Line Integral. Work Done by a Force

Calculate \(\int_C \mathbf{F}(r) \cdot dr \) for the following data. (If \(\mathbf{F} \) is a force, this gives the work in the displacement along \(C \).) Show the details of your work.

1. \(\mathbf{F} = [y^2, -x^2], \quad C \) the straight-line segment from \((0, 0)\) to \((1, 4)\)
2. \(\mathbf{F} \) as in Prob. 1, \quad \(C: y = 4x^2 \) from \((0, 0)\) to \((1, 4)\)
3. \(\mathbf{F} = [xy, x^2y^2], \quad C \) the quarter-circle from \((2, 0)\) to \((0, 2)\) with center at \((0, 0)\)
4. \(\mathbf{F} \) as in Prob. 3, \quad \(C \) the straight-line segment from \((2, 0)\) to \((0, 2)\)
5. \(\mathbf{F} = [(x - y)^2, (y - x)^2], \quad C: xy = 1, 1 \leq x \leq 4 \)
6. \(\mathbf{F} = [\exp(y^{2/3}), -\exp(x^{2/3})], \quad C \) the semicubical parabola \(y = x^{3/2} \) from \((0, 0)\) to \((1, 1)\)
7. \(\mathbf{F} = [2z, x, -y], \quad C: \mathbf{r} = [\cos t, \sin t, 2t] \) from \((0, 0, 0)\) to \((1, 0, 4\pi)\)
8. \(\mathbf{F} = [x - y, y - z, z - x], \quad C: [2 \cos t, t, 2 \sin t] \) from \((2, 0, 0)\) to \((2, 2\pi, 0)\)
9. \(\mathbf{F} = [e^x, e^{-y}, e^t], \quad C: \mathbf{r} = [t, r^2, r^3] \) from \((0, 0, 0)\) to \((1, 1, 1)\)
10. \(\mathbf{F} = [\cosh x, \sinh y, e^t], \quad C: \mathbf{r} = [t, r^2, r^3] \) from \((0, 0, 0)\) to \((2, 2, 8)\)

11. WRITING PROJECT. Line Integral Generalizes Definite Integral. Write a short essay on this topic. Geometrically, the definite integral gives the area under the curve of the integrand. Explain the corresponding interpretation for a line integral. Include examples.

12. PROJECT. Independence of Representation. Dependence on Path. Consider the integral \(\int_C \mathbf{F}(r) \cdot dr \), where \(\mathbf{F} = [-x^2, xy] \).

(a) One path, several representations. Find the value of the integral when \(\mathbf{r} = [\cos t, \sin t], \) \(0 \leq t \leq \pi \). Show that the value remains the same if you set \(t = -p \) or \(t = p^2 \) or apply two other parametric transformations of your own choice.

(b) Several paths. Evaluate the integral when \(C: y = x^n \), thus \(\mathbf{r} = [t, t^n], 0 \leq t \leq 1 \), where \(n = 1, 2, 3, \ldots \). Note that these infinitely many paths have the same endpoints.

(c) Limit. What is the limit in (b) as \(n \to \infty \)? Can you confirm your result by direct integration without referring to (b)?

(d) Show path dependence with a simple example of your own choice involving two paths.

Integrals \(\int_C f(r) \, ds \) with Arc Length as Parameter

Evaluate this integral with \(f \) and \(C \) as follows. (Show the details.)

13. \(f = x^2 + y^2, \quad C: y = 3x \) from \((0, 0)\) to \((2, 6)\)
14. \(f = x^3y, \quad C: \mathbf{r} = [2 \cos t, 2 \sin t], 0 \leq t \leq \pi/2 \)
15. \(f = x^2 + y^2 + z^2, \quad C: [\cos t, \sin t, 2t], 0 \leq t \leq 4\pi \)
16. \(f = \sqrt{2 + x^3 + 3y^2}, \quad C: \mathbf{r} = [t, t^2, 0], 0 \leq t \leq 3 \)
17. \(f = 1 + y^2 + z^2, \quad C: \mathbf{r} = [t, \cos t, \sin t], 0 \leq t \leq \pi \)
18. \(f = 1 - \sinh^2 x, \quad C \) the catenary \(\mathbf{r} = [t, \cosh t], 0 \leq t \leq 2 \)
19. \(f = x^2 + (xy)^{1/2}, \quad C \) the hypocycloid \(\mathbf{r} = [\cos^3 t, \sin^3 t], 0 \leq t \leq \pi \)
20. \(f = \sqrt{16x^2 + 81y^2}, \quad C: \mathbf{r} = [3 \cos t, 2 \sin t], 0 \leq t \leq \pi \)