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Abstract

We study the modified Helmholtz equation in a semi-strip with Poincaré type
boundary conditions. On each side of the semi-strip the boundary conditions involve
two parameters and one real-valued function. Using a new transform method re-
cently introduced in the literature we show that the above boundary-value problem
is equivalent to a 2× 2-matrix Riemann–Hilbert (RH) problem. If the six paramet-
ers specified by the boundary conditions satisfy certain algebraic relations this RH
problem can be solved in closed form. For certain values of the parameters the solu-
tion is not unique, furthermore in some cases the solution exists only under certain
restrictions on the functions specifying the boundary conditions. The asymptotics
of the solution at the corners of the semi-strip is investigated. In the case that the
2× 2 RH problem cannot be solved in closed form, the Carleman–Vekua method for
regularising it is illustrated by analysing in detail a particular case.

1. Introduction

A new method for studying boundary value problems for integrable PDE’s in
two dimensional domains (x, y) has been introduced recently and reviewed in [1].
Examples of integrable equations are linear PDE’s with constant coefficients and
the usual integrable nonlinear PDE’s such as the Korteweg–de Vries equation.
Let q(x, y) satisfy a second order linear elliptic PDE with constant coefficients in

a convex polygon in the complex z-plane, z = x + iy. This polygon can be either
bounded with corners z1, . . . , zm, zm+1 = z1, or unbounded with corners z1 = ∞,
z2, . . . , zm−1, zm = ∞. On each side of the polygon, namely on the side (zj+1, zj)

† The address for correspondence.
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Fig. 1. Geometry of the problem.

referred to as the side (j), let q(x, y) satisfy Poincaré type boundary conditions

∂q

∂ν

∣∣∣∣
ej

+ γjq = gj , (1·1)

where ∂q
∂ν
|ej = ∇q ·ej is the outward directional derivative in the direction ej specified

by the constant βj (see Fig.1), γj is a real non-negative constant, and gj is a real-
valued function with appropriate smoothness and decay. The main steps of the
method are as follows:

(1) Construct an integral representation in the complex k-plane for q(x, y) in terms
of a certain function ρ(k) = {ρj(k)}m

1 called the spectral function. The function
ρj(k) is expressed as an integral over the side (j) involving q, qs, qn, where qs, qn

are the tangential and the normal derivatives of the function q. Thus from (1·1)
and integration by parts it follows that each ρj involves one unknown boundary
value.

(2) Use the fact that ρ(k) satisfies a certain global relation to characterise the part
of ρ(k) involving the unknown boundary values in terms of {βj , γj , gj}m

1 . For a
general m-gon with the boundary conditions (1·1), this involves the formulation
of a matrix Riemann–Hilbert (RH) problem.

Regarding this method we note that the formulae for ρ(k) and for q(x, y) are
generalised direct and inverse Fourier transforms respectively, ‘custom made’ for
the given PDE and the given polygon. We also emphasise that for simple polygons
and for a large class of boundary conditions the above RH problem can be reduced
to either a triangular RH problem (which can be solved in closed form), or to two
separate scalar problems; we will refer to such cases as triangular and scalar cases,
respectively. In some particular cases, the scalar RH problems can be bypassed all
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together, and ρ(k) can be obtained using only algebraic manipulations; we will refer
to such cases as algebraic cases. It turns out that both the Dirichlet and the Neumann
problems belong to these algebraic cases.
In this paper, we apply the above method to the Poincaré boundary value problem

for the modified Helmholtz equation in the semi-strip D = {(x, y) ∈ R
2 : 0 < x < ∞,

0 < y < l} (Fig.1)
∂2q

∂x2
+

∂2q

∂y2
− 4α2q = 0, 0 < x < ∞, 0 < y < l, (1·2)

side 1 : cos β1qx − sin β1qy + γ1q = g1(x), 0 < x < ∞, y = 0,

side 2 : cos β2qy − sin β2qx + γ2q = g2(y), x = 0, 0 < y < l,

side 3 : cos β3qx + sin β3qy + γ3q = g3(x), 0 < x < ∞, y = l, (1·3)
where α is a real constant, γj are real non-negative constants, and 0 < βj < π
(j = 1, 2, 3). The functions g1(x), g3(x) vanish at the points x = 0 and x =∞.
Let z1 =∞ + i0, z2 = 0, z3 = il, z4 =∞ + il. It is shown in [2] that the generalised

direct and inverse Fourier transform pair associated with the modified Helmholtz
equation

∂2

∂z∂z
− α2q = 0, (1·4)

in the semi-strip with the end-points {z1, z2, z3, z4}, are given by:

ρj(k) =

zj∫
zj+1

e−(ikz+ α 2
ik z̄)

(
qzdz +

iα2

k
qdz̄

)
, Im(k) � 0 for j =1, 3 and k ∈ C for j =2,

(1·5)
and

q =
1
2πi

3∑
j=1

∫
lj

eikz+ α 2
ik z̄ρj(k)

dk

k
, 0 < x < ∞, 0 < y < l, (1·6)

where the contours lj are the rays

l1 = {k ∈ C : arg k = 0}, l2 = {k ∈ C : arg k = 1
2π}, l3 = {k ∈ C : arg k = π},

(1·7)
directed away from the origin.
Furthermore, the spectral function ρ(k) = {ρj(k)}31 satisfies the global relation

3∑
j=1

ρj(k) = 0, Im(k) � 0. (1·8)

For the semi-strip D and the boundary conditions (1·3), the analysis of the global
relations gives rise to a matrix RH problem on the real axis.
The main aims of this paper are:

(1) to derive the associated matrix RH problem;
(2) to solve this RH problem in closed form in the triangular and scalar cases;
(3) to analyse and solve the matrix RH problem corresponding to the Laplace

equation, as a particular case of the Helmholtz equation.
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The paper is organised as follows. In Section 2 we review the method of [1] and
use the simple case of the Dirichlet boundary conditions to illustrate the main ideas.
The Poincaré boundary-value problem for the modified Helmholtz equation in the
semi-strip D is reduced to a 2× 2 matrix RH problem on the real axis in Section 3.
In Section 4, the scalar cases are analysed, namely it is shown that if

β1 + β2 =
π

2
m, (2α2 − γ22 ) = (2α

2 − γ21 )(−1)m−1, m = 1, 2, 3, (1·9)

and

β2 − β3 =
π

2
n, (2α2 − γ22 ) = (2α

2 − γ23 )(−1)n−1, n = −1, 0, 1, (1·10)

then the coupled 2 × 2 RH problem can be reduced to two separate scalar RH
problems which can be solved in closed form. In Section 5 the triangular cases are
analysed, namely it is shown that if either of the conditions (1·9) or (1·10) is valid,
then the matrix RH problem can be mapped to a triangular RH problem which
can be solved in closed form. In Section 6·1 the matrix RH problem associated
with the Laplace equation in the case β2 = 1

2 (β3 − β1) is solved in closed form when
all the parameters γj (j = 1, 2, 3) are equal to zero; in Section 6·2 it is assumed
that γ21 + γ22 + γ23 � 0 and the relevant matrix RH problem is regularised by the
Carleman–Vekua method [5].

2. Basic notations and the Dirichlet problem

For elliptic equations it is convenient to replace the usual Cartesian coordinates
(x, y) with the complex coordinates (z, z̄) = (x+ iy, x− iy). For example, the modified
Helmholtz equation (1·2) can be written as

∂2q

∂z∂z̄
− α2q = 0. (2·1)

An equation in two dimensions is called integrable if and only if it can be expressed
as the condition that a certain associated 1-form W (x, y, k), k ∈ C, is closed, i.e.
dW = 0. A closed 1-form associated with an arbitrary linear PDE with constant
coefficients is given in [4]. For example, a closed 1-form for the modified Helmholtz
equation (1·2) is

W (z, z̄, k) = e−ikz+ iα 2
k z̄

(
qzdz +

iα2

k
qdz̄

)
, k ∈ C. (2·2)

Indeed,

dW =
(
e−ikz+ iα 2

k z̄qz

)
z̄
dz̄ ∧ dz +

(
iα2

k
e−ikz+ iα 2

k z̄q

)
z

dz ∧ dz̄

= e−ikz+ iα 2
k z̄

[(
qzz̄ +

iα2

k
qz

)
dz̄ ∧ dz +

(
iα2

k
qz + α2q

)
dz ∧ dz̄

]
. (2·3)

Thus, using dz ∧ dz̄ = −dz̄ ∧ dz, it follows that

dW = e−ikz+ iα 2
k z̄
(
qzz̄ − α2q

)
dz̄ ∧ dz. (2·4)

HenceW is closed if and only if q(z, z̄) satisfies themodifiedHelmholtz equation (2·1).
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Suppose that the integrable equation satisfied by q(z, z̄) is valid in a simply con-

nected domain D with the boundary ∂D. The equation dW = 0 implies∫
∂D

W (z, z̄, k) = 0, k ∈ C. (2·5)

Following [2] we will refer to this equation as the global relation. For example,
suppose that q(z, z̄) satisfies the modified Helmholtz equation in the semi-strip D.
Then the global relation (2·5) becomes equation (1·8), where ρj(k) are defined by
(1·5).
The above discussion indicates that both the global relation and the definition of

ρ(k) are a direct consequence of the closed 1-form W (z, z̄, k). It was shown in [2]
that the global relation can be used to characterise the unknown part of ρ(k), i.e.
the part of ρ(k) that involves the unknown boundary values. This suggests that it is
desirable to express q(z, z̄) directly in terms of ρ(k) (and not in terms of the boundary
values themselves). For the modified Helmholtz equation this expression is given by
equation (1·6).
Such expressions can be derived either by using the spectral analysis of the closed

1-form W [2], or by using the so-called fundamental differential form (which is a
slight generalisation of W ) and a reformulation of Green’s formula [4].
We now use the Dirichlet problem to illustrate the method [1].

Example 2·1. Let the real valued function q(x, y) satisfy the modified Helmholtz
equation (1·2) in the semi-strip {0 < x < ∞, 0 < y < l}, with the Dirichlet boundary
conditions,

q(x, 0) = g1(x), q(x, l) = g3(x), 0 < x < ∞,

q(0, y) = g2(y), 0 < y < l, (2·6)

where the real valued functions gj have appropriate smoothness and decay and are
compatible at the corners (0, 0) and (0, l). Then

q =
1
2π

3∑
j=1

∫
lj

eikz+ α 2
ik z̄hj(k)

dk

k
, 0 < x < ∞, 0 < y < l, (2·7)

where lj are the contours (1·7), and the functions hj(k), j = 1, 2, 3, are defined in
terms of the given functions gj , j = 1, 2, 3, as follows. Let

G1(k) =
1
2

∞∫
0

e

(
k+ α 2

k

)
x

(
dg1(x)

dx
+
2α2

k
g1(x)

)
dx, Re(k) � 0,

G2(k) = −1
2

l∫
0

e

(
k+ α 2

k

)
y

(
dg2(y)

dy
+
2α2

k
g2(y)

)
dy, k ∈ C,

G3(k) = −1
2

∞∫
0

e

(
k+ α 2

k

)
x

(
dg3(x)

dx
+
2α2

k
g3(x)

)
dx, Re(k) � 0, (2·8)
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G(k) = i[G1(−ik) +G2(k) + E(k)G3(−ik)], E(k) = e

(
k+ α 2

k

)
l
, (2·9)

F1(k) =
E(−k)[G(k)− G(k)] + E(k)[G(−k)− G(−k)]

E(k)− E(−k)
, (2·10)

F3(k) =
G(k)− G(k) +G(−k)− G(−k)

E(k)− E(−k)
. (2·11)

Then
h1(k) = −F1(k)− iG1(−ik), h2(k) = −iG2(k) +G(k),

h3(k) = −E(k)[F3(k) + iG3(−ik)]. (2·12)
In order to derive formula (2·7) we first use the boundary conditions to simplify

the spectral function ρ(k) and then analyse the global relation.

(a) The spectral function
Using qz = 1

2 (qx − iqy) and the fact that z is x, iy and x+ il, on the sides 1, 2 and 3,
respectively, the definitions of ρj(k) (equations (1·5)) yield

ρ1(k) =

∞∫
0

e−
(

ik+ α 2
ik

)
x

(
1
2
qx − i

2
qy −

α2

ik
q

)
(x, 0) dx, Im(k) � 0,

ρ2(k) = −i

l∫
0

e

(
k+ α 2

k

)
y

(
1
2
qx − i

2
qy − iα2

k
q

)
(0, y) dy, k ∈ C,

ρ3(k) = −e

(
k+ α 2

k

)
l

∞∫
0

e−
(

ik+ α 2
ik

)
x

(
1
2
qx − i

2
qy − α2

ik
q

)
(x, l) dx, Im(k) � 0. (2·13)

By substituting the boundary conditions (2·6) into these expressions we find
ρ1(k) = iψ1(−ik) +G1(−ik), Im(k) � 0,

ρ2(k) = iψ2(k) +G2(k), k ∈ C,

ρ3(k) = e

(
k+ α 2

k

)
l[iψ3(−ik) +G3(−ik)], Im(k) � 0, (2·14)

where the known functionsGj are given by formulae (2·8), and the unknown functions
ψj are defined by

ψ1(k) = −1
2

∞∫
0

e

(
k+ α 2

k

)
x
qy(x, 0) dx, Re(k) � 0,

ψ2(k) = −1
2

l∫
0

e

(
k+ α 2

k

)
y
qx(0, y) dy, k ∈ C,

ψ3(k) =
1
2

∞∫
0

e

(
k+ α 2

k

)
x
qy(x, l) dx, Re(k) � 0. (2·15)
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(b) The global relation
Substituting equations (2·14) into the global relation (1·8) we get

ψ1(−ik) + ψ2(k) + E(k)ψ3(−ik) = G(k), Im(k) � 0, (2·16)

where E(k) and G(k) are given by formulae (2·9). The complex conjugate of this
equation together with the substitution k → k̄ yields

ψ1(ik) + ψ2(k) + E(k)ψ3(ik) = G(k), Im(k) � 0. (2·17)

Both equations (2·16) and (2·17) are valid for k ∈ R. Subtracting these equations we
find

ψ1(ik)− ψ1(−ik) + E(k)[ψ3(ik)− ψ3(−ik)] = G(k)− G(k), k ∈ R. (2·18)

Letting k → −k we obtain

ψ1(ik)− ψ1(−ik) + E(−k)[ψ3(ik)− ψ3(−ik)] = G(−k)− G(−k), k ∈ R. (2·19)

The functions ψj(ik), j = 1, 3 are holomorphic for Im(k) > 0, while the functions
ψj(−ik), j = 1, 3 are holomorphic for Im(k) < 0. Furthermore, the Riemann–
Lebesgue lemma implies

ψj(k) = o(1), k → ∞ or k → 0, j = 1, 3. (2·20)

Equations (2·18) and (2·19) are the boundary conditions of the following 2×2 matrix
RH problem:
Find two pairs of functions {ψ1(ik), ψ3(ik)} and {ψ1(−ik), ψ3(−ik)} holomorphic in

the upper and lower half-planes respectively, decaying at infinity, which on the real axis
satisfy the conditions (2·18) and (2·19).
The above RH problem has the distinctive feature that is “doubly triangular”,

namely each of the combinations ψj(ik) − ψj(−ik), j = 1, 3, can be determined
independently:

ψ1(ik)− ψ1(−ik) = F1(k), k ∈ R, (2·21)

ψ3(ik)− ψ3(−ik) = F3(k), k ∈ R, (2·22)

where F1, F3 are defined by equations (2·10), (2·11). Each of equations (2·21, 2·22)
(together with equation (2·20)) define an elementary scalar RH problem which can
be solved in closed form. However, it turns out that using the representation (1·6) it
is possible to avoid solving these RH problems.

(c) An algebraic case
The integral representation (1·6) of q involves the spectral functions ρj(k), j =

1, 2, 3, which are given by formulae (2·14). We now concentrate on the part of q
involving the unknown functions ψ1(−ik), ψ2(k), ψ3(−ik). We will show that this
part can be expressed in terms of a known part as well as the unknown functions
ψ1(ik), ψ3(ik). Furthermore, using the Cauchy theorem, we will show that these
unknown functions do not contribute to q. Indeed, using equation (2·17) (which is
valid for Im(k) � 0) and equations (2·21) and (2·22) (which are valid for k ∈ R) we
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can express ψ2(k), ψ1(−ik), ψ3(−ik), respectively, in terms of ψ1(ik), ψ3(ik),

−ψ2(k) = ψ1(ik) + E(k)ψ3(ik)− G(k), arg k =
π

2
,

ψ1(−ik) = ψ1(ik)− F1(k), k > 0,

ψ3(−ik) = ψ3(ik)− F3(k), k > 0. (2·23)

The unknown part of q(z, z̄) involves

1
2π


 ∫

L++

eikz+ α 2
ik z̄ψ1(ik)

dk

k
−
∫

L−+

eik(z−il)+ α 2
ik (z̄+il)ψ3(ik)

dk

k


 ,

where L++ = {(i∞, 0) � (0,∞)} and L−+ = {(−∞, 0) � (0, i∞)} denote the positively
oriented boundaries of the first and second quadrant of the complex k-plane. The
function 1/k exp(ikz + (α2/ik)z̄) with x � 0, y � 0, is analytic and bounded in
the first quadrant of the complex k-plane. Similarly, the function 1/k exp[ik(z −
il) + (α2/ik)(z̄ + il)] with x � 0, 0 � y � l, is analytic and bounded in the second
quadrant. Furthermore, the functions ψ1(ik) and ψ3(ik) are analytic and bounded
for Im(k) > 0. Thus, the application of the Cauchy theorem implies that the above
integrals vanish.
Recalling that ρj(k) involve Gj , and taking into consideration equations (2·23),

relation (1·6) yields (2·7).

3. Derivation of the 2× 2 RH problem
We now consider the modified Helmholtz equation (1·2) with the boundary condi-

tions (1·3) under the assumption that sin βj � 0, j = 1, 2, 3.We note that if sin βj = 0,
j = 1, 2, 3, then after an elementary integration the boundary conditions (1·3) reduce
to those considered in Example 2.1.

Proposition 3·1. Let the real value function q(x, y) satisfy the modified Helmholtz
equation (1·2) in the semi-strip 0 < x < ∞, 0 < y < l, with the boundary conditions
(1·3), where sin βj � 0, j = 1, 2, 3. Then

q =
1
2π

3∑
j=1

∫
lj

eikz+ α 2
ik z̄hj(k)

dk

k
, 0 < x < ∞, 0 < y < l, (3·1)

where the rays lj are given by (1·7) and the functions hj(k), j = 1, 2, 3 are defined in
terms of {βj , γj , gj}, j = 1, 2, 3 as follows. Let

J1(k) =
γ1 + α2

k
e−iβ1 + keiβ1

2 sin β1
, J2(k) =

γ2 − α2

k
eiβ2 − ke−iβ2

2 sin β2
,

J3(k) =
γ3 + α2

k
eiβ3 + ke−iβ3

2 sin β3
, (3·2)

Gj(k) =
1

2 sin βj

∞∫
0

e

(
k+ α 2

k

)
x
gj(x)dx, j = 1, 3, Re(k) � 0;
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G2(k) =
1

2 sin β2

l∫
0

e

(
k+ α 2

k

)
y
g2(y) dy, k ∈ C, E(k) = e

(
k+ α 2

k

)
l
, (3·3)

G(k) = G1(−ik) +G2(k) + E(k)G3(−ik)

+
d0
2

(
eiβ1

sin β1
+

e−iβ2

sin β2

)
− d1
2

E(k)
(

e−iβ2

sin β2
− e−iβ3

sin β3

)
. (3·4)

Then

h1(k) = −J1(ik)ψ1(−ik) +G1(−ik) +
eiβ1d0
2 sin β1

, arg k = 0,

h2(k) =
J2(k)

J2(k)

[
J1(−ik)ψ1(ik) + E(k)J3(−ik)ψ3(ik)− G(k)

]
+G2(k)

− E(k)d1 − d0
2eiβ2 sin β2

, arg k =
π

2
,

h3(k) = E(k)
[
−J3(ik)ψ3(−ik) +G3(−ik) +

e−iβ3d1
2 sin β3

]
, arg k = π, (3·5)

where d0 = q(0, 0), d1 = q(0, l), and the sectionally holomorphic functions ψ1(±ik) and
ψ3(±ik) solve the 2× 2 matrix RH problem defined by:
(i) ψ1(ik), ψ3(ik) are holomorphic for Im(k) > 0;
(ii) ψ1(k) = o(1), ψ3(k) = o(1), k → 0 and k → ∞;
(iii) for k ∈ R, the functions ψj(±ik), j = 1, 3, satisfy the equation

J1(−ik)

J2(k)
ψ1(ik)−

J1(ik)
J2(k)

ψ1(−ik)

+E(k)
[
J3(−ik)

J2(k)
ψ3(ik)−

J3(ik)
J2(k)

ψ3(−ik)
]
=

G(k)

J2(k)
− G(k)

J2(k)
, (3·6)

together with the equation obtained from (3·6) with k replaced by −k.

Remark 3·1. If the function q(x, 0) has a power singularity at x = 0 : q(x, 0) =
O(xδ0 ) and −1 < δ0 < 0, then the integrals ρ1 and ρ2 in (1·5) are understood in
the regularised sense, and d0 = 0. Correspondingly, if q(x, l) = O(xδ1 ), x → 0 and
−1 < δ1 < 0, then d1 = 0.

Proof. The spectral functions ρj are defined by equations (2·13). Solving equa-
tions (1·3) for qy(x, 0), qx(0, y) and qy(x, l), respectively, substituting the resulting
expressions in equations (2·13), and integrating by parts, we find

ρ1 = ih1(k), ρ3(k) = ih3(k),

ρ2 = i

[
−J2(k)ψ2(k) +G2(k)−

E(k)d1 − d0
2eiβ2 sin β2

]
. (3·7)

The unknown functions ψj(k), j = 1, 2, 3 are defined by

ψ1(k) =

∞∫
0

e

(
k+ α 2

k

)
x
q(x, 0) dx, Re(k) < 0,



348 Y. A. Antipov and A. S. Fokas

ψ2(k) =

l∫
0

e

(
k+ α 2

k

)
y
q(0, y) dy, k ∈ C,

ψ3(k) =

∞∫
0

e

(
k+ α 2

k

)
x
q(x, l) dx, Re(k) < 0. (3·8)

The abelian theorem applied to the above integrals implies that the functions ψ1(k),
ψ3(k) decay as k → 0 and k → ∞. Next, using equations (3·7), the global relation
(1·8) becomes

J1(ik)ψ1(−ik) + J2(k)ψ2(k) + E(k)J3(ik)ψ3(−ik) = G(k), Im(k) � 0. (3·9)

The complex conjugate of this equation together with the substitution k → k̄ yields

J1(−ik)ψ1(ik) + J2(k)ψ2(k) + E(k)J3(−ik)ψ3(ik) = G(k), Im(k) � 0. (3·10)

The expression for q is given by equation (1·6). Using equation (3·10) to express ψ2(k)
in terms of ψ1(ik) and ψ3(ik), and then substituting the resulting expression into the
expression for ρ2 given in (3·7), it follows that ρ2 = ih2. This equation together with
ρ1 = ih1, ρ3 = ih3 imply that equation (1·6) gives (3·1).
Both equations (3·9) and (3·10) are valid for k ∈ R. Eliminating ψ2(k) from these

equations we find equation (3·6). The holomorphicity of ψj(±ik), j = 1, 3, follows
from the definition (3·8) of these functions. The proposition is proved.

In summary, the Poincaré boundary-value problem for the modified Helmholtz
equation in a semi-strip {0 < x < ∞, 0 < y < l} is equivalent to a RH problem with
the boundary condition

J(k)
(

ψ1(ik)
ψ3(ik)

)
= J(k)

(
ψ1(−ik)
ψ3(−ik)

)
+
(

f (k)
−f (−k)

)
, k ∈ R, (3·11)

where

J(k) =


 J1(−ik)

J2(k)
E(k)J3(−ik)

J2(k)

J1(−ik)
J2(−k) E(−k)J3(−ik)

J2(−k)


 , (3·12)

f (k) =
G(k)

J2(k)
− G(k)

J2(k)
. (3·13)

Multiplying the left- and right-hand sides of equation (3·11) by [J(k)]−1, we find the
standard form: (

ψ1(ik)
ψ3(ik)

)
= H(k)

(
ψ1(−ik)
ψ3(−ik)

)
+ µ(k), k ∈ R, (3·14)

with

H(k) =
1

det J(k)

(
H11(k) H12(k)
H21(k) H22(k)

)
, µ(k) =

(
µ1(k)
µ3(k)

)
= [J(k)]−1

(
f (k)

−f (−k)

)
,

H11(k) =
J1(ik)J3(−ik)
J2(k)J2(−k)

E(−k)− J1(ik)J3(−ik)

J2(k)J2(−k)
E(k),
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H12(k) =
J3(ik)J3(−ik)
J2(k)J2(−k)

− J3(ik)J3(−ik)

J2(k)J2(−k)
,

H21(k) = −J1(ik)J1(−ik)
J2(k)J2(−k)

+
J1(ik)J1(−ik)

J2(k)J2(−k)
,

H22(k) = −J1(−ik)J3(ik)
J2(k)J2(−k)

E(k) +
J1(−ik)J3(ik)

J2(k)J2(−k)
E(−k). (3·15)

It is unlikely that the general matrix RH problem (3·14), (3·15) can be solved in
closed form. In Sections 4, 5 and 6·1 we consider some particular cases which admit
a closed-form solution. In the general case, the above RH problem can be reduced
to a system of singular integral equations with a fixed singularity. In Section 6·2 we
regularise the matrix RH problem (3·14) in the case α = 0 and β2 = 1

2 (β3 − β2).

4. Scalar cases

We will first find the conditions for the matrix RH problem (3·14) to be reduced
to two separate scalar RH problems. Let

Jj2(k) =
Jj(ik)J2(k)

Jj(−ik)J2(k)
, j = 1, 3. (4·1)

Rewrite the boundary condition (3·11) as follows,
J1(−ik)

J2(k)
[ψ1(ik)− J12(k)ψ1(−ik)]

+
E(k)J3(−ik)

J2(k)
[ψ3(ik)− J32(k)ψ3(−ik)] =

G(k)

J2(k)
− G(k)

J2(k)
, k ∈ R,

J1(ik)

J2(−k)
J12(−k)

[
ψ1(ik)−

ψ1(−ik)
J12(−k)

]

+
E(−k)J3(ik)

J2(−k)
J32(−k)

[
ψ3(ik)−

ψ3(−ik)
J32(−k)

]
=

G(−k)
J2(−k)

− G(−k)

J2(−k)
, k ∈ R. (4·2)

Suppose that

Jj2(k)Jj2(−k) = 1, j = 1, 3. (4·3)
Then the linear combinations ψ1(ik)− J12(k)ψ1(−ik) and ψ3(ik)− J32(k)ψ3(−ik) can
be found explicitly,

ψ1(ik) = J12(k)ψ1(−ik) + ω1(k), k ∈ R, (4·4)

ψ3(ik) = J32(k)ψ3(−ik) + ω3(k), k ∈ R. (4·5)
These relations are scalar RH problems which define the unknown functions ψ1, ψ3.
Here

ω1(k) = −E(k)J3(−ik)

J1(−ik)
ω3(k) +

1

J1(−ik)

[
G(k)− J2(k)

J2(k)
G(k)

]
,

ω3(k) =
[
E(−k)J3(−ik)

J2(−k)
− E(k)J1(−ik)J3(−ik)

J1(−ik)J2(−k)

]−1

×
{

G(−k)
J2(−k)

− G(−k)

J2(−k)
− J1(−ik)

J1(−ik)J2(−k)

[
G(k)− J2(k)

J2(k)
G(k)

]}
. (4·6)
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Clearly, ω3(k) = o(1), k → ±∞, and ω1(k) = o(1), k → −∞. If k → +∞, then (4·6)
implies

ω1(k) =
E(k)

J1(−ik)

[
−J3(−ik)ω3(k) +G3(ik)−

J2(k)
J2(k)

G3(−ik)

+
d1
2

(
eiβ3

sin β3
− eiβ2

sin β2

)
− d1J2(k)
2J2(k)

(
e−iβ3

sin β3
− e−iβ2

sin β2

)]
+ o(1), k → +∞.

(4·7)

At first glance it appears that the function ω1(k) grows exponentially as k → +∞.
However, substituting ω3(k) from equation (4.6) into the above relation, it follows
that the expression in the square brackets is equal to zero, and therefore ω1(k) = o(1),
k → +∞. As k → 0, the functions ωj(k) vanish: ωj(k) = o(1) (j = 1, 3).
The conditions (4·3) can be simplified and written in terms of βj and γj as follows

j = 1 : e4i(β1+β2) = 1,
(
2α2 − γ22

)
sin 2β1 −

(
2α2 − γ21

)
sin 2β2 = 0,

j = 3 : e4i(β2−β3) = 1,
(
2α2 − γ22

)
sin 2β3 +

(
2α2 − γ23

)
sin 2β2 = 0. (4·8)

Since 0 < βj < π and γj > 0 (j = 1, 2, 3) the above relations yield

j = 1 : β1 + β2 =
πm

2
, 2α2 − γ22 + (−1)m

(
2α2 − γ21

)
= 0, m = 1, 2, 3,

j = 3 : β2 − β3 =
πm

2
, (−1)m

(
2α2 − γ22

)
+ 2α2 − γ23 = 0, m = −1, 0, 1. (4·9)

Thus, both conditions (4·3) are satisfied simultaneously for the following sets of the
parameters βj ∈ (0, π), γj > 0:

(1) γ1 = γ3 =
√
4α2 − γ22 , 0 < γj < 2|α|, β1 = π − β2, β3 = β2;

(2) γ1 =
√
4α2 − γ22 , γ3 = γ2, 0 < γj < 2|α|, β1 = π − β2, β3 = β2 ±

π

2
;

(3) γ1 = γ2, γ3 =
√
4α2 − γ22 , 0 < γj < 2|α|, β1 = π − β2 ±

π

2
, β3 = β2;

(4) γ1 = γ2 = γ3, β1 =
π

2
− β2, β3 =

π

2
+ β2, 0 < β2 <

π

2
;

(5) γ1 = γ2 = γ3, β1 =
3π
2

− β2, β3 = β2 −
π

2
,

π

2
< β2 < π. (4·10)

We now analyse the inverse transform equation (1·6) and investigate whether the
solutions of the RH problems (4·4), (4·5) can be avoided. The boundary conditions
(4·4) and (4·5) imply that the functions ψ1(−ik) and ψ3(−ik) can be analytically
continued into C

+,

ψ1(−ik) =
ψ1(ik)− ω1(k)

J12(k)
, k ∈ C

+,

ψ3(−ik) =
ψ3(ik)− ω3(k)

J32(k)
, k ∈ C

+. (4·11)

The function ψ2(k) can be expressed in terms of ψ1(ik) and ψ3(ik) using
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equation (3·10),

ψ2(k) = −J1(−ik)

J2(k)
ψ1(ik)− E(k)

J3(−ik)

J2(k)
ψ3(ik) +

G(k)

J2(k)
. (4·12)

Using (4·11) and (4·12) the inverse transformation equation (1·6) yields

q = I0 + I1 + I2 + I3, (4·13)

where

2πI0 =

∞∫
0

[
J1(−ik)J2(k)

J2(k)
ω1(k) +G1(−ik) +

eiβ1d0
2 sin β1

]
eikz+ α 2

ik z dk

k

+

i∞∫
0

[
−J2(k)

J2(k)
G(k) +G2(k)−

E(k)d1 − d0
2eiβ2 sin β2

]
eikz+ α 2

ik z dk

k

−
0∫

−∞

[
G3(−ik) +

e−iβ3d1
2 sin β3

]
E(k)eikz+ α 2

ik z dk

k
,

I1 = − 1
2π

∫
L++

J1(−ik)J2(k)

J2(k)
ψ1(ik)eikz+ α 2

ik z dk

k
,

I2 = − 1
2π

0∫
−∞

J3(−ik)J2(k)

J2(k)
ω3(k)E(k)eikz+ α 2

ik z dk

k
,

I3 =
1
2π

∫
L−+

J3(−ik)J2(k)

J2(k)
ψ3(ik)E(k)eikz+ α 2

ik z dk

k
, (4·14)

and L++, L−+ are the same contours as in Example 2·1.
We note that the integrals I0 and I2 are expressed in terms of the given boundary

conditions, while the integrals I1 and I3 involve the unknown functions ψ1(ik), ψ3(ik)
which are analytic in the upper half-plane C

+. The zeros k(2)1 , k
(2)
2 of the function

kJ2(k) = − eiβ2

2 sin β2
(k2 − γ2ke−iβ2 + α2e−2iβ2 ) (4·15)

are given by

2k(2)j =
(

γ2 cos β2 + (−1)j−1
√
4α2 − γ22 sin β2

)

+ i

(
−γ2 sin β2 + (−1)j−1

√
4α2 − γ22 cos β2

)
, (4·16)

for 0 < γ2 < 2|α| and by

2k(2)j =
(

γ2 + (−1)j−1
√

γ22 − 4α2
)
(cos β2 − i sin β2), (4·17)

for γ2 > 2|α|.
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There exist three separate cases depending on the position of the zeros of kJ2(k):
(1)

γ2 > 2|α|, (4·18)

or

γ2 < 2|α|, 0 < β2 <
π

2
, cot β2 < λ, (4·19)

or

γ2 < 2|α|, π

2
< β2 < π, − cot β2 < λ, (4·20)

where λ = γ2(4α2 − γ22 )
−1/2. Then the zeros of J2(k) are in C

−, thus I1 = I3 = 0, and

q = I0 + I2. (4·21)

(2)

γ2 < 2|α|, 0 < β2 < 1
2π, cot β2 > λ. (4·22)

Then k(2)2 ∈ C
−, k(2)1 ∈ C

++ = {k ∈ C : Re k > 0, Im k > 0}. Thus, I3 = 0 and I1 can
be computed by the residue theorem

q = I0 + I1 + I2, I1 = −i

[
eikz+ α 2

ik z J1(−ik)J2(k)

kJ
′
2(k)

ψ1(ik)

]
k=k

(2)
1

. (4·23)

(3)

γ2 < 2|α|, 1
2π < β2 < π, − cot β2 > λ. (4·24)

Then k(2)1 ∈ C
−, k(2)2 ∈ C

−+ = {k ∈ C : Re k < 0, Im k > 0}. Thus,

q = I0 + I2 + I3, I3 = i

[
eikz+ α 2

ik zE(k)
J3(−ik)J2(k)

kJ
′
2(k)

ψ3(ik)

]
k=k

(2)
2

. (4·25)

To evaluate the values ψ1(ik
(2)
1 ) and ψ3(ik

(2)
2 ) one needs to solve the scalar RH

problems (4·4), (4·5). In what follows we present the solution of the RH problem
(4·4) in the case 2. The coefficient J12(k) can be factorised explicitly:

J12(k) = −e2i(β1+β2)

(
k − k(1)1

)(
k − k(1)2

)(
k − k(2)1

)(
k − k(2)2

)
(
k − k(1)1

)(
k − k(1)2

)(
k − k(2)1

)(
k − k(2)2

) , (4·26)

where

2k(1)j = e−iβ1

(
iγ1 + (−1)j−1

√
4α2 − γ21

)
, j = 1, 2. (4·27)

Equation (4·10) implies that the parameter γ1 depends on γ2:
(a) γ1 =

√
4α2 − γ22 , β1 = π − β2. Then

2 Im k(1)j = (−1)jγ2 sin β2 −
√
4α2 − γ22 cos β2,

2 Im k(2)j = −γ2 sin β2 − (−1)j
√
4α2 − γ22 cos β2. (4·28)

The function J12(k) has one zero and three poles in C
+. This means that the winding
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number (index) of the function J12(k) equals −2:

ind J12(k) =
1
2π
[arg J12(k)]R1 = −2. (4·29)

Let

X+(k) =

(
k − k(1)1

)(
k − k(1)2

)(
k − k(2)2

)
k − k(2)1

, X−(k) = −X+(k). (4·30)

Then the functions X±(k) are analytic in C
±, they do not vanish in C

± and, in
addition, J12(k) = X+(k)[X−(k)]−1, k ∈ R. Applying the Liouville theorem gives the
solution of the problem (4·4)

ψ±
1 (ik) = X±(k)χ±(k), k ∈ C

±, (4·31)

where

χ±(k) =
1
2πi

∞∫
−∞

ω1(x)dx

X+(x)(x − k)
, k ∈ C

± \ R. (4·32)

The functions ψ(ik) and ψ(−ik) decay at infinity if and only if
∞∫

−∞

xjω1(x)dx

X+(x)
= 0, j = 0, 1. (4·33)

(b) γ1 = γ2, β1 = 1
2π − β2. Then J12(k) ≡ 1, and by the Sokhotski–Plemelj formulae

ψ1(±ik) =
1
2πi

∞∫
−∞

ω1(x)dx

x − k
, k ∈ C

± \ R. (4·34)

Finally, we show how to fix the constants d0 = q(0, 0) and d1 = q(0, l). We note that
in the scalar cases the function q(x, y) is bounded at the corners of the semi-strip D.
From (3·1) we obtain

d0 =
1
2π

3∑
j=1

∫
lj

hj(k)
dk

k
, d1 =

1
2π

3∑
j=1

∫
lj

e
−
(
k+ α 2

k

)
l
hj(k)

dk

k
. (4·35)

On the other hand, because hj(k) (j = 1, 2, 3) are linear functions of d0 and d1, the
above relations can be rewritten as a linear system of algebraic equations

d0 = D00d0 +D01d1 +D0,

d1 = D10d0 +D11d1 +D1, (4·36)

where the coefficients Djm, Dj (j = 0, 1;m = 0, 1) are known. The system (4·36)
uniquely defines the constants d0, d1 provided the corresponding matrix is not sin-
gular.

5. Triangular cases

We assume that equation (4·3) is valid for j = 1, but is not valid for j = 3, i.e.

J12(k)J12(−k) = 1, J32(k)J32(−k)� 1. (5·1)
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The first equation in (5·1) is satisfied if:
(a) γ1 =

√
4α2 − γ22 , β1 = π − β2,

or
(b) γ1 = γ2, β1 = π − β2 ± 1

2π.

In the case (a), indJ12(k) = −2, while in the case (b), J12 = 1, thus ind J12 = 0.
The inverse transform formula (1·6) implies

q = I0 + I1 + I∗, (5·2)

where I0, I1 are given by (4·14) and

I∗ =
1
2π

i∞∫
0

J3(−ik)J2(k)

J2(k)
ψ3(ik)E(k)eikz+ α 2

ik z dk

k

+
1
2π

0∫
−∞

J3(ik)ψ3(−ik)E(k)eikz+ α 2
ik z dk

k
. (5·3)

If 1
2π < β2 < π, then I1 = 0 (see Section 4). If however, 0 < β2 < 1

2π, then I1 � 0,
and in order to compute I1 one needs to determine ψ1(ik). This function satisfies the
scalar RH problem (4·4), where the function ω1(k) is now given by

ω1(k) = −E(k)J3(−ik)

J1(−ik)
[ψ3(ik)−J32(k)ψ3(−ik)]+

1

J1(−ik)

[
G(k)− J2(k)

J2(k)
G(k)

]
. (5·4)

Thus ψ1(ik) can be computed by equations (4·31) or (4·34) provided that we first
compute ψ3(ik). This function satisfies the scalar RH problem

ψ3(ik) = Ω(k)ψ3(−ik) + ω3(k), k ∈ R, (5·5)

where

Ω(k) =
Ω1(k)J32(k)− Ω2(k)
Ω1(k)− Ω2(k)J32(−k)

,

Ω1(k) =
J1(−ik)J3(−ik)E(k)

J1(−ik)J2(−k)
, Ω2(k) =

J3(ik)E(−k)

J2(−k)
.

ω3(k) = −[Ω1(k)− Ω2(k)J32(−k)]−1

×
{

G(−k)
J2(−k)

− G(−k)

J2(−k)
− J1(−ik)

J1(−ik)J2(−k)

[
G(k)− J2(k)

J2(k)
G(k)

]}
. (5·6)

The coefficient Ω(k) is discontinuous at the points k = 0 and k =∞:

Ω(−∞) = 1
J32(∞)

= −e−2i(β2−β3), Ω(+∞) = J32(∞) = −e2i(β2−β3),

Ω(−0) = 1
J32(0)

= −e2i(β2−β3), Ω(+0) = J32(0) = −e−2i(β2−β3). (5·7)

We fix the argument of the function Ω(k) as follows

arg Ω(−∞) = π + 2(β3 − β2), arg Ω(+0) = π + 2(β3 − β2). (5·8)
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Then

arg Ω(−0) = π + 2(β3 − β2) + ∆−, arg Ω(+∞) = π + 2(β3 − β2) + ∆+, (5·9)

where ∆− (∆+) is the increment of the argument of the function Ω(k) as k passes the
negative (positive) semi-axis. It can be directly verified that Ω(k) = Ω(−k). Therefore
∆+ = ∆− = ∆. Comparing (5·7) and (5·9) we find

∆ = 2πκ + 4(β2 − β3), (5·10)

where κ is an integer. The function Ω(k) can be factorised as

Ω(k) =
X+(k)
X−(k)

, k ∈ R, (5·11)

where

X±(k) = kp exp


 1
2πi

∞∫
−∞

log Ω(k)
x − k

dx


 , k ∈ C

±, (5·12)

p is an integer defined by the value of the parameter ∆. The analysis of the above
Cauchy integral yields

X(k) ∼ A0k
p+ ∆

2π , k → 0,

X(k) ∼ A1k
p− ∆

2π , k → ∞, (5·13)

where A0, A1 are constants.
We assume

−3π < ∆ < 3π. (5·14)

This is consistent with a variety of numerical experiments. Figures 2–5 present
graphs of Ω(k), 0 < k < ∞, for α = 1 and some values of the parameters βj , γj .
For all these cases (5·14) is valid. Substituting equation (5·11) into (5·5) and using
Liouville’s theorem we find

ψ3(±ik) = X±(k)[χ±(k) + Pκ(k)], k ∈ C
± \ R, (5·15)

where X± are defined in (5·12), χ±(k) are given by

χ±(k) =
1
2πi

∞∫
−∞

ω3(x)
X+(x)

dx

x − k
, k ∈ C

± \ R, (5·16)

and Pκ(k) is an arbitrary polynomial of degree κ. The required asymptotics (2·20)
of the function ψ3(k) defines the class of solutions and will be used to fix the integers
p and κ.

(1◦) If −3π < ∆ � −2π, then p = 1, Pκ(k) ≡ 0. The behaviour of the solution at
k = 0 is

ψ3(±ik) = O(k1+
∆
2π ), k → 0, −1

2
< 1 +

∆
2π

� 0. (5·17)



356 Y. A. Antipov and A. S. Fokas

starting point 

ending point 

–1 –0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8 1
–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

Im
 Ω

(k
) 

β1 = 3π/4, β2 = π/4,  β3 = 0.5β2, γ1 = (4*α2 – γ2
2)1/2, γ2 = 1, γ3 = 2, α = 1

Fig. 2. The set {Ω(k); 0 < k < ∞}: ∆ ∈ (2π, 3π).

1.2 1.3 1.4 1.5 1.6 1.7 1.8
v

starting point 

ending point 

–0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8 1
–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

Im
 Ω

(k
)

β1 = 3π/4, β2 = π/4,  β3 = 1.5β2, γ1 = (4*α2 – γ2
2)1/2, γ2 = 1, γ3 = 2, α = 1

Re Ω(k) 

Fig. 3. The set {Ω(k); 0 < k < ∞}: ∆ ∈ (3π/2, 2π).

The solution is unique, and it decays at infinity if and only if

∞∫
−∞

ω3(x)
X+(x)

xjdx = 0, j = 0, 1. (5·18)
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If these conditions are satisfied, then

ψ3(±ik) = O(k−2− ∆
2π ), k → ∞, −1 � −2− ∆

2π
< −1

2
. (5·19)

We emphasise that the integrals (5·18) are convergent at infinity since
[X+(x)]−1ω3(x) = O(x−2+ ∆

2π ), x → ±∞ and −2 + ∆/2π ∈ (−7/2,−3].
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(2◦) If −2π < ∆ � 0, then p = 0, Pκ(k) ≡ 0. The solution exists and it is unique. It
has the following behaviour at zero and infinity

ψ3(±ik) = O(k
∆
2π ), k → 0, −1 <

∆
2π

� 0,

ψ3(±ik) = O(k−1− ∆
2π ), k → ∞, −1 � −1− ∆

2π
< 0. (5·20)

(3◦) If 0 < ∆ � 2π, then p = 0, Pκ(k) = C0, C0 is an arbitrary constant, and

ψ3(±ik) = O(k
∆
2π ), k → 0, 0 <

∆
2π

� 1,

ψ3(±ik) = O(k− ∆
2π ), k → ∞, −1 � − ∆

2π
< 0. (5·21)

(4◦) If 2π < ∆ < 3π, then p = 0, Pκ(k) = C0k + C1, C0, C1 are arbitrary constants,
and

ψ3(±ik) = O(k
∆
2π ), k → 0, 1 <

∆
2π

<
3
2
,

ψ3(±ik) = O(k1−
∆
2π ), k → ∞, −1

2
< 1− ∆

2π
< 0. (5·22)

In the cases (1◦) – (3◦) the integral (5·16) is always convergent. This integral is also
convergent in the case (4◦) provided that the function ω2(x) satisfies the condition

|ω3(x)| � c|x|− ∆
2π , |x| → ∞, c = const. (5·23)

We now show how the constants d0 and d1 can be found. If ψ3(ik) = O(k−1),
k → ∞, k ∈ C

+, then by the abelian theorem q(x, l) is bounded at x = 0. Since
the function ψ1(ik) solves the RH problem (4·4) the function q(x, 0) is also bounded
at x = 0. Therefore the constants d0 and d1 can be fixed in the same manner as in
Section 4.
In the case ψ3(ik) = O(kζ), k → ∞, k ∈ C

+ and −1 < ζ < 0, by the abelian
theorem, the function q(x, l) has an integrable singularity at x = 0: q(x, l) = O(x−ζ−1),
x → 0. This means (see Remark 3·1) that the constant d1 vanishes. The other constant
d0 can be found from a linear algebraic equation by the method of Section 4.

6. Analysis of the matrix RH problem associated with the Laplace equation

Letting α = 0 in equation (1·6) we obtain

qz = − 1
2πi

3∑
j=1

∫
lj

eikzhj(k)dk, 0 < x < ∞, 0 < y < l. (6·1)

The functions hj(k) are defined by (3·5) withE(k) = ekl. The sectionally-holomorphic
functions ψ1(±ik) and ψ3(±ik) solve the 2 × 2 matrix RH problem (3·14) with the
functions Jj defined by

J1(k) =
γ1 + keiβ1

2 sin β1
, J2(k) =

γ2 − ke−iβ2

2 sin β2
, J3(k) =

γ3 + ke−iβ3

2 sin β3
. (6·2)

Note that thematrix RHproblem for the Laplace equation in a semi-infinite strip was
also derived in [3]. Here we analyse it and distinguish two cases: (i) γ1 = γ2 = γ3 = 0
and (ii) γ21 + γ22 + γ23 � 0.
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6·1. Case γ1 = γ2 = γ3 = 0

In this section we analyse the matrix RH problem (3·14) in the particular case
α = 0 and γ1 = γ2 = γ3 = 0. We have

ψ+(k) = H0(k)ψ
−(k) + µ(k), k ∈ R, (6·3)

where

ψ±(k) =
(

ψ1(±ik)
ψ3(±ik)

)
,

H0(k) = − 1
sinh(kl + iπb)

(
sinh(kl − iπa) i sin β1

sin β3
sin π(b − a)

i sin β3
sin β1

sin π(b + a) sinh(kl + iπa)

)
,

a =
β1 + 2β2 − β3

π
, b =

β1 + β3
π

. (6·4)

Since 0 < βj < π (j = 1, 2, 3) it follows −1 < a < 3, 0 < b < 2.

6·1·1. Case sin π(b ± a)� 0, a = 0.

We construct a closed-form solution of the matrix problem (6·3) assuming that
a = 0 and sin π(b ± a)� 0, i.e. β2 = 1

2 (β3 − β1) and β1 � −β2 + 1
2πm (m = 1, 2, 3),

β3 � β2 + 1
2πn (m = 0,±1). In this case the system of functional equations (6·3)

decouples to two separate scalar RH problems

φ+j (k) = λj(k)φ−
j (k) + ηj(k), k ∈ R, j = 1, 2. (6·5)

Here

φ±
j (k) =

1
2

[
ψ1(±ik) + (−1)j−1 sin β1

sin β3
ψ3(±ik)

]
,

ηj(k) =
1
2

[
µ1(k) + (−1)j−1

sin β1
sin µ3

µ3(k)
]

,

λj(k) = −sinh kl + (−1)j−1i sin πb

sinh(kl + πib)
, j = 1, 2. (6·6)

The functions λj(k) can be represented in terms of the Γ-functions as follows

λ1(k) = −Γ(1/2 + b/2− ik′)Γ(1/2− b/2 + ik′)
Γ(1/2 + b/2 + ik′)Γ(1/2− b/2− ik′)

,

λ2(k) =
Γ(b/2− ik′)Γ(1− b/2 + ik′)
Γ(b/2 + ik′)Γ(1− b/2− ik′)

, (6·7)

where k′ = kl
2π , b =

2
π
(β1 + β2). Next, we factorise the functions λj(k)

λj(k) =
X+

j (k)

X−
j (k)

, k ∈ R, (6·8)

where

X±
1 (k) = ±Γ(1/2 + b/2∓ ik′ − δ)

Γ(1/2− b/2∓ ik′ + δ)
, X±

2 (k) =
Γ(b/2∓ ik′)

Γ(1− b/2∓ ik′)
,

δ =
{
0, 0 < b < 1
1, 1 < b < 2.

(6·9)
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The functionsX±
j (k) are analytic and do not vanish in C

±. To construct the solution
we need the Cauchy integral

χ±
j (k) =

1
2πi

∞∫
−∞

ηj(x)dx

X+
j (x)(x − k)

, k ∈ C
± \ R. (6·10)

Because of the asymptotics of the functions

X±
1 (k) ∼ ±(∓ik′)b−2δ, X±

2 (k) ∼ (∓ik′)b−1, k → ∞, k ∈ C
±, (6·11)

and ηj(x) = O(x−1), x → ∞, the integral (6·10) converges at infinity. By substituting
formula (6·8) into (6·5) and by using (6·10) and Liouville’s theorem we find:
if 0 < β1 + β2 < 1

2π (0 < b < 1), then

φ±
1 (k) = X±

1 (k)χ
±
1 (k), k ∈ C

±,

φ±
2 (k) = X±

2 (k)[C + χ±
2 (k)], k ∈ C

±, (6·12)

where C is an arbitrary constant;
if 1

2π < β1 + β2 < π (1 < b < 2), then

φ±
1 (k) = X±

1 (k)[C + χ±
1 (k)], k ∈ C

±,

φ±
2 (k) = X±

2 (k)χ
±
2 (k), k ∈ C

±. (6·13)

The potentials ψ1(±ik) and ψ3(±ik) can be expressed through φ±
1 (k) and φ±

2 (k) from
(6·6)

ψ1(±ik) = φ±
1 (k) + φ±

2 (k),

ψ3(±ik) =
sin β3
sin β1

[
φ±
1 (k)− φ±

2 (k)
]
. (6·14)

Using the definition of the functions ψ1(−ik), ψ3(−ik)

ψ1(−ik) =

∞∫
0

e−ikxq(x, 0) dx, ψ3(−ik) =

∞∫
0

e−ikxq(x, l) dx, (6·15)

the asymptotics of the above integrals

ψj(−ik) = O(kb−1−δ), k → ∞, k ∈ C
−, (6·16)

and the abelian theorem we estimate the asymptotics of the boundary values of the
function q(x, y) at the corners of the semi-strip D

q(x, 0) = O(x−b+δ), q(x, l) = O(x−b+δ), x → 0, −b + δ ∈ (−1, 0). (6·17)

Thus, d0 = d1 = 0.

6·1·2. Scalar cases
We assume that sin π(b − a) = sin π(b + a) = 0, i.e. β1 = −β2 + 1

2πm (m = 1, 2, 3)
and β3 = β2 + 1

2πn (n = 0,±1). In this case the matrix H0(k) becomes diagonal
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and constant, H0 = diag{(−1)m−1, (−1)n−1}, and therefore the RH problem (3·14)
reduces to

ψ1(ik) = (−1)m−1ψ1(−ik) + µ1(k),

ψ3(ik) = (−1)n−1ψ3(−ik) + µ3(k). (6·18)

Consequently, the solution of the above problems is easily found in terms of the
Cauchy integrals. Clearly, to define the boundary values of the function q(x, y) at
y = 0 and y = l one can apply the Fourier transform to (6·18) using formulae (3·8)
for α = 0. Thus, for positive x,

q(x, 0) = µ̂1(x), q(x, l) = µ̂3(x), (6·19)

where

µ̂j(x) =
1
2π

∞∫
−∞

µj(k)e−ikxdk. (6·20)

The functions µ̂j(x) (j = 1, 3) are bounded at x = 0 and therefore the constants d0,
d1 can be fixed by the method of Section 4.

6·1·3. Triangular cases
We assume now that sin π(b − a) = 0 and sin π(b + a)� 0, i.e. β1 � −β2 + 1

2πm
(m = 1, 2, 3) and β3 = β2 + 1

2πn (n = 0,±1). In this case, H0(s) is the following
triangular matrix

H0(s) = (−1)n−1




sin (ikl + πb)
sin (ikl − πb)

0

− sin β3 sin 2πb

sin β1 sin (ikl − πb)
1


 . (6·21)

The problem of interest is the scalar RH problem

ψ1(ik) = (−1)n−1
sin π(2ik′ + b)
sin π(2ik′ − b)

ψ1(−ik) + µ1(k), k ∈ R, (6·22)

where as before k′ = kl/2π. The factorization of the coefficient of the RH problem is
given by

(−1)n−1 sin π(2ik′ + b)
sin π(2ik′ − b)

=
X+(k)
X−(k)

, k ∈ R, (6·23)

where

X+(k) =
Γ(b − δ − 2ik′)

Γ(1− b + δ − 2ik′)
, X−(k) = (−1)n Γ(b − δ + 2ik′)

Γ(1− b + δ + 2ik′)
. (6·24)

The solution to the RH problem (6·22) in the cases 0 < b < 1/2 and 1 < b < 3/2
involves an arbitrary constant:

ψ1(±ik) = X±(k)[χ±(k) + C], k ∈ C
±. (6·25)

In the cases 1/2 < b < 1 and 3/2 < b < 2 it is unique:

ψ1(±ik) = X±(k)χ±(k), k ∈ C
±, (6·26)
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where

χ±(k) =
1
2πi

∞∫
−∞

µ1(x)dx

X+(x)(x − k)
, k ∈ C

± \ R. (6·27)

We note that b = 1/2 or b = 3/2 imply sin π(b + a) = 0. The asymptotics at infinity
of the solution ψ1(±ik) follows from the analysis of formulae (6·24) to (6·27)

ψ1(±ik) = O(k2b−2δ−1−δ′
), k → ∞, k ∈ C

±, (6·28)

where

δ′ =
{
0, 0 < b < 1

2 or 1 < b < 3
2

1, 1
2 < b < 1 or 3

2 < b < 2
. (6·29)

The abelian theorem yields the asymptotics of the function q(x, 0) as x → 0

q(x, 0) = O(x2δ+δ′−2b), x → 0. (6·30)

Clearly, 2δ + δ′ − 2b ∈ (−1, 0). The above asymptotics implies that d0 = 0. The
constant d1 can be found from the corresponding linear algebraic equation following
the procedure of Section 4.
The remaining possible case sin 2(β1 + β2) = 0, sin 2(β3 − β2)� 0, can be treated

similarly.

6·2. Case γ21 + γ22 + γ33 � 0: regularisation of the RH problem

We assume that at least one of the constants γj (j = 1, 2, 3) is different than zero.
We aim to regularise the matrix RH problem associated with the Laplace equation
in the case a = 0, β1�−β2 + 1

2πm (m = 1, 2, 3) and β3�β2 + 1
2πn (n = 0,±1).

According to the Carleman–Vekua method, the corresponding system of
Fredholm’s equations can be written explicitly since the dominant part of the mat-
rix H(k), the matrix H0(k), has already been factorised (Section 6·1·1). Using the
asymptotics of the matrix H(k) as k → ∞

H(k) = − 1
sinh(kl + iπb)


 sinh kl[1 +O(k−1)]

i sin β1
sin β3

sin πb[1 +O(k−1]

i sin β3
sin β1

sin πb[1 +O(k−1)] sinh kl[1 +O(k−1)]


 ,

(6·31)
we represent the matrix H(k) as follows

H(k) = H0(k) + H̃(k), H̃(k) = {H̃mj(k)}m,j=1,2. (6·32)

By following the procedure of Section 6·1 we obtain

φ+j (k) = λj(k)φ−
j (k) + η̃j(k), k ∈ R, j = 1, 2, (6·33)

where

2η̃j(k) = µ1(k) + H̃11(k)ψ1(−ik) + H̃12(k)ψ3(−ik)

− (−1)j sin β1
sin β3

[µ3(k) + H̃21(k)ψ1(−ik) + H̃22(k)ψ3(−ik)]. (6·34)

Using the solution of Section 6·1 yields another representation of the RH problem.
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For example, in the case 0 < b < 1 we have

ψ1(−ik) =
X−
1 (k)
2πi

∞∫
−∞

η̃1(ζ)dζ

X+
1 (ζ)(ζ − k)

+X−
2 (k)


 1
2πi

∞∫
−∞

η̃2(ζ)dζ

X+
2 (ζ)(ζ − k)

+C


 ,

ψ3(− ik) =
sin β3
sin β1


X−

1 (k)
2πi

∞∫
−∞

η̃1(ζ)dζ

X+
1 (ζ)(ζ − k)

−X−
2 (k)


 1
2πi

∞∫
−∞

η̃2(ζ)dζ

X+
2 (ζ)(ζ − k)

+C




.

(6·35)

Substituting (6·34) into (6·35) and then taking the limit as k = kR − i0, we find
a system of the Fredholm integral equations [7]. Alternatively, we can apply the
inverse Fourier transform to the above equations, change the order of integration
and make the substitution πx = −l log ξ,

r(ξ) +

1∫
0

R(ξ, τ )r(τ )dτ = p(ξ), 0 < ξ < 1, (6·36)

where

r1(ξ) = q

(
l

π
log

1
ξ
, 0
)

, r2(ξ) = q

(
l

π
log

1
ξ
, l

)
, (6·37)

Rmj(ξ, τ ), the elements of the matrix R(ξ, τ ), are Fredholm’s kernels. They are
represented by double quadratures and can be evaluated by the residue theorem.

7. Conclusions

In this paper we have studied the modified Helmholtz equation (1·2) in a semi-strip
with the Poincaré type boundary conditions (1·1). On each side of the semi-strip, the
boundary conditions involve two real constants βj , γj and a real-valued function gj ,
j = 1, 2, 3.
Using the method reviewed in [1] it is straightforward to reduce the above

boundary-value problem to a 2 × 2 matrix RH problem for the two sectionally
holomorphic functions ψ1(±ik) and ψ3(±ik), k ∈ C

±. The jump matrix H(k) of the
associated RH problem (3·14) on the real k-axis is uniquely defined in terms of the
scalar functions Jj(k), j = 1, 2, 3, which are in turn defined in terms of the constant
α entering in the modified Helmholtz equation, and in terms of the constants βj , γj ,
j = 1, 2, 3.
A crucial role in the investigation of the above RH problem is played by the

products

J12(k)J12(−k), J32(k)J32(−k), (7·1)

where J12(k) and J32(k) are defined in terms of Jj(k) j = 1, 2, 3, by equation (4·1).
There exist the following three particular cases.
(I) J12(k)J12(−k) = 1, J32(k)J32(−k) = 1.
In this case the basic RH problem reduces to two separate scalar RH problems, one

for the sectionally holomorphic function ψ1(±ik) and one for ψ3(±ik). Each of these
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RH problems can be solved in closed form; the solutions depend on the particular
relations between βj and γj . (a) If γ1 =

√
4α2 − γ22 , β1 = π − β2, then the solution

ψ1(±ik) exists under the conditions (4·33) and it is given by equation (4·31). (b) If
γ1 = γ2, β1 = 1

2π − β2, ψ1(±ik) is given by equation (4·34). Similar considerations are
valid for ψ3(±ik).
The solution q(x, y) of the modified Helmholtz equation also depends on the par-

ticular relations between βj and γj : 1. If these parameters satisfy (4·18) or (4·19)
or (4·20), then q = I0 + I2, where the integrals I0 and I2 depend only on the given
boundary conditions, see equations (4·14) (in these cases ψ1(±ik) and ψ3(±ik) do not
contribute to the solution). 2. If the parameters satisfy (4·22), then q = I0 + I1 + I2,
where I1 depends on ψ1(ik

(2)
1 ) and k(2)1 is known , see equation (4·16). 3. If the para-

meters satisfy (4·24), then q = I0 + I2 + I3, where I3 depends on ψ3(ik
(2)
2 ), and k(2)2 is

known, see equation (4·16).
Having constructing ψ1(ik), ψ3(ik), the values ψ1(ik

(2)
1 ) and ψ3(ik

(2)
2 ) follow.

(II) J12(k)J12(−k) = 1, J32(k)J32(−k)� 1.
In this case the basic RH problem is triangular. It can be reduced to the scalar

RH problem (5·5) for the sectionally holomorphic function ψ3(±ik) and to a scalar
RH problem for ψ1(±ik) whose jump depends on ψ3(±ik). Thus, after determining
ψ3(±ik), ψ1(±ik) can be computed in closed form by solving a scalar RH problem
similar to the one mentioned in I above. The scalar RH problem for ψ3(±ik), whose
coefficient is discontinuous at k = 0 and k =∞, is solved by equations (5·15).
The solution q is given by q = I0 + I1 + I∗, where I1 depends of ψ1(±ik) (see (4·14))

and I∗ depends on ψ3(±ik) (see (5·3)).
(III) J12(k)J12(−k)� 1, J32(k)J32(−k) = 1.
This case is similar to II above.
We have also analysed the basic RH problem associated with the Laplace equation

(α = 0). We have shown that if β2 = 1
2 (β3−β2) and γ1 = γ2 = γ3, then the correspond-

ing matrix RH problem can be solved in closed form. If however at least one of the
parameters γj (j = 1, 2, 3) is not equal to zero then a closed-form solution does not
appear feasible. In this case the RH problem has been regularised, i.e. reduced to a
system of two Fredholm integral equations.

Remark 7·1. We recall that the spectral functions (2·13) depend on the three un-
known functions ψ1(ik), ψ2(ik), ψ3(ik). The basic RH problem is a consequence of
eliminating ψ2(ik). It was shown in [3] that it is also possible to solve the Laplace
equation in the semi-strip by eliminating either ψ1(ik) or ψ3(ik) instead of ψ2(k). This
alternative approach has certain advantages since ψ2(k) is an entire function (see [6]
for the analogous problem for the evolution equation). The implementation of this
approach to the modified Helmholtz equation remains open.

REFERENCES

[1] A. S. Fokas. On the integrability of linear and nonlinear PDEs. J. Math. Phys. 41 (2000),
4188–4237.

[2] A. S Fokas. Two dimensional linear PDEs in a convex polygon. Proc. Royal. Soc. Lond. A 457
(2001), 371–393.

[3] A. S Fokas and A. Kapaev. A transform method for the Laplace equation in a polygon. IMA
J. Appl. Math. 68 (2003), 355–408.



The modified Helmholtz equation in a semi-strip 365
[4] A. S Fokas and M.Zyskin. The fundamental differential form and boundary value problems.

Quart. J. Mech. Appl. Math. 55 (2002), 457–479.
[5] F.D. Gakhov. Boundary Value Problems (Pergamon Press, 1966).
[6] B. Pelloni. Well-posedness for two-point boundary value problems. Math. Proc. Camb. Phil.

Soc. (2002), to appear.
[7] X. Zhou. The Riemann–Hilbert problem and inverse scattering. SIAM J. Math. Anal. 20 (1989),

966–986.


