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1. Introduction

The aim of this paper is to explore the geometry of a Lie algebra g through the action
of its nilpotent elements and through the structure of the algebra C[g]G of polynomial
invariants. These two approaches will converge to give broad results about the geometry
of the G-orbits in g and about the closure relations between them.

When we inspect the adjoint action of nilpotent elements we will primarily be concerned
with a distinguished class of nilpotents called principal nilpotents. These give rise to a
copy of sl2 inside g that is, up to conjugacy, unique. The invariant polynomials in C[g]G

behave nicely along planes determined by this subalgebra, and the adjoint action of the
subalgebra itself reflects the structure of C[g]G.

Moreover, there is a surjection g −� Cl obtained via some classical results by mapping
each element to its image under the generators of C[g]G. This surjection encodes much of
the orbit structure of g, since its fibers are closures of G-orbits, and the “most common”
fibers are in fact single semisimple G-orbits. The orbit structure in these fibers mirrors
and generalizes the orbit structure in the set of nilpotent elements.

2. The Jacobson-Morozov Theorem

Throughout this paper, let G be a complex semisimple connected algebraic group of
rank l, g its Lie algebra, h the Cartan subalgebra and n the nilradical of g. Let C[g]G be
the algebra of G-invariant polynomials on g. For an element x ∈ g, denote its centralizers
in G and g by

ZG(x) = {g ∈ G | Ad(g) · x = x}
gx = {y ∈ g | ad(y) · x = 0}

respectively. Notice that gx is precisely the kernel of the ad(x)-action on g, and that the
Lie algebra of ZG(x) is precisely gx.

Theorem 2.1. (Jacobson-Morozov)[Bou05, 11.1.2] For any nilpotent element e ∈ g
there are elements h, f ∈ g such that

[h, e] = 2e, [h, f ] = −2f, [e, f ] = h,

and moreover h is semisimple and f is nilpotent.

Henceforth such a triple (e, h, f) will be called an sl2-triple.
1
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Example 2.2. Let g = sln. Every nilpotent element is conjugate to a matrix of nilpotent
Jordan blocks, so we only need to consider the case where e is a single block of size m×m.
An sl2-triple in this case is given by the following:

e =


0 1
0 0 1

. . . 1
0 1
0 0

 h =


m− 1 0

0 m− 3
. . .

−m+ 3 0
0 −m+ 1



f =


0 0

m− 1 0

2(m− 2)
. . .

2(−m+ 2) 0 0
−m+ 1 0


When m = 3, this becomes

e =

0 1 0
0 0 1
0 0 0

 h =

2 0 0
0 0 0
0 0 −2

 f =

0 0 0
2 0 0
0 −2 0

 .

Remark 2.3. It is natural to ask to what extent the sl2-triples of Jacobson-Morozov are
determined by the choice of e. In fact, it can be shown (see [CG97, 3.7.3]) that any two
triples (e, h, f) and (e, h′, f ′) containing the same nilpotent e are conjugate in ZG(e)—thus,
there is a bijective correspondence between the nilpotent G-orbits in g and the conjugacy
classes of sl2-triples.

3. The Nilpotent Cone

Let N be the subvariety of nilpotent elements in g. Since any scalar multiple of a
nilpotent element is also nilpotent, N is an algebraic cone. The following proposition gives
some properties of N and, more importantly, a criterion for nilpotency that is independent
of the notion of representation:

Proposition 3.1. [Dix96, 8.1.3] The nilpotent cone N is an irreducible subvariety of g of
dimension 2dim(n). An element x is in N if and only if P (x) = 0 for every polynomial
P ∈ C[g]G+, the subalgebra of C[g]G of polynomials with no constant term.

By Remark 2.3, to gain a complete picture of the conjugacy classes of sl2-triples we need
to understand the nilpotent orbits in g.

Definition 3.2. An element x ∈ g is regular if dim ZG(x) = dim gx = rk g, and the set
of regular elements in g is denoted by greg. A nilpotent element that is also regular is
principal, and an sl2-triple whose nilpotent element is principal is a principal sl2-triple.

Theorem 3.3. [Dix96, 8.1.3] The nilpotent cone N is a union of finitely many G-orbits,
and the set of principal nilpotents N ∩ greg forms a single, open, dense G-orbit in N .
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Proof. The idea of the proof is to embed g into some matrix algebra gln. The Lie algebra gln
has finitely many nilpotent GLn-conjugacy classes since any nilpotent matrix is conjugate
to a matrix of nilpotent Jordan blocks. It can be proved by a simple analysis of tangent
spaces (see [Dix96, 8.1.2]) that for any GLn-orbit O in gln, the irreducible components of
the intersection O ∩ g are G-orbits, completing the proof of the first part.

To show the second part, note that since N is irreducible, it contains a unique open
orbit G · x of maximal dimension

2dim(n) = dim(G · x) = dim(G)− dim(ZG(x)).

Then dim(ZG(x))=l and x is a principal nilpotent, conjugate to all other principal nilpo-
tents by the uniqueness of the orbit. �

Example 3.4. Consider once again g = sln. The ring of invariants is generated by func-
tions of the form x 7→ tr(xn) (see [Dix96, 7.3.5(ii)]), so Proposition 3.1 says that an element
of sln is nilpotent if and only if the trace of all its powers vanishes.

The first part of Theorem 3.3 is clear for sln by Jordan normal form. The second part
tells us that the orbit of the n × n-dimensional nilpotent Jordan block is dense and open
in the nilpotent cone of sln.

4. The Principal sl2-Triple

As shown in Theorem 3.3, the principal nilpotent elements form a single G-orbit in g, so
all the principal sl2-triples are conjugate to each other. Thus when we speak of a principal
sl2-triple acting on g, we are discussing an action that is, up to conjugation, unique.

With respect to this action, the Lie algebra g decomposes as a direct sum of irreducible
sl2-representations, the structure of which is well-known (see [FH72]). Since each of these
irreducible representations contributes one dimension to the kernel of e, the nilpotent e
is principal if and only if there are exactly l such irreducibles in the decomposition. In
this case the centralizer of h has dimension at most l, so h is also regular and each of the
irreducible representations contains a 0-eigenspace for h. Thus g decomposes as a sum of l
odd-dimensional irreducible (e, h, f)-representations, and all the eigenvalues of h on g are
even integers.

From now on, let (e, h, f) be a principal sl2-triple.

Theorem 4.1. [Kos59, 8.7] (cf. also [Dix96, 8.1.1(iii)]) Let g = ⊕li=1Vi be the decomposition
of g into irreducible representations of (e, h, f), with dim(Vi) = 2λi + 1 ordered such that
λ1 ≤ . . . ≤ λl. Let d1 ≤ . . . ≤ dl be the degrees of the homogeneous generators f1, . . . , fl of
the invariant polynomial algebra C[g]G. Then di = λi + 1.

Proof. Using the decomposition g = [g, e] ⊕ gf , take a basis y1, . . . , yl of gf such that
h · yi = −2λiyi, and define the function

ψ :G× Cl −→ g

(g, ζ1, . . . , ζl) 7−→ g · (e+ ζ1y1 + . . .+ ζlyl).
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The differential of ψ is surjective, so its image G · (e+ gf ) is dense in g, and the restriction

C[g]G −→ C[e+ gf ]

f 7−→ f|e+gf

is an injection.
By applying the Euler formula (where x is viewed as a tangent vector to g at x)

〈x,∇f〉 = (deg f)f(x),

we obtain for every invariant homogeneous generator fj

dj(fj ◦ ψ)(ζ1, . . . , ζl) =

l∑
i=1

(1 + λi)ζi
∂(fj ◦ ψ)

∂ζi
(ζ1, . . . , ζl).

Thus if cij is the sum of the exponents of ζi in fj ◦ ψ,∑
i

(1 + λi)cij = dj .

If there is some index j0 such that (1 + λj0) > dj0 , the polynomials f1 ◦ ψ, . . . , fj0 ◦ ψ
are algebraically dependent, contradicting the injectivity of f 7→ f|e+gf . So

d1 + . . .+ dl ≥ l + λ1 + . . .+ λl =
1

2
(l + dimg).

This equation is an equality, by the equality (see [CG97, 6.7.17]) of Poincaré polynomials∑
w∈W

tl(w) =

∏
(1− tdi)
(1− t)l

.

Thus equality holds for each degree and dj = 1 + λj . �

Example 4.2. When g = sln, it is known that the degrees of the homogeneous invariant
generators are 2, 3, . . . , n, so according to Theorem 4.1 the Lie algebra sln decomposes as
a sum of n− 1 irreducible representations of dimensions 3, 5, . . . , 2n− 1.

Proposition 4.3. [Dix96, 8.1.1(iv)] The differentials df1, . . . , dfl are linearly independent
at every point of e+ gf .

Proof. By the result of the previous theorem, fj ◦ψ is independent of ζi whenever di > dj ,
and cij is either 0 or 1 when di = dj . Then fj ◦ ψ can be written

fj ◦ ψ(ζ1, . . . , ζl) =
∑
dk=dj

αkjζk + gj

where the αkj ’s are scalars and gj depends only on the ζi’s such that di < dj . The Jacobian
of the fj ◦ ψ’s is then block-upper-triangular and the diagonal blocks are constant, so

det

(
∂(fj ◦ ψ)

∂ζi

)
=
∏
dk=dj

det (αkj) .
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Since the fj ◦ψ’s are algebraically independent, this constant determinant is non-zero. The

function ψ is linear when restricted to {1} ×Cl, and since the fj ’s are G-invariant we can
apply this restriction without loss of generality, so the matrix (∂yifj) is also nonsingular. �

5. The Principal Slice

Let (e, h, f) be a principal sl2-triple, and gf the centralizer of f in g. Then the plane
e+ gf will be called the principal slice. It is distinguished by the fact that all its elements
are regular and every G-orbit on greg intersects it in exactly one point.

Theorem 5.1. [Kos63, 4.7.8] Every element of e+ gf is regular, and the composition

e+ gf ↪−→ greg −� greg/G

gives an isomorphism of e+ gf with the G-orbit space of greg.

Proof. Define a function

f : g→ Cl

x 7→ (f1(x), . . . , fl(x))

The function f restricts to a function on the principal slice, and since the fi’s are G-
invariant it also restricts to a function f ′ on the orbit space. We have the following
commutative diagram:

e+ gf greg/G

Cl

f
f ′

By Propositions 5.2 and 5.3 that follow, f ′ is injective and f is an isomorphism, so the
commutative diagram gives an isomorphism e+ gf

∼−−→ greg/G. �

Proposition 5.2. [Kos63, 3.5.2] The map f ′ : greg/G −→ Cl is an injection.

Proof. For any x ∈ g, let x = s+ n be its Jordan decomposition. Since s+ n is conjugate
to s+ cn for any c ∈ C∗, the value of any G-invariant polynomial on x is determined by its
semisimple part. Thus, it suffices to show that f ′ is injective on semisimple orbits. This
follows from an application of the Chevalley Restriction Theorem (see 6.1), by an averaging
under the action of the (finite) Weyl group W . �

Proposition 5.3. [Kos63, 4.7.7] The map f : e+ gf −→ Cl is an isomorphism.

Proof. Recall the injective homomorphism γ : sl2 −→ g given by the Jacobson-Morozov
theorem. This homomorphism induces γ : SL2 −→ G, which gives an embedding of the
torus C∗ of SL2 into G.
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We equip both the principal slice and the vector space Cl with C∗-actions as follows:

t · (e+ x) = t2(γ(t−1) · (e+ x))

t · (ζ1, . . . , ζl) = (t2d1ζ1, . . . , t
2dlζl).

The coordinate rings of e+ gf and C∗ are graded by C∗-weights,

C[e+ gf ] = ⊕Ai
C[x1, . . . , xl] = ⊕Bi,

and since f is C∗-equivariant, the pullback preserves the grading:

f∗ : Bi −→ Ai.

To show f is an isomorphism of varieties, it suffices to show that f∗ is an isomor-
phism of rings. Since Ai and Bi are finite-dimensional, for this it is enough to show that
f∗ : Bi −→ Ai is injective and that dim(Bi)=dim(Ai). Both of these facts follow from
inspecting the differential

df : Tx(e+ gf ) −→ T0Cl,
which is bijective since the differentials df1, . . . , dfl are linearly independent at any point
of the principal slice by Proposition 4.3. �

6. The Ring of Polynomial Invariants

Now we are interested in the ring C[g]G itself. Let C[h]W denote the algebra of polyno-
mials on the Cartan subalgebra h invariant under the action of the Weyl group W . Since
G-conjugate elements in h are in fact conjugate under W , the usual restriction gives a map

C[g]G −→ C[h]W .

Theorem 6.1. (Chevalley Restriction Theorem)[Hum72, 23.1] The restriction map
C[g]G → C[h]W is an isomorphism.

This isomorphism produces an embedding C[h]W
∼−−→ C[g]G ↪−→ C[g] that induces a

morphism of algebraic varieties ρ : g −→ h/W . We are interested in the fiber above a point
χ ∈ h/W :

Vχ = {x ∈ g | ρ(x) = χ}.

The fiber above 0 is precisely the nilpotent cone N , and many of the properties of N
generalize to the fibers Vχ.

Theorem 6.2. [Kos63, 4.8.10] (cf. also [CG97, 6.7.2]) Let N = dim(n). The map
ρ : g→ h/W is a surjective morphism with 2N -dimensional irreducible fibers Vχ such that:

(i) Vχ is a G-stable closed subvariety of g and consists of finitely many G-orbits.
(ii) Vχ ∩ greg is the unique open dense G-conjugacy class in Vχ.
(iii) Vχ ∩ gss is the unique closed G-conjugacy class of minimal dimension.
(iv) Vχ is a single G-orbit if and only if it contains a regular semisimple element.
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Proof. Let Vh be the fiber above the orbit of h, and let N h be the set of nilpotent elements
inside gh. Every element x ∈ Vh has Jordan decomposition x = h+ n for some n ∈ N h, so
that Vh = G · (h+N h).

If h is regular, Vh is a single orbit of dimension 2N , so the generic fiber is 2N -dimensional.
If h is not regular, we have

dim(Vh) ≥ 2N

dim(Vh) ≤ dim(G×ZG(h) (h+N h)) ≤ 2N

and again dim(Vh)=2N.
Since N h is the nilpotent cone of gh, it has the properties of Theorem 3.3, and from this

(i) and (ii) follow.
Part (iii) follows from the fact that every nilpotent orbit contains 0 in its closure—thus,

the semisimple conjugacy class G ·(h+0) forms a unique closed orbit of minimal dimension
in Vh. Parts (ii) and (iii) immediately imply (iv). �

We can view a point χ ∈ h/W = Specm C[g]G as a maximal ideal and thus as a
homomorphism χ : C[g]G −→ C.

Theorem 6.3. [Kos63, 5.1.16] (cf. also [CG97, 6.7.3]) For each χ ∈ Specm C[g]G = h/W

(i) f ∈ C[g] vanishes on the fiber Vχ if and only if f ∈ C[g]·ker(χ). The ring of regular
functions on Vχ is

O(Vχ) =
C[g]

C[g] · ker(χ)
.

(ii) The ring O(Vχ) is normal.
(iii) The natural restriction O(Vχ) −→ O(Vregχ ) is an isomorphism.

Proof. The proof of (i) follows from observing that the algebra C[g] is free of rank l over
C[g/h]⊗C C[g]G. Then the quotient C[g]/C[g] · kerχ is free of rank l over C[g/h], so it is
Cohen-Macaulay. This and the linear independence of the differentials df1, . . . , dfl on Vregχ

imply (i).
Since any G-conjugacy class in Vχ is a symplectic manifold, it is even-dimensional, and

thus

dim(Vχ\Vregχ ) ≤ dim(Vχ)− 2.

Parts (ii) and (iii) follow from this and from the irreducibility of Vχ (see [CG97, 2.2.11]). �

Definition 6.4. A polynomial f ∈ C[g] is calledG-harmonic if wheneverD is aG-invariant
differential operator with zero constant term, we have D · f = 0.

Theorem 6.5. [Kos63, 4.8.11, 5.1.16] (cf. also [CG97, 6.7.4]) Let H denote the subalgebra
of G-harmonic polynomials in C[g].

(i) C[g] is a free C[g]G-module, and multiplication gives an isomorphism

C[g]G ⊗C H
∼−−→ C[g].
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(ii) For every fiber, the G-module O(Vχ) decomposes as a direct sum of finite-dimensional
simple G-modules. If V is one of these simple components, it appears with multiplicity
equal to the dimension of V0, the 0-weight space for the action of the torus T ⊆ G.

Proof. Freeness follows from the proof of 6.3(i). To see that the multiplication map is an
isomorphism, it suffices to check surjectivity inductively on the degree of elements in C[g]
and then to show that the Poincaré polynomials of the two sides are equal.

To prove (ii), one checks that the composition

H ↪−→ C[g] −� C[g]

C[g] · ker(χ)
= O(Vχ)

is a G-equivariant isomorphism. Then the G-module structure of O(Vχ) is independent of
χ, and we may choose χ to be regular and semisimple, so that Vχ ∼= G/T .

An analogue of the Peter-Weyl theorem gives us

O(G) =
⊕

(E ⊗ Ě)

where the sum is over all simple G-modules and Ě is the contragredient representation of
E. Then for any irreducible summand V ,

[O(Vχ) : V ] = [O[G/T ] : V ] =
∑

[E ⊗ ĚT : V ] = dim V̌ T = dim V0

and (ii) is proved. �
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An Outline of the Cited Literature

The contents of this proposal have been collected from a variety of sources. Section 2 de-
scribes the Jacobson-Morozov theorem and some of its consequences. This theorem appears
in many standard texts, as well as in [Kos59, 3.4], and most of these texts give an elemen-
tary, but tricky and lengthy, proof. An alternative proof can be found in [CG97, 3.7.1]—it
relies on more representation-theoretic machinery, but produces a more streamlined and
intuitive proof.

Section 3 gives a description of the nilpotent cone of a Lie algebra—this is necessary in or-
der to understand the G-orbit structure of the nilpotent elements, which in turn sheds light
on the conjugacy classes of sl2-triples. The statements here are collected from [Dix96, 8.1],
but many of the proofs come from [CG97, 3.2], where a more detailed discussion of the
nilpotent cone can also be found.

Section 4 explicitly outlines the action of a principal sl2-triple on g. This is one of
the main results of [Kos59], wherein it is proved using Coxeter-Killing transformations.
Coxeter observed [Cox51] and Coleman proved [Col58] that this type of transformation
exhibits in its eigenvalues the exponents of the corresponding Lie algebra. However, this
method of proof is quite cumbersome, so we outline instead the proof found in [Dix96].

Section 5, on the other hand, follows [Kos63] closely, and the structure of the main result
is the same. It is only in Proposition 5.3 that we take a less geometric and more algebraic
approach to the proof.

Section 6 is the one that requires the heaviest machinery and the most algebro-geometric
background. The results originate in [Kos63], but we follow the proofs of [CG97]. These
proofs rely heavily on the structure of the nilpotent cone and on some results on algebraic
varieties [CG97, 2.2] and some analysis of the space of harmonic polynomials [CG97, 6.3].


