλ,

where the right-hand side is viewed as a subalgebra of C[G̃× T̃ ].

Proof. By Proposition 14.4, there is an isomorphism of G̃× G̃× T̃ -algebras

C[X̃0] ∼= C[G̃×
Z̃
T̃ ] ∼=

(
C[G̃]⊗ C[T̃ ]

)Z̃
.

By the Peter-Weyl theorem, the first factor is

C[G̃] ∼=
⊕
µ∈Λ+

Vµ ⊗ V ∗µ .

The second factor is

C[T̃ ] ∼=
⊕
λ∈Λ

Ctλ.

Invariance under Z̃ means exactly that

µ|Z̃ = λ|Z̃ ,

which is to say that λ− µ ∈ R. �

Theorem 14.6. There is an isomorphism of G̃× G̃× T̃ -algebras

C[X̃] ∼=
⊕
λ∈Λ

⊕
µ∈Λ+

µ≤λ

Vµ ⊗ V ∗µ

 tλ,

where the right-hand side is viewed as a subalgebra of C[G̃× T̃ ], and the ordering µ ≤ λ is the usual

ordering on the weight lattice.

Proof. The regular functions on X̃ form a subalgebra of the regular functions on X̃0, and in view

of Proposition 14.5 this gives an embedding

R[X] = C[X̃]
ι

↪−−−−→
⊕
λ∈Λ

 ⊕
µ∈Λ+

λ−µ∈R

Vµ ⊗ V ∗µ

 tλ.

The canonical section

σi ∈ Γ(X,LX(αi))

is G̃×G̃-invariant and a T̃ -eigenfunction with weight αi. In the target there is a unique T̃ -eigenspace

of weight αi, so up to scalars

ι(σi) = tαi .

The canonical section

τi ∈ Γ(X,LX(αi))
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is a B̃ × B̃-eigenfunction with weight (χi,−w0χi), and a T̃ -eigenfunction of weight χi. It follows

that

ι(τi) = (vi ⊗ wi)tχi ,

where vi is a highest weight vector of the fundamental representation Vχi , and wi is a highest weight

vector of its dual.

Because of this, the only degrees (µ, λ) that appear in the image of ι are those for which

µ ≤ λ,

and the theorem is proved. �

Corollary 14.7. There is an isomorphism of G̃× G̃-modules

Γ(X,LX(λ)) ∼=
⊕
µ∈Λ+

µ≤λ

Vµ ⊗ V ∗µ .

Remark 14.8. In particular, and unlike for the flag variety G/B, some line bundles on the wonder-

ful compactification that correspond to non-dominant weights have global sections. For instance,

any simple root αi is greater than the 0-weight, and so

Γ(X,LX(αi)) ∼= V0 ⊗ V ∗0 ∼= C.

Remark 14.9. The affine variety X̃ has the structure of a monoid. Let V1, . . . , Vl be the funda-

mental representations of G̃, let V ∗1 , . . . , V
∗
l be their duals, and for each i = 1, . . . , l let

ρi : G̃ −→ V ∗i ⊗ Vi

be the representation map.

The ring of regular functions

C[X̃0] ∼=
⊕
λ∈Λ

 ⊕
µ∈Λ+

λ−µ∈R

Vµ ⊗ V ∗µ

 tλ,

from Proposition 14.5 gives an embedding

ψ : G̃×
Z̃
T̃ ↪−→ Cl ×

l∏
i=1

(V ∗i ⊗ Vi)

(g, t) 7−→ (α1(t), . . . , αl(t), χ1(t)ρ1(g), . . . , χl(t)ρl(g)) .

The variety X̃ is nothing but the closure of the image of ψ, and in view of the proof of Proposition

14.1 the quasi-affine variety X̂ is the closure of the image of ψ in

Cl ×
l∏

i=1

((V ∗i ⊗ Vi)\{0}) .

In fact, the variety X̃ is the enveloping monoid studied by Vinberg in [Vin]. It sits above the

wonderful compactification X as a multi-cone, and taking the quotient of the semistable locus X̂
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by the action of T̃ gives an isomorphism

X ∼= X̂/T̃ .

Remark 14.10. The Vinberg monoid is universal in the following sense. Suppose that S is a

monoid whose group of unitsG(S) is a reductive algebraic group—such monoids are called reductive.

Let

GS = [G(S), G(S)]

be the derived subgroup of the groups of units of S, and let

A(S) = Spec C[S]GS×GS

be the invariant-theoretic quotient of S by the two-sided action of GS .

The variety A(S) is called the abelianization of S, it is normal if S is normal, and there is a

canonical surjective morphism

α : S −→ A(S).

(See [PV].) The monoid S is called flat if α is flat. Moreover, any homomorphism

ϕ : S′ −→ S

of reductive monoids descends to a homomorphism of their abelianizations:

(14.2)

S′ S

A(S′) A(S).

α′

ϕ

α

Now fix a connected semisimple algebraic group G0, and consider the category C(G0) of flat

reductive monoids S which are normal, contain a zero, and such that

GS ∼= G0.

There is a distinguished monoid S ∈ C(G0)—the enveloping monoid of G0—with the property that

for any S′ ∈ C(G0) and any isomorphism

ϕ0 : GS′ −→ GS

there is a unique homomorphism

ϕ : S′ −→ S

extending ϕ0 and such that the diagram (14.2) is a pullback square—that is,

S′ ∼= A(S′)×A(S) S.

The Vinberg monoid X̃ from above is the enveloping monoid of G̃.
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Basel. 2005.

[BP] M. Brion and F. Pauer. Valuation des espaces homogènes sphériques. Comment. Math. Helv., 62. 1987.
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[PV] V. L. Popov and E. B. Vinberg. Invariant Theory. Springer-Verlag. 1994.

[Tim] D.A. Timashev. Homogeneous Spaces and Equivariant Embeddings. Springer-Verlag Berlin Heidelberg. 2008.

[Vin] E. B. Vinberg. On reductive algebraic semigroups. Amer. Math. Soc. Transl. Ser. 2, 169. 1995.


	1. Introduction
	2. Construction of the compactification
	3. The big cell
	4. Smoothness of the compactification
	5. The GG-orbits on the compactification
	6. The structure of the orbits and their closures
	7. Independence of regular dominant weight
	8. Compactifications in more general spaces
	9. The Lie algebra realization of the compactification
	10. Log-homogeneous varieties
	11. The logarithmic cotangent bundle of G
	12. Cohomology of the wonderful compactification
	13. The Picard group
	14. The total coordinate ring
	References

